Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
Development ; 149(4)2022 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-35029672

RESUMEN

The submergence-induced hypoxic condition negatively affects the plant growth and development, and causes early onset of senescence. Hypoxia alters the expression of a number of microRNAs (miRNAs). However, the molecular function of submergence stress-induced miRNAs in physiological or developmental changes and recovery remains poorly understood. Here, we show that miR775 is an Arabidopsis thaliana-specific young and unique miRNA that possibly evolved non-canonically. miR775 post-transcriptionally regulates GALACTOSYLTRANSFERASE 9 (GALT9) and their expression is inversely affected at 24 h of complete submergence stress. The overexpression of miR775 (miR775-Oe) confers enhanced recovery from submergence stress and reduced accumulation of RBOHD and ROS, in contrast to wild-type and MIM775 Arabidopsis shoot. A similar recovery phenotype in the galt9 mutant indicates the role of the miR775-GALT9 module in post-submergence recovery. We predicted that Golgi-localized GALT9 is potentially involved in protein glycosylation. The altered expression of senescence-associated genes (SAG12, SAG29 and ORE1), ethylene signalling (EIN2 and EIN3) and abscisic acid (ABA) biosynthesis (NCED3) pathway genes occurs in miR775-Oe, galt9 and MIM775 plants. Thus, our results indicate the role for the miR775-GALT9 module in post-submergence recovery through a crosstalk between the ethylene signalling and ABA biosynthesis pathways.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Etilenos/farmacología , Galactosiltransferasas/metabolismo , MicroARNs/metabolismo , Senescencia de la Planta/efectos de los fármacos , Ácido Abscísico/metabolismo , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Sitios de Unión , Cisteína Endopeptidasas/genética , Cisteína Endopeptidasas/metabolismo , Dioxigenasas/genética , Dioxigenasas/metabolismo , Galactosiltransferasas/genética , Aparato de Golgi/metabolismo , MicroARNs/química , MicroARNs/genética , NADPH Oxidasas/genética , NADPH Oxidasas/metabolismo , Hojas de la Planta/genética , Hojas de la Planta/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/crecimiento & desarrollo , Plantas Modificadas Genéticamente/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Receptores de Superficie Celular/genética , Receptores de Superficie Celular/metabolismo , Transducción de Señal/genética , Estrés Fisiológico
2.
Development ; 148(1)2021 01 05.
Artículo en Inglés | MEDLINE | ID: mdl-33168582

RESUMEN

Root system architecture and anatomy of monocotyledonous maize is significantly different from dicotyledonous model Arabidopsis The molecular role of non-coding RNA (ncRNA) is poorly understood in maize root development. Here, we address the role of LEAFBLADELESS1 (LBL1), a component of maize trans-acting short-interfering RNA (ta-siRNA), in maize root development. We report that root growth, anatomical patterning, and the number of lateral roots (LRs), monocot-specific crown roots (CRs) and seminal roots (SRs) are significantly affected in lbl1-rgd1 mutant, which is defective in production of ta-siRNA, including tasiR-ARF that targets AUXIN RESPONSE FACTOR3 (ARF3) in maize. Altered accumulation and distribution of auxin, due to differential expression of auxin biosynthesis and transporter genes, created an imbalance in auxin signalling. Altered expression of microRNA165/166 (miR165/166) and its targets, ROLLED1 and ROLLED2 (RLD1/2), contributed to the changes in lbl1-rgd1 root growth and vascular patterning, as was evident by the altered root phenotype of Rld1-O semi-dominant mutant. Thus, LBL1/ta-siRNA module regulates root development, possibly by affecting auxin distribution and signalling, in crosstalk with miR165/166-RLD1/2 module. We further show that ZmLBL1 and its Arabidopsis homologue AtSGS3 proteins are functionally conserved.


Asunto(s)
Secuencia Conservada , MicroARNs/metabolismo , Proteínas de Plantas/metabolismo , Raíces de Plantas/embriología , Raíces de Plantas/genética , ARN Interferente Pequeño/metabolismo , Arabidopsis/genética , Vías Biosintéticas , Tipificación del Cuerpo/genética , Recuento de Células , División Celular , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Ácidos Indolacéticos/metabolismo , MicroARNs/genética , Modelos Biológicos , Mutación/genética , Especificidad de Órganos/genética , Fenotipo , Proteínas de Plantas/genética , Haz Vascular de Plantas/embriología , Haz Vascular de Plantas/genética , Regulación hacia Arriba/genética , Zea mays
3.
Physiol Plant ; 175(4): e13968, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37402164

RESUMEN

Serotonin is a well-studied pineal hormone that functions as a neurotransmitter in mammals and is found in varying amounts in diverse plant species. By modulating gene and phytohormonal crosstalk, serotonin has a significant role in plant growth and stress response, including root, shoot, flowering, morphogenesis, and adaptability responses to numerous environmental signals. Despite its prevalence and importance in plant growth and development, its molecular action, regulation and signalling processes remain unknown. Here, we highlight the current knowledge of the role of serotonin-mediated regulation of plant growth and stress response. We focus on serotonin and its regulatory connections with phytohormonal crosstalk and address their possible functions in coordinating diverse phytohormonal responses during distinct developmental phases, correlating with melatonin. Additionally, we have also discussed the possible role of microRNAs (miRNAs) in the regulation of serotonin biosynthesis. In summary, serotonin may act as a node molecule to coordinate the balance between plant growth and stress response, which may shed light on finding its key regulatory pathways for uncovering its mysterious molecular network.


Asunto(s)
Melatonina , Serotonina , Serotonina/metabolismo , Desarrollo de la Planta , Reguladores del Crecimiento de las Plantas/metabolismo , Plantas/genética , Plantas/metabolismo , Regulación de la Expresión Génica de las Plantas
4.
Physiol Plant ; 174(4): e13736, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35716004

RESUMEN

Deepwater is an abiotic stress that limits rice cultivation worldwide due to recurrent floods. The miRNAs and lncRNAs are two non-coding RNAs emerging as major regulators of gene expressions under different abiotic stresses. However, the regulation of these two non-coding RNAs under deepwater stress in rice is still unexplored. In this study, small RNA-seq and RNA-seq from internode and node tissues were analyzed to predict deepwater stress responsive miRNAs and lncRNAs, respectively. Additionally, a competitive endogenous RNA (ceRNA) study revealed about 69 and 25 lncRNAs acting as endogenous target mimics (eTM) with the internode and node miRNAs, respectively. In ceRNA analyses, some of the key miRNAs such as miR1850.1, miR1848, and IN-nov-miR145 were upregulated while miR159e was downregulated, and their respective eTM lncRNAs and targets were found to have opposite expressions. Moreover, we have transiently expressed one module (IN-nov-miR145-Cc-TCONS_00011544-Os11g36430.3) in tobacco leaves. The integrated analysis has identified differentially expressed (DE) miRNAs, lncRNAs and their target genes, and the complex regulatory network, which might lead to stem elongation under deepwater stress. In this novel attempt to identify and characterize miRNAs and lncRNAs under deepwater stress in rice, we have provided, probably for the first time, a reference platform to study the interactions of these two non-coding RNAs with respective target genes through transient expression analyses.


Asunto(s)
MicroARNs , Oryza , ARN Largo no Codificante , Redes Reguladoras de Genes , MicroARNs/genética , MicroARNs/metabolismo , Oryza/metabolismo , ARN Largo no Codificante/genética , ARN Mensajero/metabolismo , Estrés Fisiológico/genética
5.
Semin Cell Dev Biol ; 96: 91-99, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31075379

RESUMEN

Crop productivity in rice is harshly limited due to high concentration of salt in the soil. To understand the intricacies of the mechanism it is important to unravel the key pathways operating inside the plant cell. Emerging state-of-the art technologies have provided the tools to discover the key components inside the plant cell for salt tolerance. Among the molecular entities, transcription factors and/or other important components of sensing and signaling cascades have been the attractive targets and the role of NHX and SOS1 transporters amply described. Not only marker assisted programs but also transgenic approaches by using reverse genetic strategies (knockout or knockdown) or overexpression have been extensively used to engineer rice crop. CRISPR/Cas is an attractive paradigm and provides the feasibility for manipulating several genes simultaneously. Here, in this review we highlight some of the molecular entities that could be potentially targeted for generating rice amenable to sustain growth under high salinity conditions by employing CRISPR/Cas. We also try to address key questions for rice salt stress tolerance other than what is already known.


Asunto(s)
Sistemas CRISPR-Cas/genética , Edición Génica , Oryza/genética , Estrés Salino/genética
6.
Plant J ; 101(1): 87-100, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31483536

RESUMEN

Auxin signaling mediated by various auxin/indole-3-acetic acid (Aux/IAAs) and AUXIN RESPONSE FACTORs (ARFs) regulate lateral root (LR) development by controlling the expression of downstream genes. LATERAL ROOT PRIMORDIUM1 (LRP1), a member of the SHORT INTERNODES/STYLISH (SHI/STY) family, was identified as an auxin-inducible gene. The precise developmental role and molecular regulation of LRP1 in root development remain to be understood. Here we show that LRP1 is expressed in all stages of LR development, besides the primary root. The expression of LRP1 is regulated by histone deacetylation in an auxin-dependent manner. Our genetic interaction studies showed that LRP1 acts downstream of auxin responsive Aux/IAAs-ARFs modules during LR development. We showed that auxin-mediated induction of LRP1 is lost in emerging LRs of slr-1 and arf7arf19 mutants roots. NPA treatment studies showed that LRP1 acts after LR founder cell specification and asymmetric division during LR development. Overexpression of LRP1 (LRP1 OE) showed an increased number of LR primordia (LRP) at stages I, IV and V, resulting in reduced emerged LR density, which suggests that it is involved in LRP development. Interestingly, LRP1-induced expression of YUC4, which is involved in auxin biosynthesis, contributes to the increased accumulation of endogenous auxin in LRP1 OE roots. LRP1 interacts with SHI, STY1, SRS3, SRS6 and SRS7 proteins of the SHI/STY family, indicating their possible redundant role during root development. Our results suggested that auxin and histone deacetylation affect LRP1 expression and it acts downstream of LR forming auxin response modules to negatively regulate LRP development by modulating auxin homeostasis in Arabidopsis thaliana.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/crecimiento & desarrollo , Arabidopsis/metabolismo , Ácidos Indolacéticos/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Epigénesis Genética/genética , Epigénesis Genética/fisiología , Regulación de la Expresión Génica de las Plantas/genética , Regulación de la Expresión Génica de las Plantas/fisiología , Mutación/genética , Raíces de Plantas/genética , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/metabolismo , Transducción de Señal/genética , Transducción de Señal/fisiología
7.
Plant Physiol ; 180(2): 998-1012, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30971449

RESUMEN

Gibberellic Acid Stimulated Transcript (GAST)-like genes encode small polypeptides, some of which have been implicated in diverse biological processes regulating plant growth and development. However, the occurrence of GASTs among plants, their protein structures, and the mechanisms by which they evolved remain elusive. Here, using a customized workflow, we report genes encoding GAST proteins, identify novel motifs and evolutionary patterns contributing to the subfunctionalization of GAST domains, and explore functional conservation across diverse plant groups. We show that GAST-like sequences evolved initially in the vascular plant Selaginella moellendorffii, after the divergence from bryophytes, and later emerged in gymnosperms and angiosperms. GASTs in angiosperms are characterized by four conserved novel motifs; however, relatively fewer conserved motifs exist in pteridophytes and gymnosperms. Phylogenetic analysis revealed that the GAST-Cysteine Rich1 motif evolved early in the S. moellendorffii GAST, which further acquired subfunctionalization through successive conjugation of other motifs and remained conserved across plants, as supported by their collinearity. Functional characterization of two orthologs from the dicot Arabidopsis (Arabidopsis thaliana; Gibberellic Acid-Stimulated Arabidopsis 10) and the monocot rice (Oryza sativa; Gibberellic Acid Stimulated Transcript-Related 9) suggests hormonal regulation, novel roles in seed germination, and functional conservation among diverse plant groups. Computational modeling predicts that these GAST genes are regulated by several factors, including the phytohormones gibberellin and abscisic acid, through conserved cis-motifs present in their promoters, and that they might act as signaling molecules in a complex feedback loop. Thus, our study identifies GASTs and their encoded proteins, uncovers their structure, novel motifs, and evolutionary pattern among plants, and suggests their functional conservation.


Asunto(s)
Evolución Molecular , Giberelinas/metabolismo , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Arabidopsis/genética , Arabidopsis/metabolismo , Briófitas/metabolismo , Secuencia Conservada , Cisteína/metabolismo , Regulación de la Expresión Génica de las Plantas , Redes Reguladoras de Genes , Germinación , Modelos Moleculares , Oryza/genética , Oryza/metabolismo , Fenotipo , Filogenia , Proteínas de Plantas/genética , Dominios Proteicos , ARN Mensajero/genética , ARN Mensajero/metabolismo , Semillas/crecimiento & desarrollo , Homología de Secuencia de Aminoácido , Tracheophyta/metabolismo
8.
J Exp Bot ; 71(3): 778-792, 2020 01 23.
Artículo en Inglés | MEDLINE | ID: mdl-31793642

RESUMEN

In higher plants, pluripotent stem cells reside in the specialized microenvironment called stem cell niches (SCNs) harbored at the shoot apical meristem (SAM) and root apical meristem (RAM), which give rise to the aerial and underground parts of a plant, respectively. The model plant Arabidopsis thaliana (Arabidopsis) has been extensively studied to decipher the intricate regulatory mechanisms involving some key transcriptions factors and phytohormones that play pivotal roles in stem cell homeostasis, meristem maintenance, and organ formation. However, there is increasing evidence to show the epigenetic regulation of the chromatin architecture, gene expression exerting an influence on an innate balance between the self-renewal of stem cells, and differentiation of the progeny cells to a specific tissue type or organ. Post-translational histone modifications, ATP-dependent chromatin remodeling, and chromatin assembly/disassembly are some of the key features involved in the modulation of chromatin architecture. Here, we discuss the major epigenetic regulators and illustrate their roles in the regulation of stem cell activity, meristem maintenance, and related organ patterning in Arabidopsis.


Asunto(s)
Arabidopsis/crecimiento & desarrollo , Ensamble y Desensamble de Cromatina , Meristema/fisiología , Nicho de Células Madre/fisiología , Proteínas de Arabidopsis/metabolismo , Redes Reguladoras de Genes , Proteínas de Homeodominio/metabolismo , Proteínas de Plantas/metabolismo
9.
BMC Evol Biol ; 19(1): 55, 2019 02 14.
Artículo en Inglés | MEDLINE | ID: mdl-30764768

RESUMEN

BACKGROUND: Micro RNAs (miRNAs), a class of small non-coding RNAs, have been implicated in various aspects of plant development. miR394 is required for shoot apical meristem organization, stem cell maintenance and abiotic stress responses in Arabidopsis, where it functions by negatively regulating the transcript level of target LEAF CURLING RESPONSIVENESS (LCR), which is an F-box protein-coding gene. The evolutionary conservation of stem cell regulatory miR394-LCR module among plants remains elusive. RESULTS: Our study has identified 79 miR394 and 43 target sequences across 40 plant species using various homology based search tools and databases, and analysed their co-evolution pattern. We customised an annotation workflow which computationally validates 20 novel miR394s from 14 plant species. Independent phylogenetic trees were reconstructed with precursor MIR394s, mature miR394s, and their target sequences along with complementary miR394 binding sites. The phylogeny revealed that mature sequences of miR394s as well as their targets belonging to the F-box protein encoding gene families, were highly conserved. Though, miR394-3p were complementary to miR394s/miR394-5p, they clustered separately. CONCLUSION: The existence and separate clustering of miR394-3p and miR394s/miR394-5p indicate their independent regulation. The phylogeny also suggests that miR394s had evolved at the beginning of gymnosperm-angiosperm divergence. Despite strong conservation, some level of sequence variation in miR394s and the complementary binding sites of their targets suggests possible functional diversification of miR394-LCR mediated stem cell regulation in plants.


Asunto(s)
Evolución Molecular , MicroARNs/genética , Plantas/genética , ARN de Planta/genética , Arabidopsis/genética , Secuencia de Bases , Secuencia Conservada/genética , Regulación de la Expresión Génica de las Plantas , Genoma de Planta , MicroARNs/metabolismo , Anotación de Secuencia Molecular , Familia de Multigenes , Filogenia , Precursores del ARN/genética , Precursores del ARN/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , ARN de Planta/metabolismo , Especificidad de la Especie , Estrés Fisiológico/genética
10.
BMC Genomics ; 20(1): 596, 2019 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-31325959

RESUMEN

BACKGROUND: Root morphology is known to be affected by light quality, quantity and direction. Light signal is perceived at the shoot, translocated to roots through vasculature and further modulates the root development. Photoreceptors are differentially expressed in both shoot and root cells. The light irradiation to the root affects shoot morphology as well as whole plant development. The current work aims to understand the white light intensity dependent changes in root patterning and correlate that with the global gene expression profile. RESULTS: Different fluence of white light (WL) regulate overall root development via modulating the expression of a specific set of genes. Phytochrome A deficient Arabidopsis thaliana (phyA-211) showed shorter primary root compared to phytochrome B deficient (phyB-9) and wild type (WT) seedlings at a lower light intensity. However, at higher intensity, both mutants showed shorter primary root in comparison to WT. The lateral root number was observed to be lowest in phyA-211 at intensities of 38 and 75 µmol m - 2 s - 1. The number of adventitious roots was significantly lower in phyA-211 as compared to WT and phyB-9 under all light intensities tested. With the root phenotypic data, microarray was performed for four different intensities of WL light in WT. Here, we identified ~ 5243 differentially expressed genes (DEGs) under all light intensities. Gene ontology-based analysis indicated that different intensities of WL predominantly affect a subset of genes having catalytic activity and localized to the cytoplasm and membrane. Furthermore, when root is irradiated with different intensities of WL, several key genes involved in hormone, light signaling and clock-regulated pathways are differentially expressed. CONCLUSION: Using genome wide microarray-based approach, we have identified candidate genes in Arabidopsis root that responded to the changes in light intensities. Alteration in expression of genes such as PIF4, COL9, EPR1, CIP1, ARF18, ARR6, SAUR9, TOC1 etc. which are involved in light, hormone and clock pathway was validated by qRT-PCR. This indicates their potential role in light intensity mediated root development.


Asunto(s)
Arabidopsis/genética , Arabidopsis/efectos de la radiación , Luz , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/efectos de la radiación , Arabidopsis/citología , Arabidopsis/crecimiento & desarrollo , Relojes Biológicos/genética , Relojes Biológicos/efectos de la radiación , Relación Dosis-Respuesta en la Radiación , Ontología de Genes , Mutación , Fitocromo A/genética , Transducción de Señal/genética , Transducción de Señal/efectos de la radiación , Factores de Tiempo , Transcriptoma/efectos de la radiación
11.
Planta ; 249(6): 2015-2020, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-30976910

RESUMEN

MAIN CONCLUSION: Isolation of high-quality RNA, including miRNA, from microscopic woody apple bud meristem using laser capture microdissection-based method. It is often challenging to study the expression of microRNAs (miRNAs) or genes in less accessible inner tissues of tree species rich in polyphenols or polysaccharides. Here, we report a laser capture microdissection (LCM)-based method for efficient and cost-effective isolation and expression analysis of miRNAs and genes in the meristem tissue of woody apple bud. The tissue fixation, processing, infiltration, and sectioning steps were optimized for LCM-based excision and subsequent RNA isolation. Further, we have confirmed that RNA isolated from LCM-derived apple bud meristem contained miRNAs and was of good quantity and quality, sufficient for downstream expression analysis.


Asunto(s)
Captura por Microdisección con Láser , Malus/genética , MicroARNs/genética , Perfilación de la Expresión Génica , Malus/ultraestructura , Meristema/genética , Meristema/ultraestructura , ARN de Planta/genética , Fijación del Tejido , Madera
12.
Planta ; 248(3): 545-558, 2018 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-29968061

RESUMEN

MAIN CONCLUSION: Present review addresses the advances made in the understanding of biogenesis of plant small RNAs and their role in plant development. We discuss the elaborate role of microRNAs (miRNAs) and trans-acting small interfering RNAs (ta-siRNAs) in various aspects of plant growth and development and highlight relevance of small RNA mobility. Small non-coding RNAs regulate various aspects of plant development. Small RNAs (sRNAs) of 21-24 nucleotide length are derived from double-stranded RNAs through the combined activity of several biogenesis and processing components. These sRNAs function by negatively regulating the expression of target genes. miRNAs and ta-siRNAs constitute two important classes of endogenous small RNAs in plants, which play important roles in plant growth and developmental processes like embryogenesis, organ formation and patterning, shoot and root growth, and reproductive development. Biogenesis of miRNAs is a multistep process which includes transcription, processing and modification, and their loading onto RNA-induced silencing complex (RISC). RISC-loaded miRNAs carry out post-transcriptional silencing of their target(s). Recent studies identified orthologues of different biogenesis components of novel and conserved small RNAs from different model plants. Although many small RNAs have been identified from diverse plant species, only a handful of them have been functionally characterized. In this review, we discuss the advances made in understanding the biogenesis, functional conservation/divergence in miRNA-mediated gene regulation, and the developmental role of small RNAs in different plant species.


Asunto(s)
Desarrollo de la Planta , ARN de Planta/metabolismo , ARN Pequeño no Traducido/metabolismo , Flores/crecimiento & desarrollo , Regulación de la Expresión Génica de las Plantas , Germinación , Meristema/crecimiento & desarrollo , Desarrollo de la Planta/genética , Hojas de la Planta/crecimiento & desarrollo , Raíces de Plantas/crecimiento & desarrollo , Brotes de la Planta/crecimiento & desarrollo , Plantas/genética , Plantas/metabolismo , Semillas/crecimiento & desarrollo
13.
Plant Cell Physiol ; 56(6): 1107-23, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25759329

RESUMEN

Phosphate (Pi) is pivotal for plant growth and development. Pi deficiency triggers local and systemically regulated adaptive responses in Arabidopsis thaliana. Inhibition of primary root growth (PRG) and retarded development of lateral roots (LRs) are typical local Pi deficiency-mediated responses of the root system. Expression of Pi starvation-responsive (PSR) genes is regulated systemically. Here, we report the differential influence of iron (Fe) availability on local and systemic sensing of Pi by Arabidopsis. P-Fe- condition disrupted local Pi sensing, resulting in an elongated primary root (PR). Altered Fe homeostasis in the lpsi mutant with aberration in local Pi sensing provided circumstantial evidence towards the role of Fe in the maintenance of Pi homeostasis. Reporter gene assays, expression analysis of auxin-responsive genes (ARGs) and root phenotyping of the arf7arf19 mutant demonstrated the role of Fe availability on local Pi deficiency-mediated LR development. In addition, Fe availability also exerted a significant influence on PSR genes belonging to different functional categories. Together, these results demonstrated a substantial influence of Fe availability on Pi deficiency-mediated responses of ontogenetically distinct traits of the root system and PSR genes. The study also provided evidence of cross-talk between Pi, Fe and Zn, highlighting a complex tripartite interaction amongst them for maintaining Pi homeostasis.


Asunto(s)
Arabidopsis/metabolismo , Ácidos Indolacéticos/metabolismo , Hierro/metabolismo , Fosfatos/deficiencia , Zinc/metabolismo , Arabidopsis/efectos de los fármacos , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Genes de Plantas , Homeostasis/efectos de los fármacos , Meristema/efectos de los fármacos , Meristema/crecimiento & desarrollo , Mutación/genética , Fosfatos/farmacología
14.
Genomics ; 103(1): 114-21, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24275521

RESUMEN

Similar to the majority of the microRNAs, mature miR166s are derived from multiple members of MIR166 genes (precursors) and regulate various aspects of plant development by negatively regulating their target genes (Class III HD-ZIP). The evolutionary conservation or functional diversification of miRNA166 family members remains elusive. Here, we show the phylogenetic relationships among MIR166 precursor and mature sequences from three diverse model plant species. Despite strong conservation, some mature miR166 sequences, such as ppt-miR166m, have undergone sequence variation. Critical sequence variation in ppt-miR166m has led to functional diversification, as it targets non-HD-ZIPIII gene transcript (s). MIR166 precursor sequences have diverged in a lineage specific manner, and both precursors and mature osa-miR166i/j are highly conserved. Interestingly, polycistronic MIR166s were present in Physcomitrella and Oryza but not in Arabidopsis. The nature of cis-regulatory motifs on the upstream promoter sequences of MIR166 genes indicates their possible contribution to the functional variation observed among miR166 species.


Asunto(s)
MicroARNs/genética , Filogenia , ARN de Planta/genética , Secuencia de Aminoácidos , Arabidopsis/genética , Bryopsida/genética , Secuencia Conservada , ADN de Plantas/genética , Evolución Molecular , Variación Genética , Datos de Secuencia Molecular , Oryza/genética , Regiones Promotoras Genéticas , Alineación de Secuencia , Análisis de Secuencia de ARN
15.
Physiol Plant ; 152(1): 1-16, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-24410953

RESUMEN

ETHYLMALONIC ENCEPHALOPATHY PROTEIN 1 (ETHE1) encodes sulfur dioxygenase (SDO) activity regulating sulfide levels in living organisms. It is an essential gene and mutations in ETHE1 leads to ethylmalonic encephalopathy (EE) in humans and embryo lethality in Arabidopsis. At present, very little is known regarding the role of ETHE1 beyond the context of EE and almost nothing is known about factors affecting its regulation in plant systems. In this study, we have identified, cloned and characterized OsETHE1, a gene encoding ETHE1-like protein from Oryza sativa. ETHE1 proteins in general are most similar to glyoxalase II (GLYII) and hence OsETHE1 has been earlier annotated as OsGLYII1, a putative GLYII gene. Here we show that OsETHE1 lacks GLYII activity and is instead an ETHE1 homolog being localized in mitochondria like its human and Arabidopsis counterparts. We have isolated and analyzed 1618 bp OsETHE1 promoter (pOsETHE1) to examine the factors affecting OsETHE1 expression. For this, transcriptional promoter pOsETHE1: 5-bromo-5-chloro-3-indolyl-ß-D-glucuronide (GUS) fusion construct was made and stably transformed into rice. GUS expression pattern of transgenic pOsETHE1:GUS plants reveal a high root-specific expression of OsETHE1. The pOsETHE1 activity was stimulated by Ca(II) and required light for induction. Moreover, pOsETHE1 activity was induced under various abiotic stresses such as heat, salinity and oxidative stress, suggesting a potential role of OsETHE1 in stress response.


Asunto(s)
Calcio/metabolismo , Dioxigenasas/genética , Regulación de la Expresión Génica de las Plantas , Oryza/fisiología , Estrés Fisiológico , Secuencia de Aminoácidos , Dioxigenasas/metabolismo , Genes Reporteros , Luz , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , Datos de Secuencia Molecular , Mutación , Cebollas/citología , Cebollas/genética , Cebollas/fisiología , Especificidad de Órganos , Oryza/efectos de los fármacos , Oryza/genética , Oryza/efectos de la radiación , Filogenia , Epidermis de la Planta/efectos de los fármacos , Epidermis de la Planta/genética , Epidermis de la Planta/fisiología , Epidermis de la Planta/efectos de la radiación , Reguladores del Crecimiento de las Plantas/farmacología , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/genética , Raíces de Plantas/fisiología , Raíces de Plantas/efectos de la radiación , Plantas Modificadas Genéticamente , Regiones Promotoras Genéticas/genética , Proteínas Recombinantes de Fusión , Alineación de Secuencia
16.
Plant Cell Rep ; 33(6): 945-53, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24504657

RESUMEN

Overexpression of miR166/165 down-regulates target HD - ZIP IIIs and promotes root growth by enhancing cell division and meristematic activity, whereas overexpression of HD - ZIP IIIs inhibits root growth in Arabidopsis thaliana. Post-embryonic growth of higher plants is maintained by active meristems harbouring undifferentiated cells. Shoot and root apical meristems (SAM and RAM) utilize both similar and distinct signalling mechanisms for their maintenance in Arabidopsis thaliana. An important regulatory role in this context has the interaction of microRNAs with their target mRNAs, mostly encoding transcription factors. One class of microRNA166/165 (miR166/165) has been implicated in the maintenance of SAM and vascular patterning. Here, we show that miR166/165 plays an important role in root growth also by negatively regulating its target transcripts, HD-ZIP IIIs, in the RAM. While overexpression of miR166 promotes RAM activity, overexpression of its targets reduces RAM activity. These results reveal a conserved role of miR166/165 in the maintenance of SAM and RAM activity in A. thaliana.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Regulación de la Expresión Génica de las Plantas , MicroARNs/genética , Arabidopsis/crecimiento & desarrollo , Proteínas de Arabidopsis/metabolismo , Expresión Génica , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Leucina Zippers , Meristema/genética , Meristema/crecimiento & desarrollo , Mutación , Raíces de Plantas/genética , Raíces de Plantas/crecimiento & desarrollo , Plantas Modificadas Genéticamente , ARN Mensajero/genética , ARN de Planta/genética
17.
Nature ; 446(7137): 811-4, 2007 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-17429400

RESUMEN

Throughout the lifespan of a plant, which in some cases can last more than one thousand years, the stem cell niches in the root and shoot apical meristems provide cells for the formation of complete root and shoot systems, respectively. Both niches are superficially different and it has remained unclear whether common regulatory mechanisms exist. Here we address whether root and shoot meristems use related factors for stem cell maintenance. In the root niche the quiescent centre cells, surrounded by the stem cells, express the homeobox gene WOX5 (WUSCHEL-RELATED HOMEOBOX 5), a homologue of the WUSCHEL (WUS) gene that non-cell-autonomously maintains stem cells in the shoot meristem. Loss of WOX5 function in the root meristem stem cell niche causes terminal differentiation in distal stem cells and, redundantly with other regulators, also provokes differentiation of the proximal meristem. Conversely, gain of WOX5 function blocks differentiation of distal stem cell descendents that normally differentiate. Importantly, both WOX5 and WUS maintain stem cells in either a root or shoot context. Together, our data indicate that stem cell maintenance signalling in both meristems employs related regulators.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Proteínas de Homeodominio/metabolismo , Raíces de Plantas/citología , Brotes de la Planta/citología , Transducción de Señal , Células Madre/citología , Arabidopsis/anatomía & histología , Arabidopsis/citología , Proteínas de Arabidopsis/genética , Diferenciación Celular , Secuencia Conservada , Flores/metabolismo , Regulación de la Expresión Génica de las Plantas , Proteínas de Homeodominio/genética , Ácidos Indolacéticos/metabolismo , Meristema/citología , Meristema/metabolismo , Datos de Secuencia Molecular , Mutación/genética , Raíces de Plantas/metabolismo , Brotes de la Planta/metabolismo , Células Madre/metabolismo , Factores de Transcripción/metabolismo
18.
Nanomaterials (Basel) ; 12(12)2022 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-35745438

RESUMEN

In a hydroponic system, potassium chloroaurate (KAuCl4) triggers the in vitro sucrose (Suc)-dependent formation of gold nanoparticles (AuNPs). AuNPs stimulate the growth of the root system, but their molecular mechanism has not been deciphered. The root system of Arabidopsis (Arabidopsis thaliana) exhibits developmental plasticity in response to the availability of various nutrients, Suc, and auxin. Here, we showed the roles of Suc, phosphorus (P), and nitrogen (N) in facilitating a AuNPs-mediated increase in root growth. Furthermore, the recuperating effects of KAuCl4 on the natural (IAA) auxin-mediated perturbation of the root system were demonstrated. Arabidopsis seedlings harboring the cell division marker CycB1;1::CDB-GUS provided evidence of the restoration efficacy of KAuCl4 on the IAA-mediated inhibitory effect on meristematic cell proliferation of the primary and lateral roots. Arabidopsis harboring synthetic auxin DR5rev::GFP exhibited a reinstating effect of KAuCl4 on IAA-mediated aberration in auxin subcellular localization in the root. KAuCl4 also exerted significant and differential recuperating effects on the IAA-mediated altered expression of the genes involved in auxin signaling and biosynthetic pathways in roots. Our results highlight the crosstalk between KAuCl4-mediated improved root growth and Suc and nutrient-dependent auxin homeostasis in Arabidopsis.

19.
Methods Mol Biol ; 2238: 275-283, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33471338

RESUMEN

The success of single cell type-specific gene expression or functional study largely depends on the efficient isolation of high-quality RNA from them. Laser capture microdissection (LCM) is an efficient technique that allows accessing and dissecting out a specific individual cell or cell type from a microscopic heterogeneous tissue in a minimally disruptive way. Here, we describe an efficient and inexpensive LCM-based method for the extraction of RNAs with high yield and integrity from laser-microdissected mesophyll and bundle sheath cells of rice leaf. The integrity of isolated RNA is assessed with bioanalyzer analysis, and the presence of mRNA of a specific gene is validated through RT-PCR. This RNA could further be used for uncovering single cell type-specific gene expression signature using next-generation transcriptome sequence or through regular RT-PCR.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Captura por Microdisección con Láser/métodos , Oryza/genética , Proteínas de Plantas/genética , ARN de Planta/análisis , Análisis de la Célula Individual/métodos , Perfilación de la Expresión Génica , Oryza/metabolismo , Proteínas de Plantas/metabolismo , ARN de Planta/genética , ARN de Planta/aislamiento & purificación
20.
Sci Rep ; 10(1): 6163, 2020 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-32249798

RESUMEN

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA