Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Pflugers Arch ; 476(6): 1007-1018, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38613695

RESUMEN

Neutrophil granulocytes play a crucial role in host defense against invading pathogens and in inflammatory diseases. The aim of this study was to elucidate membrane potential dynamics during the initial phase of neutrophil activation and its relation to migration and production of reactive oxygen species (ROS). We performed ROS production measurements of neutrophils from healthy C57BL/6J mice after TNFα-priming and/or C5a stimulation. The actin cytoskeleton was visualized with fluorescence microscopy. Furthermore, we combined migration assays and measurements of membrane potential dynamics after stimulating unprimed and/or TNFα-primed neutrophils with C5a. We show that C5a has a concentration-dependent effect on ROS production and chemokinetic migration. Chemokinetic migration and chemotaxis are impaired at C5a concentrations that induce ROS production. The actin cytoskeleton of unstimulated and of ROS-producing neutrophils is not distributed in a polarized way. Inhibition of the phagocytic NADPH oxidase NOX2 with diphenyleneiodonium (DPI) leads to a polarized distribution of the actin cytoskeleton and rescues chemokinetic migration of primed and C5a-stimulated neutrophils. Moreover, C5a evokes a pronounced depolarization of the cell membrane potential by 86.6 ± 4.2 mV starting from a resting membrane potential of -74.3 ± 0.7 mV. The C5a-induced depolarization occurs almost instantaneously (within less than one minute) in contrast to the more gradually developing depolarization induced by PMA (lag time of 3-4 min). This initial depolarization is accompanied by a decrease of the migration velocity. Collectively, our results show that stimulation with C5a evokes parallel changes in membrane potential dynamics, neutrophil ROS production and motility. Notably, the amplitude of membrane potential dynamics is comparable to that of excitable cells.


Asunto(s)
Complemento C5a , Potenciales de la Membrana , Ratones Endogámicos C57BL , Neutrófilos , Especies Reactivas de Oxígeno , Animales , Neutrófilos/metabolismo , Neutrófilos/efectos de los fármacos , Neutrófilos/fisiología , Complemento C5a/metabolismo , Complemento C5a/farmacología , Especies Reactivas de Oxígeno/metabolismo , Ratones , Potenciales de la Membrana/fisiología , NADPH Oxidasas/metabolismo , Citoesqueleto de Actina/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , Factor de Necrosis Tumoral alfa/farmacología , Movimiento Celular/efectos de los fármacos , Activación Neutrófila , NADPH Oxidasa 2/metabolismo
2.
J Immunol ; 209(1): 136-144, 2022 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-35715008

RESUMEN

Neutrophil granulocytes are the first and robust responders to the chemotactic molecules released from an inflamed acidic tissue. The aim of this study was to elucidate the role of microenvironmental pH in neutrophil chemotaxis. To this end, we used neutrophils from male C57BL/6J mice and combined live cell imaging chemotaxis assays with measurements of the intracellular pH (pHi) in varied extracellular pH (pHe). Observational studies were complemented by biochemical analyses of leukotriene B4 (LTB4) production and activation of the Cdc42 Rho GTPase. Our data show that pHi of neutrophils dose-dependently adapts to a given pH of the extracellular milieu. Neutrophil chemotaxis toward C5a has an optimum at pHi ∼7.1, and its pHi dependency is almost parallel to that of LTB4 production. Consequently, a shallow pHe gradient, resembling that encountered by neutrophils during extravasation from a blood vessel (pH ∼7.4) into the interstitium (pH ∼7.2), favors chemotaxis of stimulated neutrophils. Lowering pHe below pH 6.8, predominantly affects neutrophil chemotaxis, although the velocity is largely maintained. Inhibition of the Na+/H+ exchanger 1 (NHE1) with cariporide drastically attenuates neutrophil chemotaxis at the optimal pHi irrespective of the high LTB4 production. Neutrophil migration and chemotaxis are almost completely abrogated by inhibiting LTB4 production or blocking its receptor (BLT1). The abundance of the active GTP-bound form of Cdc42 is strongly reduced by NHE1 inhibition or pHe 6.5. In conclusion, we propose that the pH dependence of neutrophil chemotaxis toward C5a is caused by a pHi-dependent production of LTB4 and activation of Cdc42. Moreover, it requires the activity of NHE1.


Asunto(s)
Leucotrieno B4 , Neutrófilos , Animales , Quimiotaxis , Quimiotaxis de Leucocito , Concentración de Iones de Hidrógeno , Masculino , Ratones , Ratones Endogámicos C57BL , Neutrófilos/fisiología
3.
Pflugers Arch ; 469(12): 1567-1577, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-28849300

RESUMEN

Pancreatic cancer is characterized by a massive fibrosis (desmoplasia), which is primarily caused by activated pancreatic stellate cells (PSCs). This leads to a hypoxic tumor microenvironment further reinforcing the activation of PSCs by stimulating their secretion of growth factors and chemokines. Since many of them elicit their effects via G-protein-coupled receptors (GPCRs), we tested whether TRPC6 channels, effector proteins of many G-protein-coupled receptor pathways, are required for the hypoxic activation of PSCs. Thus far, the function of ion channels in PSCs is virtually unexplored. qPCR revealed TRPC6 channels to be one of the most abundant TRPC channels in primary cultures of murine PSCs. TRPC6 channel function was assessed by comparing PSCs from TRPC6-/- mice and wildtype (wt) littermates. Cell migration, Ca2+ signaling, and cytokine secretion were analyzed as readout for PSC activation. Hypoxia was induced by incubating PSCs for 24 h in 1% O2 or chemically with dimethyloxalylglycine (DMOG). PSCs migrate faster in response to hypoxia. Due to reduced autocrine stimulation, TRPC6-/- PSCs fail to increase their rate of migration to the same level as wt PSCs under hypoxic conditions. This defect could not be overcome by the stimulation with platelet-derived growth factor. In line with these results, calcium influx is increased in wt but not TRPC6-/- PSCs under hypoxia. We conclude that TRPC6 channels of PSCs are major effector proteins in an autocrine stimulation pathway triggered by hypoxia.


Asunto(s)
Células Estrelladas Pancreáticas/metabolismo , Canales Catiónicos TRPC/metabolismo , Animales , Hipoxia de la Célula , Células Cultivadas , Femenino , Masculino , Ratones , Ratones Noqueados , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patología , Canal Catiónico TRPC6 , Microambiente Tumoral/fisiología
4.
J Biol Chem ; 287(13): 10650-10663, 2012 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-22235111

RESUMEN

The function of P2X(7) receptors (ATP-gated ion channels) in innate immune cells is unclear. In the setting of Toll-like receptor (TLR) stimulation, secondary activation of P2X(7) ion channels has been linked to pro-caspase-1 cleavage and cell death. Here we show that cell death is a surprisingly early triggered event. We show using live-cell imaging that transient (1-4 min) stimulation of mouse macrophages with high extracellular ATP ([ATP]e) triggers delayed (hours) cell death, indexed as DEVDase (caspase-3 and caspase-7) activity. Continuous or transient high [ATP]e did not induce cell death in P2X(7)-deficient (P2X(7)(-/-)) macrophages or neutrophils (in which P2X(7) could not be detected). Blocking sustained Ca(2+) influx, a signature of P2X(7) ligation, was highly protective, whereas no protection was conferred in macrophages lacking caspase-1 or TLR2 and TLR4. Furthermore, pannexin-1 (Panx1) deficiency had no effect on transient ATP-induced delayed cell death or ATP-induced Yo-Pro-1 uptake (an index of large pore pathway formation). Thus, "transient" P2X(7) receptor activation and Ca(2+) overload act as a death trigger for native mouse macrophages independent of Panx1 and pro-inflammatory caspase-1 and TLR signaling.


Asunto(s)
Caspasa 1/metabolismo , Conexinas/metabolismo , Macrófagos Peritoneales/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Receptores Purinérgicos P2X7/metabolismo , Receptor Toll-Like 2/metabolismo , Receptor Toll-Like 4/metabolismo , Adenosina Trifosfato/farmacología , Animales , Calcio/metabolismo , Caspasa 1/genética , Caspasa 1/inmunología , Muerte Celular/efectos de los fármacos , Muerte Celular/genética , Células Cultivadas , Conexinas/genética , Conexinas/inmunología , Macrófagos Peritoneales/inmunología , Ratones , Ratones Noqueados , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/inmunología , Receptores Purinérgicos P2X7/genética , Receptores Purinérgicos P2X7/inmunología , Transducción de Señal/efectos de los fármacos , Transducción de Señal/fisiología , Receptor Toll-Like 2/genética , Receptor Toll-Like 2/inmunología , Receptor Toll-Like 4/genética , Receptor Toll-Like 4/inmunología
5.
JCI Insight ; 8(19)2023 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-37643024

RESUMEN

Pancreatic ductal adenocarcinoma (PDAC) progresses in an organ with a unique pH landscape, where the stroma acidifies after each meal. We hypothesized that disrupting this pH landscape during PDAC progression triggers pancreatic stellate cells (PSCs) and cancer-associated fibroblasts (CAFs) to induce PDAC fibrosis. We revealed that alkaline environmental pH was sufficient to induce PSC differentiation to a myofibroblastic phenotype. We then mechanistically dissected this finding, focusing on the involvement of the Na+/H+ exchanger NHE1. Perturbing cellular pH homeostasis by inhibiting NHE1 with cariporide partially altered the myofibroblastic PSC phenotype. To show the relevance of this finding in vivo, we targeted NHE1 in murine PDAC (KPfC). Indeed, tumor fibrosis decreased when mice received the NHE1-inhibitor cariporide in addition to gemcitabine treatment. Moreover, the tumor immune infiltrate shifted from granulocyte rich to more lymphocytic. Taken together, our study provides mechanistic evidence on how the pancreatic pH landscape shapes pancreatic cancer through tuning PSC differentiation.


Asunto(s)
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Ratones , Animales , Células Estrelladas Pancreáticas/patología , Línea Celular Tumoral , Neoplasias Pancreáticas/patología , Carcinoma Ductal Pancreático/patología , Fenotipo , Homeostasis , Fibrosis , Neoplasias Pancreáticas
6.
J Biol Chem ; 286(52): 44776-87, 2011 Dec 30.
Artículo en Inglés | MEDLINE | ID: mdl-22057273

RESUMEN

Adenosine 5'-triphosphate (ATP) has been implicated in the recruitment of professional phagocytes (neutrophils and macrophages) to sites of infection and tissue injury in two distinct ways. First, ATP itself is thought to be a chemotactic "find me" signal released by dying cells, and second, autocrine ATP signaling is implicated as an amplifier mechanism for chemotactic navigation to end-target chemoattractants, such as complement C5a. Here we show using real-time chemotaxis assays that mouse peritoneal macrophages do not directionally migrate to stable analogs of ATP (adenosine-5'-(γ-thio)-triphosphate (ATPγS)) or its hydrolysis product ADP (adenosine-5'-(ß-thio)-diphosphate (ADPßS)). HPLC revealed that these synthetic P2Y(2) (ATPγS) and P2Y(12) (ADPßS) receptor ligands were in fact slowly degraded. We also found that ATPγS, but not ADPßS, promoted chemokinesis (increased random migration). Furthermore, we found that photorelease of ATP or ADP induced lamellipodial membrane extensions. At the cell signaling level, C5a, but not ATPγS, activated Akt, whereas both ligands induced p38 MAPK activation. p38 MAPK and Akt activation are strongly implicated in neutrophil chemotaxis. However, we found that inhibitors of phosphatidylinositol 3-kinase (PI3K; upstream of Akt) and p38 MAPK (or conditional deletion of p38α MAPK) did not impair macrophage chemotactic efficiency or migration velocity. Our results suggest that PI3K and p38 MAPK are redundant for macrophage chemotaxis and that purinergic P2Y(2) and P2Y(12) receptor ligands are not chemotactic. We propose that ATP signaling is strictly autocrine or paracrine and that ATP and ADP may act as short-range "touch me" (rather than long-range find me) signals to promote phagocytic clearance via cell spreading.


Asunto(s)
Adenosina Trifosfato/inmunología , Quimiotaxis/fisiología , Complemento C5a/inmunología , Macrófagos Peritoneales/inmunología , Fosfatidilinositol 3-Quinasas/inmunología , Agonistas del Receptor Purinérgico P2Y/inmunología , Receptores Purinérgicos P2Y12/inmunología , Receptores Purinérgicos P2Y2/inmunología , Proteínas Quinasas p38 Activadas por Mitógenos/inmunología , Adenosina Difosfato/genética , Adenosina Difosfato/inmunología , Adenosina Difosfato/metabolismo , Adenosina Difosfato/farmacología , Adenosina Trifosfato/análogos & derivados , Adenosina Trifosfato/metabolismo , Adenosina Trifosfato/farmacología , Animales , Comunicación Autocrina/efectos de los fármacos , Comunicación Autocrina/fisiología , Quimiotaxis/efectos de los fármacos , Complemento C5a/genética , Complemento C5a/metabolismo , Macrófagos Peritoneales/metabolismo , Ratones , Ratones Noqueados , Comunicación Paracrina/efectos de los fármacos , Comunicación Paracrina/fisiología , Fosfatidilinositol 3-Quinasas/genética , Fosfatidilinositol 3-Quinasas/metabolismo , Seudópodos/genética , Seudópodos/inmunología , Seudópodos/metabolismo , Agonistas del Receptor Purinérgico P2Y/metabolismo , Agonistas del Receptor Purinérgico P2Y/farmacología , Receptores Purinérgicos P2Y12/genética , Receptores Purinérgicos P2Y12/metabolismo , Receptores Purinérgicos P2Y2/genética , Receptores Purinérgicos P2Y2/metabolismo , Proteínas Quinasas p38 Activadas por Mitógenos/genética , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo
7.
Cancers (Basel) ; 14(19)2022 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-36230742

RESUMEN

Ewing sarcoma (EwS) is a rare and highly malignant bone tumor occurring mainly in childhood and adolescence. Physiologically, the bone is a central hub for Ca2+ homeostasis, which is severely disturbed by osteolytic processes in EwS. Therefore, we aimed to investigate how ion transport proteins involved in Ca2+ homeostasis affect EwS pathophysiology. We characterized the expression of 22 candidate genes of Ca2+-permeable or Ca2+-regulated ion channels in three EwS cell lines and found the Ca2+-activated K+ channel KCa2.1 (KCNN1) to be exceptionally highly expressed. We revealed that KCNN1 expression is directly regulated by the disease-driving oncoprotein EWSR1-FL1. Due to its consistent overexpression in EwS, KCNN1 mRNA could be a prognostic marker in EwS. In a large cohort of EwS patients, however, KCNN1 mRNA quantity does not correlate with clinical parameters. Several functional studies including patch clamp electrophysiology revealed no evidence for KCa2.1 function in EwS cells. Thus, elevated KCNN1 expression is not translated to KCa2.1 channel activity in EwS cells. However, we found that the low K+ conductance of EwS cells renders them susceptible to hypoosmotic solutions. The absence of a relevant K+ conductance in EwS thereby provides an opportunity for hypoosmotic therapy that can be exploited during tumor surgery.

8.
Front Immunol ; 11: 2124, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33013896

RESUMEN

The importance of the intracellular Ca2+ concentration ([Ca2+]i) in neutrophil function has been intensely studied. However, the role of the intracellular Na+ concentration ([Na+]i) which is closely linked to the intracellular Ca2+ regulation has been largely overlooked. The [Na+]i is regulated by Na+ transport proteins such as the Na+/Ca2+-exchanger (NCX1), Na+/K+-ATPase, and Na+-permeable, transient receptor potential melastatin 2 (TRPM2) channel. Stimulating with either N-formylmethionine-leucyl-phenylalanine (fMLF) or complement protein C5a causes distinct changes of the [Na+]i. fMLF induces a sustained increase of [Na+]i, surprisingly, reaching higher values in TRPM2-/- neutrophils. This outcome is unexpected and remains unexplained. In both genotypes, C5a elicits only a transient rise of the [Na+]i. The difference in [Na+]i measured at t = 10 min after stimulation is inversely related to neutrophil chemotaxis. Neutrophil chemotaxis is more efficient in C5a than in an fMLF gradient. Moreover, lowering the extracellular Na+ concentration from 140 to 72 mM improves chemotaxis of WT but not of TRPM2-/- neutrophils. Increasing the [Na+]i by inhibiting the Na+/K+-ATPase results in disrupted chemotaxis. This is most likely due to the impact of the altered Na+ homeostasis and presumably NCX1 function whose expression was shown by means of qPCR and which critically relies on proper extra- to intracellular Na+ concentration gradients. Increasing the [Na+]i by a few mmol/l may suffice to switch its transport mode from forward (Ca2+-efflux) to reverse (Ca2+-influx) mode. The role of NCX1 in neutrophil chemotaxis is corroborated by its blocker, which also causes a complete inhibition of chemotaxis.


Asunto(s)
Quimiotaxis de Leucocito/inmunología , Homeostasis/inmunología , Sodio/fisiología , Canales Catiónicos TRPM/fisiología , Animales , Calcio/fisiología , Línea Celular Tumoral , Células Cultivadas , Quimiotaxis de Leucocito/efectos de los fármacos , Complemento C5a/inmunología , Complemento C5a/farmacología , Líquido Intracelular/inmunología , Leucemia Mieloide , Ratones , Ratones Endogámicos C57BL , N-Formilmetionina Leucil-Fenilalanina/farmacología , Activación Neutrófila/efectos de los fármacos , Intercambiador de Sodio-Calcio/fisiología , ATPasa Intercambiadora de Sodio-Potasio/fisiología , Canales Catiónicos TRPM/deficiencia
9.
Front Physiol ; 11: 89, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32116794

RESUMEN

Pancreatic ductal adenocarcinoma (PDAC) is characterized by an acidic and fibrotic stroma. The extracellular matrix (ECM) causing the fibrosis is primarily formed by pancreatic stellate cells (PSCs). The effects of the altered biomechanics and pH landscape in the pathogenesis of PDAC, however, are poorly understood. Mechanotransduction in cells has been linked to the function of mechanosensitive ion channels such as Piezo1. Here, we tested whether this channel plays crucial roles in transducing mechanical signals in the acidic PDAC microenvironment. We performed immunofluorescence, Ca2+ influx and intracellular pH measurements in PSCs and complemented them by live-cell imaging migration experiments in order to assess the function of Piezo1 channels in PSCs. We evaluated whether Piezo1 responds to changes of extracellular and/or intracellular pH in the pathophysiological range (pH 6.6 and pH 6.9, respectively). We validated our results using Piezo1-transfected HEK293 cells as a model system. Indeed, acidification of the intracellular space severely inhibits Piezo1-mediated Ca2+ influx into PSCs. In addition, stimulation of Piezo1 channels with its activator Yoda1 accelerates migration of PSCs on a two-dimensional ECM as well as in a 3D setting. Furthermore, Yoda1-activated PSCs transmit more force to the surrounding ECM under physiological pH, as revealed by measuring the dislocation of microbeads embedded in the surrounding matrix. This is paralleled by an enhanced phosphorylation of myosin light chain isoform 9 after Piezo1 stimulation. Intriguingly, upon acidification, Piezo1 activation leads to the initiation of cell death and disruption of PSC spheroids. In summary, stimulating Piezo1 activates PSCs by inducing Ca2+ influx which in turn alters the cytoskeletal architecture. This results in increased cellular motility and ECM traction, which can be useful for the cells to invade the surroundings and to detach from the tissue. However, in the presence of an acidic extracellular pH, although net Ca2+ influx is reduced, Piezo1 activation leads to severe cell stress also limiting cellular viability. In conclusion, our results indicate a strong interdependence between environmental pH, the mechanical output of PSCs and stromal mechanics, which promotes early local invasion of PDAC cells.

10.
Oncotarget ; 8(1): 769-784, 2017 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-27903970

RESUMEN

Pancreatic stellate cells (PSCs) play a critical role in the progression of pancreatic ductal adenocarcinoma (PDAC). Once activated, PSCs support proliferation and metastasis of carcinoma cells. PSCs even co-metastasise with carcinoma cells. This requires the ability of PSCs to migrate. In recent years, it has been established that almost all "hallmarks of cancer" such as proliferation or migration/invasion also rely on the expression and function of ion channels. So far, there is only very limited information about the function of ion channels in PSCs. Yet, there is growing evidence that ion channels in stromal cells also contribute to tumor progression. Here we investigated the function of KCa3.1 channels in PSCs. KCa3.1 channels are also found in many tumor cells of different origin. We revealed the functional expression of KCa3.1 channels by means of Western blot, immunofluorescence and patch clamp analysis. The impact of KCa3.1 channel activity on PSC function was determined with live-cell imaging and by measuring the intracellular Ca2+ concentration ([Ca2+]i). KCa3.1 channel blockade or knockout prevents the stimulation of PSC migration and chemotaxis by reducing the [Ca2+]i and calpain activity. KCa3.1 channels functionally cooperate with TRPC3 channels that are upregulated in PDAC stroma. Knockdown of TRPC3 channels largely abolishes the impact of KCa3.1 channels on PSC migration. In summary, our results clearly show that ion channels are crucial players in PSC physiology and pathophysiology.


Asunto(s)
Canales Iónicos/genética , Canales Iónicos/metabolismo , Células Estrelladas Pancreáticas/metabolismo , Animales , Calcio/metabolismo , Carcinoma Ductal Pancreático , Línea Celular Tumoral , Movimiento Celular/genética , Quimiotaxis/genética , Expresión Génica , Humanos , Canales de Potasio de Conductancia Intermedia Activados por el Calcio/genética , Canales de Potasio de Conductancia Intermedia Activados por el Calcio/metabolismo , Ratones , Ratones Noqueados , Neoplasias Pancreáticas , Células Estrelladas Pancreáticas/efectos de los fármacos , Factor de Crecimiento Derivado de Plaquetas/metabolismo , Factor de Crecimiento Derivado de Plaquetas/farmacología , Canales Catiónicos TRPC/genética , Canales Catiónicos TRPC/metabolismo , Neoplasias Pancreáticas
11.
Sci Signal ; 3(132): ra55, 2010 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-20664064

RESUMEN

Chemotaxis, the movement of cells along chemical gradients, is critical for the recruitment of immune cells to sites of inflammation; however, how cells navigate in chemotactic gradients is poorly understood. Here, we show that macrophages navigate in a gradient of the chemoattractant C5a through the release of adenosine triphosphate (ATP) and autocrine "purinergic feedback loops" that involve receptors for ATP (P2Y(2)), adenosine diphosphate (ADP) (P2Y(12)), and adenosine (A2a, A2b, and A3). Whereas macrophages from mice deficient in pannexin-1 (which is part of a putative ATP release pathway), P2Y(2), or P2Y(12) exhibited efficient chemotactic navigation, chemotaxis was blocked by apyrase, which degrades ATP and ADP, and by the inhibition of multiple purinergic receptors. Furthermore, apyrase impaired the recruitment of monocytes in a mouse model of C5a-induced peritonitis. In addition, we found that stimulation of P2Y(2), P2Y(12), or adenosine receptors induced the formation of lamellipodial membrane protrusions, causing cell spreading. We propose a model in which autocrine purinergic receptor signaling amplifies and translates chemotactic cues into directional motility.


Asunto(s)
Quimiotaxis/fisiología , Macrófagos Peritoneales/fisiología , Receptores Purinérgicos P2/fisiología , Transducción de Señal/fisiología , Adenosina Difosfato/metabolismo , Adenosina Difosfato/farmacología , Adenosina Trifosfato/metabolismo , Adenosina Trifosfato/farmacología , Animales , Apirasa/farmacología , Células Cultivadas , Quimiotaxis/efectos de los fármacos , Complemento C5a/farmacología , Retroalimentación Fisiológica/efectos de los fármacos , Femenino , Macrófagos Peritoneales/citología , Macrófagos Peritoneales/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Microscopía de Fuerza Atómica , Modelos Biológicos , Monocitos/citología , Monocitos/metabolismo , Monocitos/fisiología , Receptores Purinérgicos P2/deficiencia , Receptores Purinérgicos P2/genética , Receptores Purinérgicos P2Y12 , Receptores Purinérgicos P2Y2
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA