Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Bases de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Anticancer Res ; 44(10): 4251-4260, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39348953

RESUMEN

BACKGROUND/AIM: The purpose of this study was to evaluate whether the sparing effect on cell survival is observed under normoxia. MATERIALS AND METHODS: A superconducting spiral sector-type azimuthally varying field (AVF) cyclotron produced 230 MeV proton beams at 250 Gy/s as ultra-high dose rate (uHDR) and 1 Gy/s as normal dose rate (NDR) to irradiate tumor and normal cell lines (HSGc-c5 and HDF up to 24 Gy at the center of spread-out Bragg peak (SOBP). The Advanced Markus chamber and Gafchromic film were used to measure the examined absolute dose and field sizes. Colony formation assay and immunofluorescence staining were conducted to evaluate the sparing effect. RESULTS: A homogeneous field was achieved at the center of the SOBP for both uHDR and NDR scanned proton beams, and dose reproducibility and linearity were adequate for experiments. There were significant differences in cell surviving fractions of HSGc-C5 and HDF cells irradiated at uHDRs compared to NDRs at 20 Gy and 24 Gy. Increasing γ-H2AX foci were observed for both cell lines at NDR. CONCLUSION: The sparing effect on cell survival was first observed under normoxic conditions for tumor and normal cells with doses exceeding 20 Gy, using proton irradiation at 250 Gy/s extracted from a superconducting AVF cyclotron. This study marks a significant milestone in advancing our understanding of the underlying mechanism behind the sparing effect.


Asunto(s)
Supervivencia Celular , Ciclotrones , Terapia de Protones , Humanos , Supervivencia Celular/efectos de la radiación , Terapia de Protones/métodos , Línea Celular Tumoral , Relación Dosis-Respuesta en la Radiación , Protones , Dosificación Radioterapéutica
2.
Radiat Res ; 201(4): 287-293, 2024 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-38407439

RESUMEN

We report the dose rate dependence of radiation chemical yields (G value) of water radiolysis products under clinical energy protons (230 MeV) to understand mechanisms of the FLASH radiotherapy performed at ultra-high dose rate (>40 Gy/s). The G value of 7-hydoroxy-coumarin-3-carboxylic acid (7OH-C3CA) produced by reactions of coumarin-3-carboxylic acid (C3CA) with OH radicals and oxygen is evaluated by fluorescence method. Also, those of hydrated electrons and hydrogen peroxide are derived by absorption method using Saltzman and Ghomley techniques, respectively. Both G values of 7OH-C3CA and hydrated electrons decrease with increasing dose rate. The relative evolution of 7OH-C3CA is -39 ± 2% between 0.1 and 50 Gy/s. This value is higher than that of hydrated electrons, measured at -21 ± 4%. The G value of hydrogen peroxide in ultra-pure water also decreases with increasing dose rate. In comparison to these findings, we represent the increase of the G value of hydrogen peroxide with increasing dose rate in the mixture solution of MeOH and NaNO3, which act as scavengers of OH radicals and hydrated electrons, respectively, that decompose hydrogen peroxide. This finding indicates that a complex track structure can be expected with increasing dose rate and the reduction of OH radicals by forming hydrogen peroxide would be related to the sparing effect of healthy tissues.


Asunto(s)
Peróxido de Hidrógeno , Protones , Electrones , Agua/química
3.
Radiat Oncol J ; 33(4): 337-43, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26756034

RESUMEN

PURPOSE: The purpose of this report is to describe the proton therapy system at Samsung Medical Center (SMC-PTS) including the proton beam generator, irradiation system, patient positioning system, patient position verification system, respiratory gating system, and operating and safety control system, and review the current status of the SMC-PTS. MATERIALS AND METHODS: The SMC-PTS has a cyclotron (230 MeV) and two treatment rooms: one treatment room is equipped with a multi-purpose nozzle and the other treatment room is equipped with a dedicated pencil beam scanning nozzle. The proton beam generator including the cyclotron and the energy selection system can lower the energy of protons down to 70 MeV from the maximum 230 MeV. RESULTS: The multi-purpose nozzle can deliver both wobbling proton beam and active scanning proton beam, and a multi-leaf collimator has been installed in the downstream of the nozzle. The dedicated scanning nozzle can deliver active scanning proton beam with a helium gas filled pipe minimizing unnecessary interactions with the air in the beam path. The equipment was provided by Sumitomo Heavy Industries Ltd., RayStation from RaySearch Laboratories AB is the selected treatment planning system, and data management will be handled by the MOSAIQ system from Elekta AB. CONCLUSION: The SMC-PTS located in Seoul, Korea, is scheduled to begin treating cancer patients in 2015.

4.
J Phys Condens Matter ; 22(1): 015403, 2010 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-21386225

RESUMEN

We have carried out adiabatic calorimetric and neutron powder diffraction experiments on the ß-pyrochlore oxide KOs(2)O(6), which has a superconducting transition at T(c) = 9.6 K and another novel transition at T(p) = 7.6 K. A characteristic feature of this compound is that the K ions exhibit rattling vibrations in the cages formed by O atoms even at very low temperatures. The temperature and entropy of the T(p) transition is in good agreement with previous data measured using a heat relaxation method, indicating that the present sample is of high purity and the transition entropy, 0.296 J K(-1) mol(-1), does not depend on the calorimetric method used. The neutron powder diffraction data show no peak splitting nor extra peaks over the temperature range between 2 and 295 K, suggesting that the T(p) transition is a rather unusual isomorphic transition. Rietveld analysis revealed an anomalous expansion of the lattice and a deformation of the O atom cage below 7.6 K. In the low-temperature phase, the distribution of scattering density corresponding to the K ions becomes broader whilst maintaining its maximum at the cage center. Based on these findings, we suggest that the T(p) transition is due to the expansion of the cage volume and cooperative condensation of the K ions into the ground state of the rattling motion.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA