Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Opt Lett ; 45(22): 6302-6305, 2020 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-33186975

RESUMEN

High-resolution imaging of the surfaces of samples can be performed using near-field optical microscopes by scanning a small light spot; however, structures located deep beneath cannot be observed because the light spot spreads in three directions. In this study, we propose an observation technique for near-field optical microscopes that can obtain depth information within the resolution of the diffraction limit of light by analyzing interference patterns formed with divergent incident light and scattered light from a sample. We analyze depth structures by evaluating correlation coefficients between observed interference patterns and calculated reference patterns. Our technique can observe both high-resolution surface images and the diffraction-limited three-dimensional structure by scanning a near-field light source on a single plane.

2.
Appl Opt ; 57(11): 2841-2850, 2018 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-29714287

RESUMEN

We propose a new type of lensless camera enabling light-field imaging for focusing after image capture and show its feasibilities with some prototyping. The camera basically consists only of an image sensor and Fresnel zone aperture (FZA). Point sources making up the subjects to be captured cast overlapping shadows of the FZA on the sensor, which result in overlapping straight moiré fringes due to multiplication of another virtual FZA in the computer. The fringes generate a captured image by two-dimensional fast Fourier transform. Refocusing is possible by adjusting the size of the virtual FZA. We found this imaging principle is quite analogous to a coherent hologram. Not only the functions of still cameras but also of video cameras are confirmed experimentally by using the prototyped cameras.

3.
Nano Lett ; 14(5): 2413-8, 2014 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-24742218

RESUMEN

The continuing effort to utilize the unique properties present in a number of strongly correlated transition metal oxides for novel device applications has led to intense study of their transitional phase state behavior. Here we report on time-resolved coherent X-ray diffraction measurements on a single vanadium dioxide nanocrystal undergoing a solid-solid phase transition, using the SACLA X-ray Free Electron Laser (XFEL) facility. We observe an ultrafast transition from monoclinic to tetragonal crystal structure in a single vanadium dioxide nanocrystal. Our findings demonstrate that the structural change occurs in a number of distinct stages attributed to differing expansion modes of vanadium atom pairs.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA