RESUMEN
Polygenic score (PGS) computations assume an additive model of gene action because associations between phenotypes and alleles at different loci are compounded, ignoring interactions between alleles or loci let alone between genotype and environment. Consequently, PGSs are subject to the same objections that invalidated traditional heritability analyses in the 1970s. Thus, PGSs should not be used in the social sciences.
Asunto(s)
Síndrome de Dandy-Walker , Discapacidad Intelectual Ligada al Cromosoma X , Humanos , Ciencias SocialesRESUMEN
BACKGROUND: More than 80,000 dengue cases including 215 deaths were reported nationally in less than 7 months between 2016 and 2017, a fourfold increase in the number of reported cases compared to the average number over 2010-2016. The region of Negombo, located in the Western province, experienced the greatest number of dengue cases in the country and is the focus area of our study, where we aim to capture the spatial-temporal dynamics of dengue transmission. METHODS: We present a statistical modeling framework to evaluate the spatial-temporal dynamics of the 2016-2017 dengue outbreak in the Negombo region of Sri Lanka as a function of human mobility, land-use, and climate patterns. The analysis was conducted at a 1 km × 1 km spatial resolution and a weekly temporal resolution. RESULTS: Our results indicate human mobility to be a stronger indicator for local outbreak clusters than land-use or climate variables. The minimum daily temperature was identified as the most influential climate variable on dengue cases in the region; while among the set of land-use patterns considered, urban areas were found to be most prone to dengue outbreak, followed by areas with stagnant water and then coastal areas. The results are shown to be robust across spatial resolutions. CONCLUSIONS: Our study highlights the potential value of using travel data to target vector control within a region. In addition to illustrating the relative relationship between various potential risk factors for dengue outbreaks, the results of our study can be used to inform where and when new cases of dengue are likely to occur within a region, and thus help more effectively and innovatively, plan for disease surveillance and vector control.
Asunto(s)
Dengue/epidemiología , Clima , Brotes de Enfermedades , Humanos , Modelos Estadísticos , Factores de Riesgo , Sri Lanka/epidemiología , Temperatura , ViajeRESUMEN
Many, if not all, questions in biology and psychology today were formulated and considered in depth, though typically in a different language, from the 1700's to the early 1900's. However, because of politics or fashion, some topics fell out of favor or failed to recruit new scientists and hence languished. Despite greatly expanded scholarship in the history of the life sciences in the twentieth century, many such topics have had to be rediscovered in recent years, while much of the wisdom already accrued stays in the older literature and not in active minds. This is particularly true today when scientific advances appear at breakneck speed. It would not be an exaggeration to say that many 'breakthroughs' turn out really to be rediscoveries of forgotten observations. Two areas of particular significance to the interdisciplinary study of behavior are the Norms of Reaction (from Biology) and the concept of Plasticity (from Psychology). These and related fields benefit from the perspective of epigenetics so long as rigorous operational definitions are implemented. It is also important to revive Hogben's admonition that the interaction of hereditary and environment cannot be understood outside of the context of development. Five examples of increasing complexity in phenotypic plasticity in brain and behavior are presented to illustrate this perspective.
RESUMEN
This paper attempts a critical reappraisal of Nagel's (1961, 1970) model of reduction taking into account both traditional criticisms and recent defenses. This model treats reduction as a type of explanation in which a reduced theory is explained by a reducing theory after their relevant representational items have been suitably connected. In accordance with the deductive-nomological model, the explanation is supposed to consist of a logical deduction. Nagel was a pluralist about both the logical form of the connections between the reduced and reducing theories (which could be conditionals or biconditionals) and their epistemological status (as analytic connections, conventions, or synthetic claims). This paper defends Nagel's pluralism on both counts and, in the process, argues that the multiple realizability objection to reductionism is misplaced. It also argues that the Nagel model correctly characterizes reduction as a type of explanation. However, it notes that logical deduction must be replaced by a broader class of inferential techniques that allow for different types of approximation. Whereas Nagel (1970), in contrast to his earlier position (1961), recognized the relevance of approximation, he did not realize its full import for the model. Throughout the paper two case studies are used to illustrate the arguments: the putative reduction of classical thermodynamics to the kinetic theory of matter and that of classical genetics to molecular biology.
Asunto(s)
Empirismo/historia , Conocimiento , Ciencia/historia , Historia del Siglo XXRESUMEN
From 1930 to 1937 Lancelot Hogben FRS occupied the Chair of Social Biology at the London School of Economics and Political Science. According to standard histories of this appointment, he and R. A. Fisher FRS both applied for the position, but Hogben was selected over Fisher. The episode has received attention in large part because of the later prominence of the two figures involved. The surviving archival records, however, tell a remarkably different story. Neither Fisher nor Hogben was ever an official candidate for the chair. Indeed, Fisher seems not to have applied for the position at all, and Hogben was approached only behind the scenes of the official search. The purpose of this paper is to correct and complete the history of this episode.
Asunto(s)
Biología , Economía , Docentes , Instituciones Académicas , Conducta Social , Historia del Siglo XX , LondresRESUMEN
As part of his attempt to reconstruct the earliest phase of the evolution of life on Earth, Woese produced a compelling critique of the received view of evolution from the 20th century. This paper explicitly articulates two related features of that critique that are fundamental but the first of which has not been sufficiently clearly recognized in the context of evolutionary theorizing: (1) according to Woese's scenario of communal evolution during life's earliest phase (roughly, the first billion years of life on Earth), well-defined biological individuals (and, thus, individual lineages) did not exist; and (2) during that phase, evolutionary change took place through ubiquitous horizontal gene transfer (HGT) rather than through vertical transmission of features (including genes) and the combinatorics of HGT was the dominant mechanism of evolutionary change. Both factors present serious challenges to the received view of evolution and that framework would have to be radically altered to incorporate these factors. The extent to which this will be necessary will depend on whether Woese's scenario of collective early evolution is correct.
Asunto(s)
Evolución Biológica , Transferencia de Gen Horizontal , Código Genético , Humanos , Origen de la VidaRESUMEN
Wilson et al. make the case for taking control of our future using evolutionary analysis. However, they are entirely silent on the ethical questions that must be addressed. This piece emphasizes this problem and notes that the relevant answers will require nontrivial analysis. This is where the humanities become relevant - in particular, philosophy and cultural anthropology.
Asunto(s)
Ciencias de la Conducta , Behaviorismo , Evolución Cultural , HumanosRESUMEN
Trypanosoma cruzi is the causative agent of Chagas disease, a devastating parasitic disease endemic to Central and South America, Mexico, and the USA. We characterized the genetic diversity of Trypanosoma cruzi circulating in five triatomine species (Triatoma gerstaeckeri, T. lecticularia, T.indictiva, T. sanguisuga and T. recurva) collected in Texas and Southern Arizona using multilocus sequence typing (MLST) with four single-copy loci (cytochrome oxidase subunit II- NADH dehydrogensase subunit 1 region (COII-ND1), mismatch-repair class 2 (MSH2), dihydrofolate reductase-thymidylate synthase (DHFR-TS) and a nuclear gene with ID TcCLB.506529.310). All T. cruzi variants fall in two main genetic lineages: 75% of the samples corresponded to T. cruzi Discrete Typing Unit (DTU) I (TcI), and 25% to a North American specific lineage previously labelled TcIV-USA. Phylogenetic and sequence divergence analyses of our new data plus all previously published sequence data from those four loci collected in the USA, show that TcIV-USA is significantly different from any other previously defined T. cruzi DTUs. The significant level of genetic divergence between TcIV-USA and other T. cruzi DTUs should lead to an increased focus on understanding the epidemiological importance of this DTU, as well as its geographical range and pathogenicity in humans and domestic animals. Our findings further corroborate the fact that there is a high genetic diversity of the parasite in North America and emphasize the need for appropriate surveillance and vector control programs for Chagas disease in southern USA and Mexico.
Asunto(s)
Enfermedad de Chagas , Trypanosoma cruzi , Animales , Insectos Vectores/parasitología , Tipificación de Secuencias Multilocus , Filogenia , Sudoeste de Estados Unidos/epidemiología , Texas/epidemiología , Trypanosoma cruzi/genéticaRESUMEN
OBJECTIVES: To provide a spatial risk assessment for the neglected disease strongyloidiasis in the United States by prioritizing areas with high probability of Strongyloides stercoralis presence and to offer recommendations for targeted screening and surveillance. METHODS: The risk assessment was based on a species distribution model with parasite occurrence data and ecologically important environmental variables as input and local habitat suitability for the species as output. The model used a maximum entropy algorithm and occurrence records and environmental data from public sources. This ecological risk assessment was coupled to socioeconomic factors using multi-criteria analysis. RESULTS: The model predicts suitable habitat for the parasite in ten states beyond the southeastern United States where it has been recorded including states in the south, east and northeast, and west coasts. CONCLUSIONS: We recommend strongyloidiasis should be reportable in 16 states at high risk and uniform, near universal solid organ transplant screening should be implemented alongside approaches to heighten clinical suspicion.
Asunto(s)
Estrongiloidiasis/parasitología , Distribución Animal , Animales , Ecosistema , Humanos , Tamizaje Masivo , Modelos Biológicos , Medición de Riesgo , Strongyloides stercoralis , Estrongiloidiasis/diagnóstico , Estrongiloidiasis/epidemiología , Estados Unidos/epidemiologíaRESUMEN
Systematic conservation planning typically requires specification of quantitative representation targets for biodiversity surrogates such as species, vegetation types, and environmental parameters. Targets are usually specified either as the minimum total area in a conservation-area network in which a surrogate must be present or as the proportion of a surrogate's existing spatial distribution required to be in the network. Because the biological basis for setting targets is often unclear, a better understanding of how targets affect selection of conservation areas is needed. We studied how the total area of conservation-area networks depends on percentage targets ranging from 5% to 95%. We analyzed 12 data sets of different surrogate distributions from 5 regions: Korea, Mexico, Québec, Queensland, and West Virginia. To assess the effect of spatial resolution on the target-area relationship, we also analyzed each data set at 7 spatial resolutions ranging from 0.01 degrees x 0.01 degrees to 0.10 degrees x 0.10 degrees. Most of the data sets showed a linear relationship between representation targets and total area of conservation-area networks that was invariant across changes in spatial resolution. The slope of this relationship indicated how total area increased with target level, and our results suggest that greater surrogate representation requires significantly more area. One data set exhibited a highly nonlinear relationship. The results for this data set suggest a new method for setting targets on the basis of the functional form of target-area relationships. In particular, the method shows how the target-area relationship can provide a rationale for setting targets solely on the basis of distributional information about surrogates.
Asunto(s)
Conservación de los Recursos Naturales/métodos , Ecosistema , Demografía , Corea (Geográfico) , México , Modelos Biológicos , Quebec , Queensland , West VirginiaRESUMEN
[This corrects the article DOI: 10.1371/journal.pone.0072129.].
RESUMEN
This paper argues that Haldane's The causes of evolution was the most important founding document in the emergence of the received view of evolutionary theory which is typically referred to as the Modern Synthesis. Whether or not this historical development is characterized as a synthesis (which remains controversial), this paper argues the most important component of the emergence of the received view consisted of showing how the formal rules of Mendelian inheritance are based on (or emerge from) the material basis of heredity established by classical genetics primarily through the experimental work on Drosophila genetics of the Morgan school in the 1910s and 1920s. This is one of the most important achievements of Haldane's book. Thus this paper rejects both (i) the view that the synthesis was a unification of biometry and Mendelism and (ii) the claim that it arose from work primarily done in the late 1930s and 1940s by naturalists rather than theoretical population and classical experimental geneticists.
Asunto(s)
Evolución Biológica , Drosophila/genética , Modelos Genéticos , Cromosomas Sexuales/genética , Animales , Historia del Siglo XX , HumanosRESUMEN
BACKGROUND: The 2015-16 Zika virus pandemic originating in Latin America led to predictions of a catastrophic global spread of the disease. Since the current outbreak began in Brazil in May 2015 local transmission of Zika has been reported in over 60 countries and territories, with over 750 thousand confirmed and suspected cases. As a result of its range expansion attention has focused on possible modes of transmission, of which the arthropod vector-based disease spread cycle involving Aedes species is believed to be the most important. Additional causes of concern are the emerging new links between Zika disease and Guillain-Barre Syndrome (GBS), and a once rare congenital disease, microcephaly. METHODOLOGY/PRINCIPAL FINDINGS: Like dengue and chikungunya, the geographic establishment of Zika is thought to be limited by the occurrence of its principal vector mosquito species, Ae. aegypti and, possibly, Ae. albopictus. While Ae. albopictus populations are more widely established than those of Ae. aegypti, the relative competence of these species as a Zika vector is unknown. The analysis reported here presents a global risk model that considers the role of each vector species independently, and quantifies the potential spreading risk of Zika into new regions. Six scenarios are evaluated which vary in the weight assigned to Ae. albopictus as a possible spreading vector. The scenarios are bounded by the extreme assumptions that spread is driven by air travel and Ae. aegypti presence alone and spread driven equally by both species. For each scenario destination cities at highest risk of Zika outbreaks are prioritized, as are source cities in affected regions. Finally, intercontinental air travel routes that pose the highest risk for Zika spread are also ranked. The results are compared between scenarios. CONCLUSIONS/SIGNIFICANCE: Results from the analysis reveal that if Ae. aegypti is the only competent Zika vector, then risk is geographically limited; in North America mainly to Florida and Texas. However, if Ae. albopictus proves to be a competent vector of Zika, which does not yet appear to be the case, then there is risk of local establishment in all American regions including Canada and Chile, much of Western Europe, Australia, New Zealand, as well as South and East Asia, with a substantial increase in risk to Asia due to the more recent local establishment of Zika in Singapore.
Asunto(s)
Aedes/crecimiento & desarrollo , Mosquitos Vectores/crecimiento & desarrollo , Infección por el Virus Zika/epidemiología , Animales , Salud Global , Medición de Riesgo , Infección por el Virus Zika/transmisiónRESUMEN
BACKGROUND: Zoonotic avian influenza poses a major risk to China, and other parts of the world. H5N1 has remained endemic in China and globally for nearly two decades, and in 2013, a novel zoonotic influenza A subtype H7N9 emerged in China. This study aimed to improve upon our current understanding of the spreading mechanisms of H7N9 and H5N1 by generating spatial risk profiles for each of the two virus subtypes across mainland China. METHODS AND FINDINGS: In this study, we (i) developed a refined data set of H5N1 and H7N9 locations with consideration of animal/animal environment case data, as well as spatial accuracy and precision; (ii) used this data set along with environmental variables to build species distribution models (SDMs) for each virus subtype in high resolution spatial units of 1km2 cells using Maxent; (iii) developed a risk modelling framework which integrated the results from the SDMs with human and chicken population variables, which was done to quantify the risk of zoonotic transmission; and (iv) identified areas at high risk of H5N1 and H7N9 transmission. We produced high performing SDMs (6 of 8 models with AUC > 0.9) for both H5N1 and H7N9. In all our SDMs, H7N9 consistently showed higher AUC results compared to H5N1, suggesting H7N9 suitability could be better explained by environmental variables. For both subtypes, high risk areas were primarily located in south-eastern China, with H5N1 distributions found to be more diffuse and extending more inland compared to H7N9. CONCLUSIONS: We provide projections of our risk models to public health policy makers so that specific high risk areas can be targeted for control measures. We recommend comparing H5N1 and H7N9 prevalence rates and survivability in the natural environment to better understand the role of animal and environmental transmission in human infections.
Asunto(s)
Subtipo H5N1 del Virus de la Influenza A , Subtipo H7N9 del Virus de la Influenza A , Gripe Humana/epidemiología , Gripe Humana/virología , Animales , Aves , China/epidemiología , Brotes de Enfermedades , Enfermedades Endémicas , Humanos , Gripe Aviar/epidemiología , Gripe Aviar/terapia , Gripe Aviar/virología , Gripe Humana/transmisión , Modelos Biológicos , Factores de Riesgo , Análisis Espacial , Zoonosis/epidemiología , Zoonosis/transmisión , Zoonosis/virologíaRESUMEN
[This corrects the article DOI: 10.1371/journal.pone.0174980.].
RESUMEN
The discussion with Rao and Nanjundiah about the history of interactions between J. B. S. Haldane and Ernst Mayr is further extended in this note. The nature of the dispute about beanbag genetics is explicated as consisting of two separate issues, one about the role of mathematical analysis in evolutionary biology, and the other about the value of single-locus genic models.
Asunto(s)
Evolución Biológica , Genética de Población/historia , Modelos Biológicos , Inglaterra , Alemania , Historia del Siglo XX , India , Estados UnidosRESUMEN
Norms of reaction (NoRs) represent the phenotypic values of genotypes as functions of environmental parameters and permit the visualization of differences in phenotypic response of different genotypes. NoR graphs can be used to analyze interactions between genotypic and environmental factors during development to produce phenotypes in inbred strains of rats and mice. We describe the main features of NoRs, the history of their use in this context, and discuss several applications in behavioral neuroscience. In addition, we give a test for determining whether distinct strains have different NoRs.
Asunto(s)
Conducta Animal/fisiología , Ambiente , Genotipo , Modelos Genéticos , Análisis de Varianza , Animales , Ratones , Ratas , Valores de Referencia , Especificidad de la EspecieRESUMEN
Triatomine bugs are a group of hematophagous arthropods that can serve as biological vectors for Trypanosoma cruzi , the etiological agent of American trypanosomiasis (Chagas disease). Because of differences in the biology and feeding habits among triatomine species, some are more likely than others to be involved in zoonotic and/or human-to-human transmission cycles of T. cruzi . In an attempt to assess the risk for Chagas disease exposure in south-central Texas, human habitations across Texas Health Service Region 8 (HSR 8) and surrounding counties were surveyed for triatomines to characterize the geographic distribution, species-specific biology, and T. cruzi -infection prevalence better. Between May 2010 and August 2013, a total of 545 triatomines representing all 5 known indigenous species (Triatoma gerstaeckeri, Triatoma indictiva, Triatoma lecticularia, Triatoma sanguisuga, and Triatoma protracta woodi) were collected from 59 sites across the region. Triatoma gerstaeckeri was the species most commonly found in domestic and peridomestic ecotopes across Texas HSR 8, representing over 80% of the triatomines collected. Adult T. gerstaeckeri exhibited a seasonal dispersal pattern that began in late April, peaked in mid-May, and then continued into August. On homes with available crevices in the exterior walls, adult T. gerstaeckeri were observed emerging from or entering these protective microhabitats, suggesting possible opportunistic colonization of some exterior walls compartments. Laboratory testing of triatomine hindgut contents for T. cruzi by PCR demonstrated the adult T. gerstaeckeri-infection prevalence across Texas HSR 8 to be 64%. Monitoring peridomestic adult T. gerstaeckeri over the seasonal dispersal peak demonstrated statistically significant increases in both their T. cruzi -infection prevalence (P < 0.01) and tendency to invade human dwellings (P < 0.01) in the later aspect of the emergence peak. In addition to the adult insects, variably sized and staged nymphs were recovered from the inside of 6 separate homes across Texas HSR 8. The results of this study show that T. gerstaeckeri is a widespread and common triatomine species across Texas HSR 8 and documented it to have some notable synanthropic tendencies. The high prevalence of T. cruzi infection in native triatomines, and the high frequency with which T. gerstaeckeri is recovered from human habitations, suggests that there is a risk for human exposure to T. cruzi in Texas HSR 8. Because of this, Chagas disease should be considered on the list of differential diagnoses for cases of cardiac arrhythmia, dilated cardiomyopathy, or heart failure in south-central Texas.