Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
J Lipid Res ; 61(11): 1377-1389, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32769145

RESUMEN

Adaptive thermogenesis is highly dependent on uncoupling protein 1 (UCP1), a protein expressed by thermogenic adipocytes present in brown adipose tissue (BAT) and white adipose tissue (WAT). Thermogenic capacity of human and mouse BAT can be measured by positron emission tomography-computed tomography quantifying the uptake of 18F-fluodeoxyglucose or lipid tracers. BAT activation is typically studied in response to cold exposure or treatment with ß-3-adrenergic receptor agonists such as CL316,243 (CL). Currently, it is unknown whether cold-stimulated uptake of glucose or lipid tracers is a good surrogate marker of UCP1-mediated thermogenesis. In metabolic studies using radiolabeled tracers, we found that glucose uptake is increased in mildly cold-activated BAT of Ucp1-/- versus WT mice kept at subthermoneutral temperature. Conversely, lower glucose disposal was detected after full thermogenic activation achieved by sustained cold exposure or CL treatment. In contrast, uptake of lipoprotein-derived fatty acids into chronically activated thermogenic adipose tissues was substantially increased in UCP1-deficient mice. This effect is linked to higher sympathetic tone in adipose tissues of Ucp1-/- mice, as indicated by elevated levels of thermogenic genes in BAT and WAT. Thus, glucose and lipoprotein handling does not necessarily reflect UCP1-dependent thermogenic activity, but especially lipid uptake rather mirrors sympathetic activation of adipose tissues.


Asunto(s)
Tejido Adiposo Pardo/química , Glucosa/metabolismo , Lipoproteínas/metabolismo , Termogénesis , Proteína Desacopladora 1/metabolismo , Tejido Adiposo Pardo/metabolismo , Animales , Lipoproteínas/química , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Proteína Desacopladora 1/deficiencia
2.
Nat Metab ; 5(4): 677-698, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-37055619

RESUMEN

Lactate is a circulating metabolite and a signalling molecule with pleiotropic physiological effects. Studies suggest that lactate modulates energy balance by lowering food intake, inducing adipose browning and increasing whole-body thermogenesis. Yet, like many other metabolites, lactate is often commercially produced as a counterion-bound salt and typically administered in vivo through hypertonic aqueous solutions of sodium L-lactate. Most studies have not controlled for injection osmolarity and the co-injected sodium ions. Here, we show that the anorectic and thermogenic effects of exogenous sodium L-lactate in male mice are confounded by the hypertonicity of the injected solutions. Our data reveal that this is in contrast to the antiobesity effect of orally administered disodium succinate, which is uncoupled from these confounders. Further, our studies with other counterions indicate that counterions can have confounding effects beyond lactate pharmacology. Together, these findings underscore the importance of controlling for osmotic load and counterions in metabolite research.


Asunto(s)
Depresores del Apetito , Ratones , Masculino , Animales , Depresores del Apetito/farmacología , Ácido Láctico , Termogénesis/fisiología , Sodio , Concentración Osmolar
3.
Science ; 382(6675): eadf3208, 2023 12 08.
Artículo en Inglés | MEDLINE | ID: mdl-38060659

RESUMEN

The ribotoxic stress response (RSR) is a signaling pathway in which the p38- and c-Jun N-terminal kinase (JNK)-activating mitogen-activated protein kinase kinase kinase (MAP3K) ZAKα senses stalling and/or collision of ribosomes. Here, we show that reactive oxygen species (ROS)-generating agents trigger ribosomal impairment and ZAKα activation. Conversely, zebrafish larvae deficient for ZAKα are protected from ROS-induced pathology. Livers of mice fed a ROS-generating diet exhibit ZAKα-activating changes in ribosomal elongation dynamics. Highlighting a role for the RSR in metabolic regulation, ZAK-knockout mice are protected from developing high-fat high-sugar (HFHS) diet-induced blood glucose intolerance and liver steatosis. Finally, ZAK ablation slows animals from developing the hallmarks of metabolic aging. Our work highlights ROS-induced ribosomal impairment as a physiological activation signal for ZAKα that underlies metabolic adaptation in obesity and aging.


Asunto(s)
Envejecimiento , MAP Quinasa Quinasa Quinasa 3 , Obesidad , Especies Reactivas de Oxígeno , Ribosomas , Estrés Fisiológico , Animales , Ratones , Envejecimiento/metabolismo , MAP Quinasa Quinasa Quinasa 3/genética , MAP Quinasa Quinasa Quinasa 3/metabolismo , Obesidad/metabolismo , Biosíntesis de Proteínas , Especies Reactivas de Oxígeno/metabolismo , Ribosomas/metabolismo , Pez Cebra , Ratones Noqueados
4.
Cell Metab ; 34(12): 2036-2046.e8, 2022 12 06.
Artículo en Inglés | MEDLINE | ID: mdl-36384144

RESUMEN

Impairment of translation can lead to collisions of ribosomes, which constitute an activation platform for several ribosomal stress-surveillance pathways. Among these is the ribotoxic stress response (RSR), where ribosomal sensing by the MAP3K ZAKα leads to activation of p38 and JNK kinases. Despite these insights, the physiological ramifications of ribosomal impairment and downstream RSR signaling remain elusive. Here, we show that stalling of ribosomes is sufficient to activate ZAKα. In response to amino acid deprivation and full nutrient starvation, RSR impacts on the ensuing metabolic responses in cells, nematodes, and mice. The RSR-regulated responses in these model systems include regulation of AMPK and mTOR signaling, survival under starvation conditions, stress hormone production, and regulation of blood sugar control. In addition, ZAK-/- male mice present a lean phenotype. Our work highlights impaired ribosomes as metabolic signals and demonstrates a role for RSR signaling in metabolic regulation.


Asunto(s)
Quinasas Quinasa Quinasa PAM , Biosíntesis de Proteínas , Ribosomas , Estrés Fisiológico , Animales , Masculino , Ratones , Quinasas Quinasa Quinasa PAM/metabolismo
5.
Mol Metab ; 47: 101173, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33516944

RESUMEN

OBJECTIVE: Brown adipose tissue (BAT) thermogenesis offers the potential to improve metabolic health in mice and humans. However, humans predominantly live under thermoneutral conditions, leading to BAT whitening, a reduction in BAT mitochondrial content and metabolic activity. Recent studies have established mitophagy as a major driver of mitochondrial degradation in the whitening of thermogenic brite/beige adipocytes, yet the pathways mediating mitochondrial breakdown in whitening of classical BAT remain largely elusive. The transcription factor EB (TFEB), a master regulator of lysosomal biogenesis and autophagy belonging to the MiT family of transcription factors, is the only member of this family that is upregulated during whitening, pointing toward a role of TFEB in whitening-associated mitochondrial breakdown. METHODS: We generated brown adipocyte-specific TFEB knockout mice, and induced BAT whitening by thermoneutral housing. We characterized gene and protein expression patterns, BAT metabolic activity, systemic metabolism, and mitochondrial localization using in vivo and in vitro approaches. RESULTS: Under low thermogenic activation conditions, deletion of TFEB preserves mitochondrial mass independently of mitochondriogenesis in BAT and primary brown adipocytes. However, this does not translate into elevated thermogenic capacity or protection from diet-induced obesity. Autophagosomal/lysosomal marker levels are altered in TFEB-deficient BAT and primary adipocytes, and lysosomal markers co-localize and co-purify with mitochondria in TFEB-deficient BAT, indicating trapping of mitochondria in late stages of mitophagy. CONCLUSION: We identify TFEB as a driver of BAT whitening, mediating mitochondrial degradation via the autophagosomal and lysosomal machinery. This study provides proof of concept that interfering with the mitochondrial degradation machinery can increase mitochondrial mass in classical BAT under human-relevant conditions. However, it must be considered that interfering with autophagy may result in accumulation of non-functional mitochondria. Future studies targeting earlier steps of mitophagy or target recognition are therefore warranted.


Asunto(s)
Tejido Adiposo Pardo , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice , Mitocondrias , Mitofagia , Animales , Ratones , Adipocitos Marrones/metabolismo , Tejido Adiposo Pardo/metabolismo , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/efectos de los fármacos , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/metabolismo , Temperatura Corporal , Metabolismo Energético , Ratones Noqueados , Mitocondrias/metabolismo , Mitofagia/genética , Mitofagia/fisiología , Obesidad , Termogénesis/genética , Termogénesis/fisiología , Factores de Transcripción/metabolismo , Transcriptoma , Proteína Desacopladora 1/metabolismo
6.
Cell Metab ; 33(3): 547-564.e7, 2021 03 02.
Artículo en Inglés | MEDLINE | ID: mdl-33357458

RESUMEN

In response to cold exposure, thermogenic adipocytes internalize large amounts of fatty acids after lipoprotein lipase-mediated hydrolysis of triglyceride-rich lipoproteins (TRL) in the capillary lumen of brown adipose tissue (BAT) and white adipose tissue (WAT). Here, we show that in cold-exposed mice, vascular endothelial cells in adipose tissues endocytose substantial amounts of entire TRL particles. These lipoproteins subsequently follow the endosomal-lysosomal pathway, where they undergo lysosomal acid lipase (LAL)-mediated processing. Endothelial cell-specific LAL deficiency results in impaired thermogenic capacity as a consequence of reduced recruitment of brown and brite/beige adipocytes. Mechanistically, TRL processing by LAL induces proliferation of endothelial cells and adipocyte precursors via beta-oxidation-dependent production of reactive oxygen species, which in turn stimulates hypoxia-inducible factor-1α-dependent proliferative responses. In conclusion, this study demonstrates a physiological role for TRL particle uptake into BAT and WAT and establishes endothelial lipoprotein processing as an important determinant of adipose tissue remodeling during thermogenic adaptation.


Asunto(s)
Tejido Adiposo Pardo/metabolismo , Tejido Adiposo Blanco/metabolismo , Lipoproteínas/metabolismo , Lisosomas/metabolismo , Termogénesis , Triglicéridos/metabolismo , Adiponectina/genética , Adiponectina/metabolismo , Tejido Adiposo Pardo/patología , Tejido Adiposo Blanco/patología , Animales , Antígenos CD36/metabolismo , Diferenciación Celular , Proliferación Celular , Frío , Células Endoteliales/citología , Células Endoteliales/metabolismo , Humanos , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Lipoproteínas/genética , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Especies Reactivas de Oxígeno/metabolismo , Receptores de Lipoproteína/genética , Receptores de Lipoproteína/metabolismo , Esterol Esterasa/deficiencia , Esterol Esterasa/genética , Esterol Esterasa/metabolismo , Triglicéridos/genética
7.
Cell Rep ; 34(2): 108624, 2021 01 12.
Artículo en Inglés | MEDLINE | ID: mdl-33440156

RESUMEN

Thermoneutral conditions typical for standard human living environments result in brown adipose tissue (BAT) involution, characterized by decreased mitochondrial mass and increased lipid deposition. Low BAT activity is associated with poor metabolic health, and BAT reactivation may confer therapeutic potential. However, the molecular drivers of this BAT adaptive process in response to thermoneutrality remain enigmatic. Using metabolic and lipidomic approaches, we show that endogenous fatty acid synthesis, regulated by carbohydrate-response element-binding protein (ChREBP), is the central regulator of BAT involution. By transcriptional control of lipogenesis-related enzymes, ChREBP determines the abundance and composition of both storage and membrane lipids known to regulate organelle turnover and function. Notably, ChREBP deficiency and pharmacological inhibition of lipogenesis during thermoneutral adaptation preserved mitochondrial mass and thermogenic capacity of BAT independently of mitochondrial biogenesis. In conclusion, we establish lipogenesis as a potential therapeutic target to prevent loss of BAT thermogenic capacity as seen in adult humans.


Asunto(s)
Tejido Adiposo Pardo/metabolismo , Ácidos Grasos/biosíntesis , Animales , Humanos , Ratones
8.
Front Endocrinol (Lausanne) ; 11: 568682, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33193086

RESUMEN

Brown adipose tissue from mice living under conditions approaching human thermal and nutritional conditions (prolonged exposure to thermoneutral temperature and to an energy-rich (high-fat, high-sugar) diet) - referred to as "physiologically humanized" mice, displays morphological and molecular characteristics significantly different from those observed in young, chow-fed mice maintained at room temperature - referred to as "standard" mice. Here, we further examined brown fat from physiologically humanized and standard mice, as well as from mice exposed to thermoneutrality for a long time but not to an energy-rich diet - referred to here as "long-term thermoneutral" mice. Global transcriptome analysis of brown fat revealed that genes that were the most upregulated in brown fat of thermoneutral mice (both physiologically humanized and long-term thermoneutral) were those related to inflammatory processes, including genes expressed selectively in macrophages. Cellular and molecular analyses confirmed that brown fat from thermoneutral mice was heavily infiltrated by macrophages, predominantly organized into crown-like structures. However, despite this, the brown fat of thermoneutral mice retained full competence to attain the greatest possible recruitment state and became macrophage-depleted during the process of cold acclimation. Thus, profound macrophage accumulation does not influence the thermogenic recruitment competence of brown fat.


Asunto(s)
Adaptación Fisiológica/fisiología , Tejido Adiposo Pardo/metabolismo , Frío , Macrófagos/metabolismo , Termogénesis/fisiología , Tejido Adiposo Pardo/patología , Animales , Frío/efectos adversos , Dieta Alta en Grasa/efectos adversos , Macrófagos/patología , Masculino , Ratones , Ratones Endogámicos C57BL
9.
Biochim Biophys Acta Mol Basis Dis ; 1865(6): 1592-1603, 2019 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-30904610

RESUMEN

The phosphotyrosine interacting domain-containing protein 1 (PID1) serves as a cytosolic adaptor protein of the LDL receptor-related protein 1 (LRP1). By regulating its intracellular trafficking, PID1 controls the hepatic, LRP1-dependent clearance of pro-atherogenic lipoproteins. In adipose and muscle tissues, LRP1 is present in endosomal storage vesicles containing the insulin-responsive glucose transporter 4 (GLUT4). This prompted us to investigate whether PID1 modulates GLUT4 translocation and function via its interaction with the LRP1 cytosolic domain. We initially evaluated this in primary brown adipocytes as we observed an inverse correlation between brown adipose tissue glucose uptake and expression of LRP1 and PID1. Insulin stimulation in wild type brown adipocytes induced LRP1 and GLUT4 translocation from endosomal storage vesicles to the cell surface. Loss of PID1 expression in brown adipocytes prompted LRP1 and GLUT4 sorting to the plasma membrane independent of insulin signaling. When placed on a diabetogenic high fat diet, systemic and adipocyte-specific PID1-deficient mice presented with improved hyperglycemia and glucose tolerance as well as reduced basal plasma insulin levels compared to wild type control mice. Moreover, the improvements in glucose parameters associated with increased glucose uptake in adipose and muscle tissues from PID1-deficient mice. The data provide evidence that PID1 serves as an insulin-regulated retention adaptor protein controlling translocation of LRP1 in conjunction with GLUT4 to the plasma membrane of adipocytes. Notably, loss of PID1 corrects for insulin resistance-associated hyperglycemia emphasizing its pivotal role and therapeutic potential in the regulation of glucose homeostasis.


Asunto(s)
Adipocitos Marrones/metabolismo , Proteínas Portadoras/genética , Transportador de Glucosa de Tipo 4/genética , Glucosa/metabolismo , Insulina/metabolismo , Proteína 1 Relacionada con Receptor de Lipoproteína de Baja Densidad/genética , Obesidad/genética , Adipocitos Marrones/patología , Tejido Adiposo Pardo/metabolismo , Tejido Adiposo Pardo/patología , Animales , Transporte Biológico , Proteínas Portadoras/metabolismo , Membrana Celular/metabolismo , Dieta Alta en Grasa/efectos adversos , Endosomas/metabolismo , Regulación de la Expresión Génica , Transportador de Glucosa de Tipo 4/metabolismo , Homeostasis/genética , Resistencia a la Insulina , Hígado/metabolismo , Hígado/patología , Proteína 1 Relacionada con Receptor de Lipoproteína de Baja Densidad/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Músculo Esquelético/metabolismo , Músculo Esquelético/patología , Obesidad/etiología , Obesidad/metabolismo , Obesidad/patología , Cultivo Primario de Células , Transducción de Señal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA