Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Small ; 20(16): e2300935, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38009504

RESUMEN

The optical properties of lead halide perovskite semiconductors in vicinity of the bandgap are controlled by excitons, so that investigation of their fundamental properties is of critical importance. The exciton Landé or g-factor gX is the key parameter, determining the exciton Zeeman spin splitting in magnetic fields. The exciton, electron, and hole carrier g-factors provide information on the band structure, including its anisotropy, and the parameters contributing to the electron and hole effective masses. Here, gX is measured by reflectivity in magnetic fields up to 60 T for lead halide perovskite crystals. The materials band gap energies at a liquid helium temperature vary widely across the visible spectral range from 1.520 up to 3.213 eV in hybrid organic-inorganic and fully inorganic perovskites with different cations and halogens: FA0.9Cs0.1PbI2.8Br0.2, MAPbI3, FAPbBr3, CsPbBr3, and MAPb(Br0.05Cl0.95)3. The exciton g-factors are found to be nearly constant, ranging from +2.3 to +2.7. Thus, the strong dependences of the electron and hole g-factors on the bandgap roughly compensate each other when combining to the exciton g-factor. The same is true for the anisotropies of the carrier g-factors, resulting in a nearly isotropic exciton g-factor. The experimental data are compared favorably with model calculation results.

2.
Nano Lett ; 21(6): 2370-2375, 2021 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-33689391

RESUMEN

In a Fe/(Cd,Mg)Te/CdTe quantum well hybrid structure, short-range and long-range ferromagnetic proximity effects are found to coexist. The former is observed for conduction band electrons, while the latter is observed for holes bound to shallow acceptors in the CdTe quantum well. These effects arise from the interaction of charge carriers confined in the quantum well with different ferromagnets, where electrons interact with the Fe film and holes with an interfacial ferromagnet at the Fe/(Cd,Mg)Te interface. The two proximity effects originate from fundamentally different physical mechanisms. The short-range proximity effect for electrons is determined by the overlap of their wave functions with d-electrons of the Fe film. On the contrary, the long-range effect for holes bound to acceptors is not associated with overlapping wave functions and can be mediated by elliptically polarized phonons. The coexistence of the two ferromagnetic proximity effects reveals the presence of a nontrivial spin texture within the same heterostructure.

3.
Nano Lett ; 20(1): 517-525, 2020 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-31825228

RESUMEN

CdSe colloidal nanoplatelets are studied by spin-flip Raman scattering in magnetic fields up to 5 T. We find pronounced Raman lines shifted from the excitation laser energy by an electron Zeeman splitting. Their polarization selection rules correspond to those expected for scattering mediated by excitons interacting with resident electrons. Surprisingly, Raman signals shifted by twice the electron Zeeman splitting are also observed. The theoretical analysis and experimental dependences show that the mechanism responsible for the double flip involves two resident electrons interacting with a photoexcited exciton. Effects related to various orientations of the nanoplatelets in the ensemble and different orientations of the magnetic field are analyzed.

4.
Nano Lett ; 18(1): 373-380, 2018 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-29160075

RESUMEN

We address spin properties and spin dynamics of carriers and charged excitons in CdSe/CdS colloidal nanoplatelets with thick shells. Magneto-optical studies are performed by time-resolved and polarization-resolved photoluminescence, spin-flip Raman scattering and picosecond pump-probe Faraday rotation in magnetic fields up to 30 T. We show that at low temperatures the nanoplatelets are negatively charged so that their photoluminescence is dominated by radiative recombination of negatively charged excitons (trions). Electron g-factor of 1.68 is measured, and heavy-hole g-factor varying with increasing magnetic field from -0.4 to -0.7 is evaluated. Hole g-factors for two-dimensional structures are calculated for various hole confining potentials for cubic- and wurtzite lattice in CdSe core. These calculations are extended for various quantum dots and nanoplatelets based on II-VI semiconductors. We developed a magneto-optical technique for the quantitative evaluation of the nanoplatelets orientation in ensemble.

5.
Nanomaterials (Basel) ; 13(17)2023 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-37686910

RESUMEN

Optical alignment and optical orientation of excitons are studied experimentally on an ensemble of core/shell CdSe/CdS colloidal nanoplatelets. Linear and circular polarization of photoluminescence during resonant excitation of excitons is measured at cryogenic temperatures and with magnetic fields applied in the Faraday geometry. The developed theory addresses the optical alignment and optical orientation of excitons in colloidal nanocrystals, taking into account both bright and dark exciton states in the presence of strong electron-hole exchange interaction and the random in-plane orientation of nanoplatelets within the ensemble. Our theoretical analysis of the obtained experimental data allows us to evaluate the exciton fine structure parameters, the g-factors, and the spin lifetimes of the bright and dark excitons. The optical alignment effect enables the identification of the exciton and trion contributions to the emission spectrum, even in the absence of their clear separation in the spectra.

6.
Nanomaterials (Basel) ; 12(23)2022 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-36500892

RESUMEN

In this paper, we studied the role of the crystal structure in spheroidal CdSe nanocrystals on the band-edge exciton fine structure. Ensembles of zinc blende and wurtzite CdSe nanocrystals are investigated experimentally by two optical techniques: fluorescence line narrowing (FLN) and time-resolved photoluminescence. We argue that the zero-phonon line evaluated by the FLN technique gives the ensemble-averaged energy splitting between the lowest bright and dark exciton states, while the activation energy from the temperature-dependent photoluminescence decay is smaller and corresponds to the energy of an acoustic phonon. The energy splittings between the bright and dark exciton states determined using the FLN technique are found to be the same for zinc blende and wurtzite CdSe nanocrystals. Within the effective mass approximation, we develop a theoretical model considering the following factors: (i) influence of the nanocrystal shape on the bright-dark exciton splitting and the oscillator strength of the bright exciton, and (ii) shape dispersion in the ensemble of the nanocrystals. We show that these two factors result in similar calculated zero-phonon lines in zinc blende and wurtzite CdSe nanocrystals. The account of the nanocrystals shape dispersion allows us to evaluate the linewidth of the zero-phonon line.

7.
Nanoscale ; 13(2): 790-800, 2021 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-33351019

RESUMEN

The recombination dynamics and spin polarization of excitons in CdSe nanocrystals synthesized in a glass matrix are investigated using polarized photoluminescence in high magnetic fields up to 30 Tesla. The dynamics are accelerated by increasing temperature and magnetic field, confirming the dark exciton nature of low-temperature photoluminescence (PL). The circularly polarized PL in magnetic fields reveals several unusual appearances: (i) a spectral dependence of the polarization degree, (ii) its low saturation value, and (iii) a stronger intensity of the Zeeman component which is higher in energy. The latter feature is the most surprising being in contradiction with the thermal population of the exciton spin sublevels. The same contradiction was previously observed in the ensemble of wet-chemically synthesized CdSe nanocrystals but was not understood. We present a theory which explains all the observed features and shows that the inverted ordering of the circularly polarized PL maxima from the ensemble of nanocrystals is a result of competition between the zero phonon (ZPL) and one optical phonon-assisted (1PL) emission of the dark excitons. The essential aspects of the theoretical model are different polarization properties of the dark exciton emission via ZPL and 1PL recombination channels and the inhomogeneous broadening of the PL spectrum from the ensemble of nanocrystals exceeding the optical phonon energy.

8.
ACS Nano ; 14(7): 9032-9041, 2020 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-32585089

RESUMEN

Excitons in diluted magnetic semiconductors represent excellent probes for studying the magnetic properties of these materials. Various magneto-optical effects, which depend sensitively on the exchange interaction of the excitons with the localized spins of the magnetic ions can be used for probing. Here, we study core/shell CdSe/(Cd,Mn)S colloidal nanoplatelets hosting diluted magnetic semiconductor layers. The inclusion of the magnetic Mn2+ ions is evidenced by three magneto-optical techniques using high magnetic fields up to 15 T: polarized photoluminescence, optically detected magnetic resonance, and spin-flip Raman scattering. We show that the holes in the excitons play the dominant role in exchange interaction with magnetic ions. We suggest and test an approach for evaluation of the Mn2+ concentration based on the spin-lattice relaxation dynamics of the Mn2+ spin system.

9.
Nanoscale ; 10(2): 646-656, 2018 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-29239445

RESUMEN

We study the band-edge exciton fine structure and in particular its bright-dark splitting in colloidal semiconductor nanocrystals by four different optical methods based on fluorescence line narrowing and time-resolved measurements at various temperatures down to 2 K. We demonstrate that all these methods provide consistent splitting values and discuss their advances and limitations. Colloidal CdSe nanoplatelets with thicknesses of 3, 4 and 5 monolayers are chosen for experimental demonstrations. The bright-dark splitting of excitons varies from 3.2 to 6.0 meV and is inversely proportional to the nanoplatelet thickness. Good agreement between experimental and theoretically calculated size dependence of the bright-dark exciton splitting is achieved. The recombination rates of the bright and dark excitons and the bright to dark relaxation rate are measured by time-resolved techniques.

10.
Sci Rep ; 6: 20091, 2016 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-26822483

RESUMEN

Light amplification by stimulated emission of radiation, well-known for revolutionising photonic science, has been realised primarily in fermionic systems including widely applied diode lasers. The prerequisite for fermionic lasing is the inversion of electronic population, which governs the lasing threshold. More recently, bosonic lasers have also been developed based on Bose-Einstein condensates of exciton-polaritons in semiconductor microcavities. These electrically neutral bosons coexist with charged electrons and holes. In the presence of magnetic fields, the charged particles are bound to their cyclotron orbits, while the neutral exciton-polaritons move freely. We demonstrate how magnetic fields affect dramatically the phase diagram of mixed Bose-Fermi systems, switching between fermionic lasing, incoherent emission and bosonic lasing regimes in planar and pillar microcavities with optical and electrical pumping. We collected and analyzed the data taken on pillar and planar microcavity structures at continuous wave and pulsed optical excitation as well as injecting electrons and holes electronically. Our results evidence the transition from a Bose gas to a Fermi liquid mediated by magnetic fields and light-matter coupling.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA