Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Vasc Biol ; 5(1)2023 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-37582180

RESUMEN

The high metabolic demand of brain tissue is supported by a constant supply of blood flow through dense microvascular networks. Capillaries are the smallest class of vessels in the brain and their lumens vary in diameter between ~2 and 5 µm. This diameter range plays a significant role in optimizing blood flow resistance, blood cell distribution, and oxygen extraction. The control of capillary diameter has largely been ascribed to pericyte contractility, but it remains unclear if the architecture of the endothelial wall also contributes to capillary diameter. Here, we use public, large-scale volume electron microscopy data from mouse cortex (MICrONS Explorer, Cortical mm3) to examine how endothelial cell number, endothelial cell thickness, and pericyte coverage relates to microvascular lumen size. We find that transitional vessels near the penetrating arteriole and ascending venule are composed of two to six interlocked endothelial cells, while the capillaries intervening these zones are composed of either one or two endothelial cells, with roughly equal proportions. The luminal area and diameter are on average slightly larger with capillary segments composed of two interlocked endothelial cells vs one endothelial cell. However, this difference is insufficient to explain the full range of capillary diameters seen in vivo. This suggests that both endothelial structure and other influences, including pericyte tone, contribute to the basal diameter and optimized perfusion of brain capillaries.

2.
bioRxiv ; 2023 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-37163126

RESUMEN

The high metabolic demand of brain tissue is supported by a constant supply of blood through dense microvascular networks. Capillaries are the smallest class of vessels and vary in diameter between ∼2 to 5 µm in the brain. This diameter range plays a significant role in the optimization of blood flow resistance, blood cell distribution, and oxygen extraction. The control of capillary diameter has largely been ascribed to pericyte contractility, but it remains unclear if endothelial wall architecture also contributes to capillary diameter heterogeneity. Here, we use public, large-scale volume electron microscopy data from mouse cortex (MICrONS Explorer, Cortical MM^3) to examine how endothelial cell number, endothelial cell thickness, and pericyte coverage relates to microvascular lumen size. We find that transitional vessels near the penetrating arteriole and ascending venule are composed of 2 to 5 interlocked endothelial cells, while the numerous capillary segments intervening these zones are composed of either 1 or 2 endothelial cells, with roughly equal proportions. The luminal area and diameter is on average slightly larger with capillary segments composed of 2 interlocked endothelial cells versus 1 endothelial cell. However, this difference is insufficient to explain the full range of capillary diameters seen in vivo. This suggests that both endothelial structure and other influences, such as pericyte tone, contribute to the basal diameter and optimized perfusion of brain capillaries.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA