Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 143
Filtrar
1.
Nucleic Acids Res ; 50(21): 12071-12081, 2022 11 28.
Artículo en Inglés | MEDLINE | ID: mdl-36454012

RESUMEN

The formation of triplex DNA is a site-specific recognition method that directly targets duplex DNA. However, triplex DNA formation is generally formed for the GC and AT base pairs of duplex DNA, and there are no natural nucleotides that recognize the CG and TA base pairs, or even the 5-methyl-CG (5mCG) base pair. Moreover, duplex DNA, including 5mCG base pairs, epigenetically regulates gene expression in vivo, and thus targeting strategies are of biological importance. Therefore, the development of triplex-forming oligonucleotides (TFOs) with artificial nucleosides that selectively recognize these base pairs with high affinity is needed. We recently reported that 2'-deoxy-2-aminonebularine derivatives exhibited the ability to recognize 5mCG and CG base pairs in triplex formation; however, this ability was dependent on sequences. Therefore, we designed and synthesized new nucleoside derivatives based on the 2'-deoxy-nebularine (dN) skeleton to shorten the linker length connecting to the hydrogen-bonding unit in formation of the antiparallel motif triplex. We successfully demonstrated that TFOs with 2-guanidinoethyl-2'-deoxynebularine (guanidino-dN) recognized 5mCG and CG base pairs with very high affinity in all four DNA sequences with different adjacent nucleobases of guanidino-dN as well as in the promoter sequences of human genes containing 5mCG base pairs with a high DNA methylation frequency.


Asunto(s)
ADN , Oligonucleótidos , Humanos , Emparejamiento Base , ADN/genética , ADN/metabolismo , Desoxirribonucleósidos , Nucleósidos , Conformación de Ácido Nucleico
2.
Chem Pharm Bull (Tokyo) ; 72(1): 16-20, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38171900

RESUMEN

Triplex DNA formation has generated much interest as a genomic targeting tool that directly targets duplex DNA. However, fundamental limitations in the base pairs of target duplex DNA sequences that can form stable triplex DNA have limited the application. Recently, we have reported on the recognition of CG and 5mCG base pairs by artificial nucleic acid derivatives with a 2'-deoxynebularine skeleton. Therefore, we attempted to explore the basic skeleton that is important for the development of new artificial nucleic acids allowing for the recognition of TA base pairs. In this study, we focused on a benzimidazole skeleton and introduced a hydroxyl group to enable one-point hydrogen bonding. We have synthesized artificial nucleoside analogues with hydroxyl group on the benzimidazole and incorporated their amidite derivatives into triplex forming oligonucleotides (TFOs). The gel shift assay was performed to evaluate the triplex DNA formation ability of synthesized TFOs, and TFOs containing hydroxybenzimidazole were successfully recognized TA base pairs for all four different sequences. Moreover, compared to the results for the TFOs containing benzimidazole, which suggested hydrogen bonding formation at the hydroxyl group. Therefore, hydroxybenzimidazole would be an important artificial nucleic acid skeleton for TA base pair recognition.


Asunto(s)
Ácidos Nucleicos , ADN , Oligonucleótidos , Bencimidazoles
3.
Chem Pharm Bull (Tokyo) ; 71(1): 64-69, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36596513

RESUMEN

In nucleic acid drug discovery, it is extremely important to develop a technology to understand the distribution in target organs and to trace the degradation process in the body in order to optimize the structure and improve the efficiency of the clinical trial process. Since nucleic acid drugs are essentially metabolically degraded into numerous fragments, labeling at the internal position is preferable to that at the terminus. Due to the high molar specific activity of tritium, various approaches for tritium-labeling have been studied for nucleic acid drugs. Nevertheless, a generally-applicable method for tritium labeling of the internal position of a nucleic acid has not been established. In this study, we have demonstrated a new and efficient method for site-specific tritium labeling of the cytosine base at a predefined internal position in nucleic acid drugs. This method was developed by the chemical modification of the cytosine 4-amino group with the pyridinyl vinyl keto group by the functionality-transfer reaction using the reactive oligodeoxynucleotide (ODN), followed by reduction with NaBT4. Applicability to a variety of chemical structures, such as 5-methyl cytosine, 2'-O-methyl, 2'-fluoro ribose derivatives, Locked/Bridged nucleic acid (LNA/BNA) derivatives, as well as phosphorothioate bonds, has been evidenced using nine oligoribonucleic acid (ORN) substrates. It has been clearly demonstrated that this method is an excellent method for tritium-labeling of nucleic acid with an average conversion efficiency of 74%, an average isolated labeling yield of 60%, and an average specific activity of 61 GBq/mmol. This method is expected to contribute to the preclinical absorption, distribution, metabolism, excretion (ADME) studies of nucleic acid drug candidates.


Asunto(s)
Ácidos Nucleicos , ARN , ARN/química , Tritio , Citosina
4.
Org Biomol Chem ; 20(16): 3375-3381, 2022 04 20.
Artículo en Inglés | MEDLINE | ID: mdl-35355034

RESUMEN

The trinucleotide CGG repeat is located in the 5'-UTR of FMR1 and its abnormal expansion and formation of a noncanonical RNA structure causes fetal genetic diseases. In this study, a small molecular dimer-type ligand consisting of dual G-clamp units for the recognition of two neighboring guanines was synthesized, and the binding properties for the r(CGG) repeats were investigated. Compound 2 was confirmed to bind to the mismatch guanines in the stem region of the r(CGG) repeat hairpin. In addition, the RNase T1 assay demonstrated that 2 induced the structural conversion of the r(CGG)8 repeat from the G-quadruplex into a hairpin-like structure.


Asunto(s)
Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil , G-Cuádruplex , Regiones no Traducidas 5' , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/genética , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/metabolismo , Ligandos , Repeticiones de Trinucleótidos
5.
Chem Pharm Bull (Tokyo) ; 70(7): 498-504, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35786569

RESUMEN

Due to the importance of the RNA chemical modifications, methods for the selective chemical modification at a predetermined site of the internal position of RNA have attracted much attention. We have developed functional artificial nucleic acids that modify a specific site of RNA in a site- and base-selective manner. In addition, the copper-catalyzed azide-alkyne cycloaddition (CuAAC) has been shown to introduce additional molecules on the alkynes attached to the pyridine ring. However, it was found that some azide compounds produced the cycloadduct in lower yields. Therefore, in this study, we synthesized the pyridinyl transfer group with the alkyne attached via a polyethylene glycol (PEG) linker with a different length and optimized its structure for both the transfer and CuAAC reaction. Three new transfer groups were synthesized by introducing an alkyne group at the end of the triethylene (11), tetraethylene (12) or pentaethylen glycol linker (13) at the 5-position of the pyridine ring of (E)-3-iodo-1-(pyridin-2-yl)prop-2-en-1-one. These transfer groups were introduced to the 6-thioguanine base in the oligodeoxynucleotide (ODN) in high yields. The transfer groups 11 and 12 more efficiently underwent the cytosine modification. For the CuAAC reaction, although 7 showed low adduct yields with the anionic azide compound, the new transfer groups, especially 12 and 13, significantly improved the yields. In conclusion, the transfer groups 12 and 13 were determined to be promising compounds for the modification of long RNAs.


Asunto(s)
Azidas , ARN , Alquinos/química , Azidas/química , Oligodesoxirribonucleótidos/química , Piridinas , ARN/química
6.
Bioconjug Chem ; 32(2): 385-393, 2021 02 17.
Artículo en Inglés | MEDLINE | ID: mdl-33529519

RESUMEN

New 1,3-diazaphenoxazine derivatives (nitroG-Grasp-Guanidine, NGG) have been developed to covalently capture 8-nitro-cGMP in neutral aqueous solutions, which furnish a thiol reactive group to displace the 8-nitro group and a guanidine unit for interaction with the cyclic phosphate. The thiol group was introduced to the 1,3-diazaphenoxazine skeleton through a 2-aminobenzylthiol group (NGG-H) and its 4-methyl (NGG-pMe) and 6-methyl (NGG-oMe) substituted derivatives. The covalent adducts were formed between the NGG derivatives and 8-nitro-cGMP in neutral aqueous solutions. Among the NGG derivatives, the one with the 6-methyl group (NGG-oMe) exhibited the most efficient capture reaction. Furthermore, NGG-H showed a cell permeability into HEK-293 and RAW 264.7 cells and reduced the intracellular 8-nitro-cGMP level. The NGG derivatives developed in this study would become a valuable tool to study the intracellular role of 8-nitro-cGMP.


Asunto(s)
GMP Cíclico/análogos & derivados , Animales , GMP Cíclico/química , GMP Cíclico/metabolismo , Células HEK293 , Humanos , Ratones , Células RAW 264.7 , Análisis Espectral/métodos , Agua
7.
Chem Pharm Bull (Tokyo) ; 69(11): 1061-1066, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34719587

RESUMEN

γ-Amido-modified 2'-deoxynucleoside triphosphates (dNTPs) and nucleoside triphosphates (NTPs) are becoming increasingly important as biological tools. We herein describe the simple and easy synthesis of γ-amido-dNTPs and -NTPs from commercially available corresponding dNTPs and NTPs in a one-pot reaction using water-soluble carbodiimide and ammonia solution. We examined the effects of synthesized γ-amido-dNTPs on the DNA polymerase reaction. The results obtained showed the incorporation of these derivatives into the DNA primer while maintaining nucleobase selectivity; however, their incorporation efficiency by DNA polymerase was lower than that of dNTP. This is the first study to demonstrate the successful synthesis of four sets of γ-amido-dNTPs and clarify their properties.


Asunto(s)
ADN Polimerasa Dirigida por ADN/metabolismo , Nucleótidos/síntesis química , Polifosfatos/química , Amoníaco/química , Carbodiimidas/química , Cromatografía Líquida de Alta Presión , Cinética , Solubilidad , Agua
8.
Int J Mol Sci ; 22(3)2021 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-33525366

RESUMEN

MTH1 is an enzyme that hydrolyzes 8-oxo-dGTP, which is an oxidatively damaged nucleobase, into 8-oxo-dGMP in nucleotide pools to prevent its mis-incorporation into genomic DNA. Selective and potent MTH1-binding molecules have potential as biological tools and drug candidates. We recently developed 8-halogenated 7-deaza-dGTP as an 8-oxo-dGTP mimic and found that it was not hydrolyzed, but inhibited enzyme activity. To further increase MTH1 binding, we herein designed and synthesized 7,8-dihalogenated 7-deaza-dG derivatives. We successfully synthesized multiple derivatives, including substituted nucleosides and nucleotides, using 7-deaza-dG as a starting material. Evaluations of the inhibition of MTH1 activity revealed the strong inhibitory effects on enzyme activity of the 7,8-dihalogenated 7-deaza-dG derivatives, particularly 7,8-dibromo 7-daza-dGTP. Based on the results obtained on kinetic parameters and from computational docking simulating studies, these nucleotide analogs interacted with the active site of MTH1 and competitively inhibited the substrate 8-oxodGTP. Therefore, novel properties of repair enzymes in cells may be elucidated using new compounds.


Asunto(s)
Enzimas Reparadoras del ADN/química , Nucleótidos de Desoxiguanina/química , Nucleótidos de Desoxiguanina/síntesis química , Diseño de Fármacos , Monoéster Fosfórico Hidrolasas/química , Sitios de Unión , Daño del ADN , Enzimas Reparadoras del ADN/antagonistas & inhibidores , Enzimas Reparadoras del ADN/metabolismo , Nucleótidos de Desoxiguanina/metabolismo , Nucleótidos de Desoxiguanina/farmacología , Pruebas de Enzimas , Halogenación , Humanos , Hidrólisis , Cinética , Simulación del Acoplamiento Molecular , Imitación Molecular , Estrés Oxidativo , Monoéster Fosfórico Hidrolasas/antagonistas & inhibidores , Monoéster Fosfórico Hidrolasas/metabolismo , Unión Proteica , Conformación Proteica en Hélice alfa , Conformación Proteica en Lámina beta , Dominios y Motivos de Interacción de Proteínas , Relación Estructura-Actividad , Especificidad por Sustrato
9.
Org Biomol Chem ; 18(15): 2845-2851, 2020 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-32232234

RESUMEN

Expansion of the triplex DNA forming sequence is required in the genomic targeting fields. Basically, triplex DNA is formed by the interaction between the triplex-forming oligonucleotides and homo-purine region with the target duplex DNA. The presence of the base pair conversion sites hampers stable triplex formation. To overcome this limitation, it is necessary to develop an artificial nucleic acid to recognize the base conversion sites, and the CG and TA base pairs. We describe the synthesis of C-nucleoside analogues and an evaluation of the ability of triplex formation. Consequently, the combined use of the novel C-nucleoside analogues, AY - AY-d(Y-NH2), AY-d(Y-Cl) and IAP-d(Y-Cl), is capable of recognizing duplex DNA including the TA or dUA base pair.


Asunto(s)
ADN/síntesis química , Nucleósidos/química , Emparejamiento Base , ADN/química , Conformación de Ácido Nucleico , Nucleósidos/síntesis química
10.
Bioorg Med Chem ; 28(23): 115782, 2020 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-32992254

RESUMEN

The triplex DNA forming method is an attractive tool as a gene-targeting agent. Using artificial nucleoside analogues based on C-nucleoside, stable and selective triplex DNA can be formed in a specific region of duplex DNA, and its biotechnology applications will greatly expand. In this study, we designed and synthesized novel C-nucleoside analogues based on the pyrimidine skeleton, 3MeAP-d(Y-Cl) and 3MeAP-d(Y-H), capable of recognizing a CG mismatch site that is not recognized by natural nucleosides. After incorporating them into the oligonucleotides, their triplex forming abilities were evaluated by gel-shift assay. Although it was only one sequence, the 3'-GZG-5' sequence, the stability of the CG mismatch site recognition was greatly improved compared with previous nucleoside analogues.


Asunto(s)
ADN/metabolismo , Nucleósidos/metabolismo , Pirimidinas/química , Disparidad de Par Base , Citosina/química , ADN/química , Teoría Funcional de la Densidad , Guanina/química , Conformación de Ácido Nucleico , Nucleósidos/síntesis química , Nucleósidos/química
11.
Bioorg Med Chem ; 28(20): 115730, 2020 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-33069073

RESUMEN

The anthracenone ligands (1-12) with a keto-phenol and a hydroxamic acid unit were synthesized and evaluated by a restriction enzyme inhibition assay. DNA substrates composed of multiple CGCG or CGG sites are fully hydrolyzed by a restriction enzyme that is selective for each sequence. Under such conditions, the full-length DNA substrate remains only when the ligand binds to all binding sites and protects it from hydrolysis by the restriction enzymes. In the assay using AccII and the 50-mer DNA substrates containing a different number of CGCG sites at different non-binding AT base pair intervals, the more the CGCG sites, the more the full-length DNA increased. Namely, simultaneous binding of the ligand (5) to the CGCG sites increased in the order of (CGCG)5>(CGCG)2>(CGCG)1. Furthermore, the length of the spacer of the hydroxamic acid to the anthracenone skeleton played an important role in the preference for the number of the d(A/T) base pairs between the CGCG sites. The long spacer-ligand (5) showed a preference to the CGCG sites with five AT pairs, and the short spacer-ligand (10) to that with two AT pairs. The ligand (12) with the shortest spacer showed a preference in simultaneous binding to the 54-mer DNA composed of 16 continuous CGG sites in the assay using the restriction enzyme Fnu4HI that hydrolyzes the d(GCGGC)/d(CGCCG) site. Application of these ligands to biological systems including the repeat DNA sequence should be of significant interest.


Asunto(s)
Antracenos/farmacología , Enzimas de Restricción del ADN/antagonistas & inhibidores , Ácidos Hidroxámicos/farmacología , Fenoles/farmacología , Antracenos/síntesis química , Antracenos/química , Sitios de Unión/efectos de los fármacos , Enzimas de Restricción del ADN/metabolismo , Relación Dosis-Respuesta a Droga , Ácidos Hidroxámicos/química , Ligandos , Estructura Molecular , Fenoles/química , Relación Estructura-Actividad , Especificidad por Sustrato
12.
Nucleic Acids Res ; 46(17): 8679-8688, 2018 09 28.
Artículo en Inglés | MEDLINE | ID: mdl-30102410

RESUMEN

The antigene strategy based on site-specific recognition of duplex DNA by triplex DNA formation has been exploited in a wide range of biological activities. However, specific triplex formation is mostly restricted to homo-purine strands within the target duplex DNA, due to the destabilizing effect of CG and TA inversion sites where there is an absence of natural nucleotides that can recognize the CG and TA base pairs. Hence, the design of artificial nucleosides, which can selectively recognize these inversion sites with high affinity, should be of great significance. Recently, we determined that 2-amino-3-methylpyridinyl pseudo-dC (3MeAP-ΨdC) possessed significant affinity and selectivity toward a CG inversion site and showed effective inhibition of gene expression. We now describe the design and synthesis of new modified aminopyridine derivatives by focusing on small chemical modification of the aminopyridine unit to tune and enhance the selectivity and affinity toward CG inversion sites. Remarkably, we have newly found that 2-amino-4-methoxypyridinyl pseudo-dC (4OMeAP-ΨdC) could selectively recognize the CG base pair in all four adjacent base pairs and form a stable triplex structure against the promoter sequence of the human gene including multiple CG inversion sites.


Asunto(s)
Aminopiridinas/síntesis química , ADN/química , Desoxicitidina/síntesis química , Nucleósidos/análogos & derivados , Purinas/química , Aminopiridinas/metabolismo , Composición de Base , Emparejamiento Base , Secuencia de Bases , Sitios de Unión , Sistema Libre de Células/metabolismo , Ciclina D1/antagonistas & inhibidores , Ciclina D1/genética , Ciclina D1/metabolismo , ADN/genética , ADN/metabolismo , Desoxicitidina/análogos & derivados , Desoxicitidina/metabolismo , Regulación de la Expresión Génica , Humanos , Cinética , Modelos Moleculares , Nucleósidos/metabolismo , Regiones Promotoras Genéticas , Purinas/metabolismo , Telomerasa/antagonistas & inhibidores , Telomerasa/genética , Telomerasa/metabolismo
13.
Chem Pharm Bull (Tokyo) ; 68(12): 1210-1219, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33268653

RESUMEN

N-Acetyl-7-nitroindoline has a characteristic reaction in that its acetyl group is photo-activated to acetylate amines to form amides. In this study, the N-acetyl-7-nitroindoline part was connected to the 2'-deoxyribose part at the 3- or 5-position or to a glycerol unit at the 3-position through an ethylene linker (1, 2, and 3, respectively). They were incorporated into the oligodeoxynucleotides, and their photo-reactivities toward the complementary RNA were evaluated. The acetyl group of 1 was photo-activated to form the deacelylated nitroso derivative without affecting the RNA strand. The photoreaction with 2 suggested acetylation of the RNA strand. In contrast, compound 3 formed the photo-cross-linked adduct with the RNA. These results have shown the potential application of N-acetyl-7-nitroindoline unit in aqueous solutions.


Asunto(s)
ADN/química , Indoles/química , Nucleósidos/química , ARN/química , Estructura Molecular , Nucleósidos/síntesis química , Procesos Fotoquímicos
14.
Bioorg Med Chem ; 27(24): 115160, 2019 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-31706680

RESUMEN

The AP sites are representative of DNA damage and known as an intermediate in the base excision repair (BER) pathway which is involved in the repair of damaged nucleobases by reactive oxygen species, UVA irradiation, and DNA alkylating agents. Therefore, it is expected that the inhibition or modulation of the AP site repair pathway may be a new type of anticancer drug. In this study, we investigated the effects of the thioguanine-polyamine ligands (SG-ligands) on the affinity and the reactivity for the AP site under UVA irradiated and non-irradiated conditions. The SG-ligands have a photo-reactivity with the A-F-C sequence where F represents a tetrahydrofuran AP site analogue. Interestingly, the SG-ligands promoted the ß-elimination of the AP site followed by the formation of a covalent bond with the ß-eliminated fragment without UVA irradiation.


Asunto(s)
ADN/química , Poliaminas/química , Tioguanina/química , Rayos Ultravioleta , Daño del ADN , Reparación del ADN , Ligandos , Oligonucleótidos/química , Oligonucleótidos/farmacología , Poliaminas/farmacología , Tioguanina/farmacología
15.
Chem Pharm Bull (Tokyo) ; 67(6): 505-518, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31155555

RESUMEN

Nucleic acid therapeutics such as antisense and small interfering RNA (siRNA) have attracted increasing attention as innovative medicines that interfere with and/or modify gene expression systems. We have developed new functional oligonucleotides that can target DNA and RNA with high efficiency and selectivity. This review summarizes our achievements, including (1) the formation of non-natural triplex DNA for sequence-specific inhibition of transcription; (2) artificial receptor molecules for 8-oxidized-guanosine nucleosides; and (3) reactive oligonucleotides with a cross-linking agent or a functionality-transfer nucleoside for RNA pinpoint modification.


Asunto(s)
ADN/química , ARN/química , Reactivos de Enlaces Cruzados/química , ADN/metabolismo , ADN/farmacología , Humanos , Nucleósidos/análogos & derivados , Nucleósidos/farmacología , Oligonucleótidos/química , Oligonucleótidos/metabolismo , Polietilenglicoles/química , ARN/metabolismo , Telomerasa/genética , Telomerasa/metabolismo , Transcripción Genética/efectos de los fármacos
16.
Chem Pharm Bull (Tokyo) ; 67(8): 877-883, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31366836

RESUMEN

The 4-vinylpyrimidin-2-one nucleoside (T-vinyl) forms a cross-link with the RNA containing uracil at the complementary site at a high reaction rate. To obtain the stable T-vinyl derivative so that its reactivity is protected until it access to the target site, several derivatives were investigated, and the 2-thiopyridinyl- and 2-thiopyrimidinyl T-vinyl derivatives were determined to be good candidates. The 2-thiopyrimidinyl T-vinyl derivative was found to more efficiently cross-link with mRNA albeit having a better stability than the 2-thiopyridinyl T-vinyl derivative. The investigation using the luciferase (Luc) mRNA, the synthetic mRNA and non-cellular translation system revealed that the translation is terminated at the end of the cross-linked duplex between the mRNA and the oligoribonucleotide (ORN). Thus, the 2-thiopyrimidinyl T-vinyl derivative has successfully demonstrated both a good stability and high efficiency for the cross-linking reaction, and expanded its applicability in biological applications.


Asunto(s)
Reactivos de Enlaces Cruzados/química , Nucleósidos/química , Oligorribonucleótidos/química , ARN Mensajero/química , Compuestos de Vinilo/química , Reactivos de Enlaces Cruzados/síntesis química , Estructura Molecular , Nucleósidos/síntesis química , Compuestos de Vinilo/síntesis química
17.
Chem Pharm Bull (Tokyo) ; 67(10): 1123-1130, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31582632

RESUMEN

The adenosine triphosphate derivatives of 2-oxo-1,3-diazaphenoxazine (dAdapTP) showed a significant discrimination ability for the template strand including that between 8-oxo-2'-deoxyguanosine (8-oxodG) and 2'-deoxyguanosine (dG) by the single nucleotide primer extension reaction using the Klenow Fragment. In this study, we synthesized new dAdapTP derivatives, i.e., 2-amino-dAdapTP, 2-chloro-dAdapTP and 2-iodo-dAdapTP, to investigate the effect on the selectivity and efficiency of incorporation for the primer extension reaction using a variety of DNA polymerases. In contrast to the previously tested dAdapTP, the selectivity and efficiency of the 2-halo-dAdapTP incorporation were dramatically decreased using the Klenow Fragment. Moreover, the efficiency of the 2-amino-dAdapTP incorporation into the T-containing template was almost the same with that of dAdapTP. In the case of the Bsu DNA polymerase, the efficiency of all the dAdapTP derivatives decreased compared to that using the Klenow Fragment. However, the incorporation selectivity of dAdapTP had improved against the oxodG-containing template for all the template sequences including the T-containing template. Moreover, 2-amino-dAdapTP showed a better efficiency than dAdapTP using the Bsu DNA polymerase. The 2-amino group of the adenosine unit may interact with syn-oxodG at the active site of the Bsu DNA polymerase during the single primer extension reaction.


Asunto(s)
Adenosina/metabolismo , Compuestos Aza/metabolismo , ADN Polimerasa Dirigida por ADN/metabolismo , Oxazinas/metabolismo , Polifosfatos/metabolismo , 8-Hidroxi-2'-Desoxicoguanosina , Adenosina/química , Compuestos Aza/química , ADN Polimerasa Dirigida por ADN/química , Desoxiguanosina/análogos & derivados , Desoxiguanosina/química , Desoxiguanosina/metabolismo , Estructura Molecular , Oxazinas/química , Polifosfatos/química
18.
Bioorg Med Chem Lett ; 28(10): 1832-1835, 2018 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-29657103

RESUMEN

Chromomycin A3 (CMA3) is an aureolic acid-type antitumor antibiotic. CMA3 forms dimeric complexes with divalent cations, such as Mg2+, which strongly binds to the GC rich sequence of DNA to inhibit DNA replication and transcription. In this study, the binding property of CMA3 to the DNA sequence containing multiple GC-rich binding sites was investigated by measuring the protection from hydrolysis by the restriction enzymes, AccII and Fnu4HI, for the center of the CGCG site and the 5'-GC↓GGC site, respectively. In contrast to the standard DNase I footprinting method, the DNA substrates are fully hydrolyzed by the restriction enzymes, therefore, the full protection of DNA at all the cleavable sites indicates that CMA3 simultaneously binds to all the binding sites. The restriction enzyme assay has suggested that CMA3 has a high tendency to bind the successive CGCG sites and the CGG repeat.


Asunto(s)
Cromomicina A3/metabolismo , ADN/metabolismo , Desoxirribonucleasas de Localización Especificada Tipo II/metabolismo , Secuencia de Bases , Sitios de Unión , Cromomicina A3/química , ADN/química , Dimerización , Pruebas de Enzimas , Magnesio/química , Resonancia por Plasmón de Superficie
19.
Bioorg Med Chem ; 26(12): 3254-3260, 2018 07 23.
Artículo en Inglés | MEDLINE | ID: mdl-29731311

RESUMEN

The 9-hydroxy-1,3-diazaphenoxazine-2-one unit was conjugated with the Eu3+-cyclen complex through a linker. This diazaphenoxazine group was expected as an antenna unit for the excitation of europium ion, and a selective recognition site for 8-oxo-dGTP base. Among the synthesized three derivatives, the highest fluorescence emission was obtained by the complex constructed of an ethylene linker and the cyclen unit with three N,N-dimethylacetamide groups. The Eu3+-cyclen complex exhibited a selective response to the 8-oxo-dGTP in aqueous media by a time-resolved fluorescence assay.


Asunto(s)
Nucleótidos de Desoxiguanina/análisis , Colorantes Fluorescentes/química , Espectrometría de Fluorescencia , Acetamidas/química , Complejos de Coordinación/química , Ciclamas , Nucleótidos de Desoxiguanina/química , Europio/química , Compuestos Heterocíclicos/química , Mediciones Luminiscentes
20.
Chem Pharm Bull (Tokyo) ; 66(6): 624-631, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29863064

RESUMEN

The antiparallel triplex DNA is formed by the interaction between purine-rich triplex forming oligonucleotides (TFOs) and the homo-purine region within a duplex DNA. The formation of such a structure with the genome DNA promises to control the gene expression in a living cell. In this study, in an attempt to enhance the stability of the triplex DNAs, we have designed the N2-arylated deoxyguanosine derivatives. Among these analogues, we found that the TFOs containing N2-phenyl-2'-deoxyguanosine (PhdG) showed a stable and selective triplex DNA formation with the GC base pair as compared to the natural dG/GC triplet. However, the multiple incorporation of PhdG into the TFOs hampered the stable triplex DNA, instead, showed a tendency to form a higher order structure. Therefore, we concluded that the stable and selective triplex DNA formation is expected by the replacement of dG by PhdG in the purine-rich TFO sequence.


Asunto(s)
ADN/síntesis química , Desoxiguanosina/análogos & derivados , Oligonucleótidos/química , Emparejamiento Base , ADN/química , Desoxiguanosina/química , Estructura Molecular
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA