Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 74
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Nat Methods ; 2024 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-38811857

RESUMEN

Information is transmitted between brain regions through the release of neurotransmitters from long-range projecting axons. Understanding how the activity of such long-range connections contributes to behavior requires efficient methods for reversibly manipulating their function. Chemogenetic and optogenetic tools, acting through endogenous G-protein-coupled receptor pathways, can be used to modulate synaptic transmission, but existing tools are limited in sensitivity, spatiotemporal precision or spectral multiplexing capabilities. Here we systematically evaluated multiple bistable opsins for optogenetic applications and found that the Platynereis dumerilii ciliary opsin (PdCO) is an efficient, versatile, light-activated bistable G-protein-coupled receptor that can suppress synaptic transmission in mammalian neurons with high temporal precision in vivo. PdCO has useful biophysical properties that enable spectral multiplexing with other optogenetic actuators and reporters. We demonstrate that PdCO can be used to conduct reversible loss-of-function experiments in long-range projections of behaving animals, thereby enabling detailed synapse-specific functional circuit mapping.

2.
Biochem Biophys Res Commun ; 690: 149231, 2024 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-38000293

RESUMEN

Cell fusion plays a key role in the development and formation of tissues and organs in several organisms. Skeletal myogenesis is assessed in vitro by cell shape and gene and protein expression using immunofluorescence and immunoblotting assays. However, these conventional methods are complex and do not allow for easy time-course observation in living cells. Therefore, this study aimed to develop a Cre recombination-based fluorescent reporter system to monitor cell-cell fusion. We combined green and red fluorescent proteins with a Cre-loxP system to detect syncytium formation using a fluorescent binary switch. This allowed us to visualize mononucleated cells with green fluorescence before fusion and multinucleated syncytia with red fluorescence by conditional expression after cell fusion. The formation of multinuclear myotubes during myogenic differentiation was detected by the change in fluorescence from green to red after Cre-mediated recombination. The distribution of the fluorescence signal correlated with the expression of myogenic differentiation markers. Moreover, red reporter fluorescence intensity was correlated with the number of nuclei contained in the red fluorescent-positive myotubes. We also successfully demonstrated that our fusion monitoring system is applicable to the formation of skeletal muscle myotube and placental syncytiotrophoblast. These results suggest that the color-switching fluorescent reporter system, using Cre-mediated recombination, could be a robust tool used to facilitate the study of cell-to-cell fusion.


Asunto(s)
Placenta , Proteína Fluorescente Roja , Embarazo , Femenino , Humanos , Fusión Celular , Placenta/metabolismo , Fibras Musculares Esqueléticas/metabolismo , Diferenciación Celular/genética , Recombinación Genética , Integrasas/genética , Integrasas/metabolismo , Genes Reporteros , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo
3.
Cell ; 136(3): 411-9, 2009 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-19203577

RESUMEN

The four transcription factors Oct4, Sox2, Klf4, and c-Myc can induce pluripotency in mouse and human fibroblasts. We previously described direct reprogramming of adult mouse neural stem cells (NSCs) by Oct4 and either Klf4 or c-Myc. NSCs endogenously express Sox2, c-Myc, and Klf4 as well as several intermediate reprogramming markers. Here we report that exogenous expression of the germline-specific transcription factor Oct4 is sufficient to generate pluripotent stem cells from adult mouse NSCs. These one-factor induced pluripotent stem cells (1F iPS) are similar to embryonic stem cells in vitro and in vivo. Not only can these cells can be efficiently differentiated into NSCs, cardiomyocytes, and germ cells in vitro, but they are also capable of teratoma formation and germline transmission in vivo. Our results demonstrate that Oct4 is required and sufficient to directly reprogram NSCs to pluripotency.


Asunto(s)
Células Madre Adultas/metabolismo , Factor 3 de Transcripción de Unión a Octámeros/metabolismo , Células Madre Pluripotentes/metabolismo , Fosfatasa Alcalina/metabolismo , Animales , Diferenciación Celular , Células Cultivadas , Reprogramación Celular , Células Madre Embrionarias/metabolismo , Células Germinativas/citología , Factor 4 Similar a Kruppel , Antígeno Lewis X/metabolismo , Ratones , Miocitos Cardíacos/citología
4.
Pflugers Arch ; 475(12): 1409-1419, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37987804

RESUMEN

Optogenetics is a technology using light-sensitive proteins to control signaling pathways and physiological processes in cells and organs and has been applied in neuroscience, cardiovascular sciences, and many other research fields. Most commonly used optogenetic actuators are sensitive to blue and green light, but red-light activation would allow better tissue penetration and less phototoxicity. Cyp27c1 is a recently deorphanized cytochrome P450 enzyme that converts vitamin A1 to vitamin A2, thereby red-shifting the spectral sensitivity of visual pigments and enabling near-infrared vision in some aquatic species.Here, we investigated the ability of Cyp27c1-generated vitamin A2 to induce a shift in spectral sensitivity of the light-gated ion channel Channelrhodopsin-2 (ChR2) and its red-shifted homolog ReaChR. We used patch clamp to measure photocurrents at specific wavelengths in HEK 293 cells expressing ChR2 or ReaChR. Vitamin A2 incubation red-shifted the wavelength for half-maximal currents (λ50%) by 6.8 nm for ChR2 and 12.4 nm for ReaChR. Overexpression of Cyp27c1 in HEK 293 cells showed mitochondrial localization, and HPLC analysis showed conversion of vitamin A1 to vitamin A2. Notably, the λ50% of ChR2 photocurrents was red-shifted by 10.5 nm, and normalized photocurrents at 550 nm were about twofold larger with Cyp27c1 expression. Similarly, Cyp27c1 shifted the λ50% of ReaChR photocurrents by 14.3 nm and increased normalized photocurrents at 650 nm almost threefold.Since vitamin A2 incubation is not a realistic option for in vivo applications and expression of Cyp27c1 leads to a greater red-shift in spectral sensitivity, we propose co-expression of this enzyme as a novel strategy for red-shifted optogenetics.


Asunto(s)
Optogenética , Vitamina A , Humanos , Vitamina A/metabolismo , Células HEK293 , Corazón , Channelrhodopsins/genética
5.
J Neuroinflammation ; 20(1): 255, 2023 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-37941007

RESUMEN

BACKGROUND: Enteric glia contribute to the pathophysiology of various intestinal immune-driven diseases, such as postoperative ileus (POI), a motility disorder and common complication after abdominal surgery. Enteric gliosis of the intestinal muscularis externa (ME) has been identified as part of POI development. However, the glia-restricted responses and activation mechanisms are poorly understood. The sympathetic nervous system becomes rapidly activated by abdominal surgery. It modulates intestinal immunity, innervates all intestinal layers, and directly interfaces with enteric glia. We hypothesized that sympathetic innervation controls enteric glia reactivity in response to surgical trauma. METHODS: Sox10iCreERT2/Rpl22HA/+ mice were subjected to a mouse model of laparotomy or intestinal manipulation to induce POI. Histological, protein, and transcriptomic analyses were performed to analyze glia-specific responses. Interactions between the sympathetic nervous system and enteric glia were studied in mice chemically depleted of TH+ sympathetic neurons and glial-restricted Sox10iCreERT2/JellyOPfl/+/Rpl22HA/+ mice, allowing optogenetic stimulation of ß-adrenergic downstream signaling and glial-specific transcriptome analyses. A laparotomy model was used to study the effect of sympathetic signaling on enteric glia in the absence of intestinal manipulation. Mechanistic studies included adrenergic receptor expression profiling in vivo and in vitro and adrenergic agonism treatments of primary enteric glial cell cultures to elucidate the role of sympathetic signaling in acute enteric gliosis and POI. RESULTS: With ~ 4000 differentially expressed genes, the most substantial enteric glia response occurs early after intestinal manipulation. During POI, enteric glia switch into a reactive state and continuously shape their microenvironment by releasing inflammatory and migratory factors. Sympathetic denervation reduced the inflammatory response of enteric glia in the early postoperative phase. Optogenetic and pharmacological stimulation of ß-adrenergic downstream signaling triggered enteric glial reactivity. Finally, distinct adrenergic agonists revealed ß-1/2 adrenoceptors as the molecular targets of sympathetic-driven enteric glial reactivity. CONCLUSIONS: Enteric glia act as early responders during post-traumatic intestinal injury and inflammation. Intact sympathetic innervation and active ß-adrenergic receptor signaling in enteric glia is a trigger of the immediate glial postoperative inflammatory response. With immune-activating cues originating from the sympathetic nervous system as early as the initial surgical incision, adrenergic signaling in enteric glia presents a promising target for preventing POI development.


Asunto(s)
Sistema Nervioso Entérico , Gliosis , Animales , Ratones , Adrenérgicos , Neuroglía , Transducción de Señal , Sistema Nervioso Simpático
6.
J Biol Chem ; 295(50): 17100-17113, 2020 12 11.
Artículo en Inglés | MEDLINE | ID: mdl-33040025

RESUMEN

Carnosine (ß-alanyl-l-histidine) and anserine (ß-alanyl-3-methyl-l-histidine) are abundant peptides in the nervous system and skeletal muscle of many vertebrates. Many in vitro and in vivo studies demonstrated that exogenously added carnosine can improve muscle contraction, has antioxidant activity, and can quench various reactive aldehydes. Some of these functions likely contribute to the proposed anti-aging activity of carnosine. However, the physiological role of carnosine and related histidine-containing dipeptides (HCDs) is not clear. In this study, we generated a mouse line deficient in carnosine synthase (Carns1). HCDs were undetectable in the primary olfactory system and skeletal muscle of Carns1-deficient mice. Skeletal muscle contraction in these mice, however, was unaltered, and there was no evidence for reduced pH-buffering capacity in the skeletal muscle. Olfactory tests did not reveal any deterioration in 8-month-old mice lacking carnosine. In contrast, aging (18-24-month-old) Carns1-deficient mice exhibited olfactory sensitivity impairments that correlated with an age-dependent reduction in the number of olfactory receptor neurons. Whereas we found no evidence for elevated levels of lipoxidation and glycation end products in the primary olfactory system, protein carbonylation was increased in the olfactory bulb of aged Carns1-deficient mice. Taken together, these results suggest that carnosine in the olfactory system is not essential for information processing in the olfactory signaling pathway but does have a role in the long-term protection of olfactory receptor neurons, possibly through its antioxidant activity.


Asunto(s)
Envejecimiento/metabolismo , Carnosina/metabolismo , Contracción Muscular , Péptido Sintasas/deficiencia , Receptores Odorantes/metabolismo , Envejecimiento/genética , Animales , Carnosina/genética , Ratones , Ratones Noqueados , Músculo Esquelético , Péptido Sintasas/metabolismo , Receptores Odorantes/genética
8.
Nat Chem Biol ; 14(8): 764-767, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-30013061

RESUMEN

L-type Ca2+ channels (LTCCs) play a crucial role in excitation-contraction coupling and release of hormones from secretory cells. They are targets of antihypertensive and antiarrhythmic drugs such as diltiazem. Here, we present a photoswitchable diltiazem, FHU-779, which can be used to reversibly block endogenous LTCCs by light. FHU-779 is as potent as diltiazem and can be used to place pancreatic ß-cell function and cardiac activity under optical control.


Asunto(s)
Canales de Calcio Tipo L/metabolismo , Diltiazem/farmacología , Colorantes Fluorescentes/farmacología , Corazón/efectos de los fármacos , Células Secretoras de Insulina/efectos de los fármacos , Imagen Óptica , Canales de Calcio Tipo L/química , Diltiazem/química , Colorantes Fluorescentes/química , Humanos , Células Secretoras de Insulina/metabolismo , Luz , Procesos Fotoquímicos
9.
Europace ; 22(10): 1590-1599, 2020 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-32808019

RESUMEN

AIMS: Besides providing mechanical stability, fibroblasts in the heart could modulate the electrical properties of cardiomyocytes. Here, we aim to develop a three-dimensional hetero-cellular model to analyse the electric interaction between fibroblasts and human cardiomyocytes in vitro using selective optogenetic de- or hyperpolarization of fibroblasts. METHODS AND RESULTS: NIH3T3 cell lines expressing the light-sensitive ion channel Channelrhodopsin2 or the light-induced proton pump Archaerhodopsin were generated for optogenetic depolarization or hyperpolarization, respectively, and characterized by patch clamp. Cardiac bodies consisting of 50% fibroblasts and 50% human pluripotent stem cell-derived cardiomyocytes were analysed by video microscopy and membrane potential was measured with sharp electrodes. Myofibroblast activation in cardiac bodies was enhanced by transforming growth factor-ß1 (TGF-ß1)-stimulation. Connexin-43 expression was analysed by qPCR and fluorescence recovery after photobleaching. Illumination of Channelrhodopsin2 or Archaerhodopsin expressing fibroblasts induced inward currents and depolarization or outward currents and hyperpolarization. Transforming growth factor-ß1-stimulation elevated connexin-43 expression and increased cell-cell coupling between fibroblasts as well as increased basal beating frequency and cardiomyocyte resting membrane potential in cardiac bodies. Illumination of cardiac bodies generated with Channelrhodopsin2 fibroblasts accelerated spontaneous beating, especially after TGF-ß1-stimulation. Illumination of cardiac bodies prepared with Archaerhodopsin expressing fibroblasts led to hyperpolarization of cardiomyocytes and complete block of spontaneous beating after TGF-ß1-stimulation. Effects of light were significantly smaller without TGF-ß1-stimulation. CONCLUSION: Transforming growth factor-ß1-stimulation leads to increased hetero-cellular coupling and optogenetic hyperpolarization of fibroblasts reduces TGF-ß1 induced effects on cardiomyocyte spontaneous activity. Optogenetic membrane potential manipulation selectively in fibroblasts in a new hetero-cellular cardiac body model allows direct quantification of fibroblast-cardiomyocyte coupling in vitro.


Asunto(s)
Miocitos Cardíacos , Optogenética , Animales , Diferenciación Celular , Células Cultivadas , Fibroblastos , Fibrosis , Humanos , Ratones , Miocardio/patología , Células 3T3 NIH
11.
J Pharmacol Exp Ther ; 360(2): 289-299, 2017 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-28082514

RESUMEN

Drug discovery strives for selective ligands to achieve targeted modulation of tissue function. Here we introduce engineered context-sensitive agonism as a postreceptor mechanism for tissue-selective drug action through a G protein-coupled receptor. Acetylcholine M2-receptor activation is known to mediate, among other actions, potentially dangerous slowing of the heart rate. This unwanted side effect is one of the main reasons that limit clinical application of muscarinic agonists. Herein we show that dualsteric (orthosteric/allosteric) agonists induce less cardiac depression ex vivo and in vivo than conventional full agonists. Exploration of the underlying mechanism in living cells employing cellular dynamic mass redistribution identified context-sensitive agonism of these dualsteric agonists. They translate elevation of intracellular cAMP into a switch from full to partial agonism. Designed context-sensitive agonism opens an avenue toward postreceptor pharmacologic selectivity, which even works in target tissues operated by the same subtype of pharmacologic receptor.


Asunto(s)
Descubrimiento de Drogas , Agonistas Muscarínicos/farmacología , Receptor Muscarínico M2/agonistas , Receptor Muscarínico M2/metabolismo , Regulación Alostérica/efectos de los fármacos , Animales , Células CHO , Cricetinae , Cricetulus , AMP Cíclico/metabolismo , Femenino , Corazón/efectos de los fármacos , Espacio Intracelular/efectos de los fármacos , Espacio Intracelular/metabolismo , Masculino , Ratones , Agonistas Muscarínicos/efectos adversos , Transducción de Señal/efectos de los fármacos
12.
J Muscle Res Cell Motil ; 38(3-4): 331-337, 2017 08.
Artículo en Inglés | MEDLINE | ID: mdl-28918572

RESUMEN

Damage of peripheral nerves results in paralysis of skeletal muscle. Currently, the only treatment option to restore proper function is electrical stimulation of the innervating nerve or of the skeletal muscles directly. However this approach has low spatial and temporal precision leading to co-activation of antagonistic muscles and lacks cell-type selectivity resulting in pain or discomfort by stimulation of sensible nerves. In contrast to electrical stimulation, optogenetic methods enable spatially confined and cell-type selective stimulation of cells expressing the light sensitive channel Channelrhodopsin-2 with precise temporal control over the membrane potential. Herein we summarize the current knowledge about the use of this technology to control skeletal muscle function with the focus on the direct, non-neuronal stimulation of muscle fibers. The high temporal flexibility of using light pulses allows new stimulation patterns to investigate skeletal muscle physiology. Furthermore, the high spatial precision of focused illumination was shown to be beneficial for selective stimulation of distinct nearby muscle groups. Finally, the cell-type specific expression of the light-sensitive effector proteins in muscle fibers will allow pain-free stimulation and open new options for clinical treatments. Therefore, we believe that direct optogenetic stimulation of skeletal muscles is a very potent method for basic scientists that also harbors several distinct advantages over electrical stimulation to be considered for clinical use in the future.


Asunto(s)
Terapia por Estimulación Eléctrica , Potenciales de la Membrana , Contracción Muscular , Fibras Musculares Esqueléticas , Optogenética/métodos , Traumatismos de los Nervios Periféricos , Animales , Humanos , Fibras Musculares Esqueléticas/metabolismo , Fibras Musculares Esqueléticas/patología , Traumatismos de los Nervios Periféricos/metabolismo , Traumatismos de los Nervios Periféricos/patología , Traumatismos de los Nervios Periféricos/fisiopatología , Traumatismos de los Nervios Periféricos/terapia
13.
Int J Mol Sci ; 18(12)2017 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-29211031

RESUMEN

Side effects on cardiac ion channels causing lethal arrhythmias are one major reason for drug withdrawals from the market. Field potential (FP) recording from cardiomyocytes, is a well-suited tool to assess such cardiotoxic effects of drug candidates in preclinical drug development, but it is currently limited to the spontaneous beating of the cardiomyocytes and manual analysis. Herein, we present a novel optogenetic cardiotoxicity screening system suited for the parallel automated frequency-dependent analysis of drug effects on FP recorded from human-induced pluripotent stem cell-derived cardiomyocytes. For the expression of the light-sensitive cation channel Channelrhodopsin-2, we optimised protocols using virus transduction or transient mRNA transfection. Optical stimulation was performed with a new light-emitting diode lid for a 96-well FP recording system. This enabled reliable pacing at physiologically relevant heart rates and robust recording of FP. Thereby we detected rate-dependent effects of drugs on Na⁺, Ca2+ and K⁺ channel function indicated by FP prolongation, FP shortening and the slowing of the FP downstroke component, as well as generation of afterdepolarisations. Taken together, we present a scalable approach for preclinical frequency-dependent screening of drug effects on cardiac electrophysiology. Importantly, we show that the recording and analysis can be fully automated and the technology is readily available using commercial products.


Asunto(s)
Ensayos Analíticos de Alto Rendimiento/métodos , Moduladores del Transporte de Membrana/toxicidad , Miocitos Cardíacos/efectos de los fármacos , Optogenética/métodos , Pruebas de Toxicidad/métodos , Potenciales de Acción , Cardiotoxicidad , Línea Celular , Ensayos Analíticos de Alto Rendimiento/instrumentación , Humanos , Células Madre Pluripotentes Inducidas/efectos de los fármacos , Células Madre Pluripotentes Inducidas/fisiología , Canales Iónicos/metabolismo , Miocitos Cardíacos/fisiología , Optogenética/instrumentación , Pruebas de Toxicidad/instrumentación
14.
Basic Res Cardiol ; 111(2): 14, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26803770

RESUMEN

Long QT syndrome is a potentially life-threatening disease characterized by delayed repolarization of cardiomyocytes, QT interval prolongation in the electrocardiogram, and a high risk for sudden cardiac death caused by ventricular arrhythmia. The genetic type 3 of this syndrome (LQT3) is caused by gain-of-function mutations in the SCN5A cardiac sodium channel gene which mediates the fast Nav1.5 current during action potential initiation. Here, we report the analysis of LQT3 human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs). These were generated from a patient with a heterozygous p.R1644H mutation in SCN5A known to interfere with fast channel inactivation. LQT3 hiPSC-CMs recapitulated pathognomonic electrophysiological features of the disease, such as an accelerated recovery from inactivation of sodium currents as well as action potential prolongation, especially at low stimulation rates. In addition, unlike previously described LQT3 hiPSC models, we observed a high incidence of early after depolarizations (EADs) which is a trigger mechanism for arrhythmia in LQT3. Administration of specific sodium channel inhibitors was found to shorten action and field potential durations specifically in LQT3 hiPSC-CMs and antagonized EADs in a dose-dependent manner. These findings were in full agreement with the pharmacological response profile of the underlying patient and of other patients from the same family. Thus, our data demonstrate the utility of patient-specific LQT3 hiPSCs for assessing pharmacological responses to putative drugs and for improving treatment efficacies.


Asunto(s)
Síndrome de QT Prolongado/metabolismo , Miocitos Cardíacos/metabolismo , Canal de Sodio Activado por Voltaje NAV1.5/genética , Trastorno del Sistema de Conducción Cardíaco , Células Cultivadas , Humanos , Células Madre Pluripotentes Inducidas , Síndrome de QT Prolongado/genética , Técnicas de Placa-Clamp , Fenotipo
15.
Stem Cells ; 33(5): 1456-69, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25639979

RESUMEN

Directed cardiac differentiation of human pluripotent stem cells (hPSCs) enables disease modeling, investigation of human cardiogenesis, as well as large-scale production of cardiomyocytes (CMs) for translational purposes. Multiple CM differentiation protocols have been developed to individually address specific requirements of these diverse applications, such as enhanced purity at a small scale or mass production at a larger scale. However, there is no universal high-efficiency procedure for generating CMs both in two-dimensional (2D) and three-dimensional (3D) culture formats, and undefined or complex media additives compromise functional analysis or cost-efficient upscaling. Using systematic combinatorial optimization, we have narrowed down the key requirements for efficient cardiac induction of hPSCs. This implied differentiation in simple serum and serum albumin-free basal media, mediated by a minimal set of signaling pathway manipulations at moderate factor concentrations. The method was applicable both to 2D and 3D culture formats as well as to independent hPSC lines. Global time-course gene expression analyses over extended time periods and in comparison with human heart tissue were used to monitor culture-induced maturation of the resulting CMs. This suggested that hPSC-CMs obtained with our procedure reach a rather stable transcriptomic state after approximately 4 weeks of culture. The underlying gene expression changes correlated well with a decline of immature characteristics as well as with a gain of structural and physiological maturation features within this time frame. These data link gene expression patterns of hPSC-CMs to functional readouts and thus define the cornerstones of culture-induced maturation.


Asunto(s)
Diferenciación Celular , Corazón/fisiología , Células Madre Pluripotentes/citología , Humanos , Mesodermo/citología , Miocitos Cardíacos/citología
17.
Nat Methods ; 7(11): 897-900, 2010 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-20881965

RESUMEN

Electrical stimulation is the standard technique for exploring electrical behavior of heart muscle, but this approach has considerable technical limitations. Here we report expression of the light-activated cation channel channelrhodopsin-2 for light-induced stimulation of heart muscle in vitro and in mice. This method enabled precise localized stimulation and constant prolonged depolarization of cardiomyocytes and cardiac tissue resulting in alterations of pacemaking, Ca(2+) homeostasis, electrical coupling and arrhythmogenic spontaneous extrabeats.


Asunto(s)
Miocitos Cardíacos/fisiología , Animales , Calcio/metabolismo , Channelrhodopsins , Estimulación Eléctrica , Electrocardiografía , Ratones , Marcapaso Artificial
18.
Basic Res Cardiol ; 108(3): 348, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-23558439

RESUMEN

The cardiac intercalated disc harbors mechanical and electrical junctions as well as ion channel complexes mediating propagation of electrical impulses. Cardiac connexin43 (Cx43) co-localizes and interacts with several of the proteins located at intercalated discs in the ventricular myocardium. We have generated conditional Cx43D378stop mice lacking the last five C-terminal amino acid residues, representing a binding motif for zonula occludens protein-1 (ZO-1), and investigated the functional consequences of this mutation on cardiac physiology and morphology. Newborn and adult homozygous Cx43D378stop mice displayed markedly impaired and heterogeneous cardiac electrical activation properties and died from severe ventricular arrhythmias. Cx43 and ZO-1 were co-localized at intercalated discs in Cx43D378stop hearts, and the Cx43D378stop gap junction channels showed normal coupling properties. Patch clamp analyses of isolated adult Cx43D378stop cardiomyocytes revealed a significant decrease in sodium and potassium current densities. Furthermore, we also observed a significant loss of Nav1.5 protein from intercalated discs in Cx43D378stop hearts. The phenotypic lethality of the Cx43D378stop mutation was very similar to the one previously reported for adult Cx43 deficient (Cx43KO) mice. Yet, in contrast to Cx43KO mice, the Cx43 gap junction channel was still functional in the Cx43D378stop mutant. We conclude that the lethality of Cx43D378stop mice is independent of the loss of gap junctional intercellular communication, but most likely results from impaired cardiac sodium and potassium currents. The Cx43D378stop mice reveal for the first time that Cx43 dependent arrhythmias can develop by mechanisms other than impairment of gap junction channel function.


Asunto(s)
Arritmias Cardíacas/metabolismo , Conexina 43/metabolismo , Uniones Comunicantes/metabolismo , Miocitos Cardíacos/metabolismo , Potenciales de Acción , Factores de Edad , Secuencia de Aminoácidos , Animales , Animales Recién Nacidos , Arritmias Cardíacas/diagnóstico , Arritmias Cardíacas/etiología , Arritmias Cardíacas/genética , Arritmias Cardíacas/fisiopatología , Conexina 43/química , Conexina 43/genética , Electrocardiografía Ambulatoria , Mapeo Epicárdico , Genotipo , Células HeLa , Humanos , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Canal de Sodio Activado por Voltaje NAV1.5/metabolismo , Técnicas de Placa-Clamp , Fenotipo , Telemetría , Factores de Tiempo , Transfección , Proteína de la Zonula Occludens-1/metabolismo
19.
Circ Res ; 109(8): 841-7, 2011 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-21799153

RESUMEN

RATIONALE: Current approaches for the investigation of long-QT syndromes (LQTS) are mainly focused on identification of the mutation and its characterization in heterologous expression systems. However, it would be extremely helpful to be able to characterize the pathophysiological effects of mutations and to screen drugs in cardiomyocytes. OBJECTIVE: The aim of this study was to establish as a proof of principle the disease-specific cardiomyocytes from a mouse model with LQTS 3 by use of induced pluripotent stem (iPS) cells and to demonstrate that the mutant cardiomyocytes display the characteristic pathophysiological features in vitro. METHODS AND RESULTS: We generated disease-specific iPS cells from a mouse model with a human mutation of the cardiac Na(+) channel that causes LQTS 3. The control and LQTS 3-specific iPS cell lines were pluripotent and could be differentiated into spontaneously beating cardiomyocytes. Patch-clamp measurements of LQTS 3-specific cardiomyocytes showed the biophysical effects of the mutation on the Na(+) current, with faster recovery from inactivation and larger late currents than observed in controls. Moreover, LQTS 3-specific cardiomyocytes had prolonged action potential durations and early afterdepolarizations at low pacing rates, both of which are classic features of the LQTS 3 mutation. CONCLUSIONS: We demonstrate that disease-specific iPS cell-derived cardiomyocytes from an LQTS 3 mouse model with a human mutation recapitulate the typical pathophysiological phenotype in vitro. Thus, this method is a powerful tool to investigate disease mechanisms in vitro and to perform patient-specific drug screening.


Asunto(s)
Células Madre Pluripotentes Inducidas/patología , Síndrome de QT Prolongado/patología , Síndrome de QT Prolongado/fisiopatología , Miocitos Cardíacos/patología , Animales , Trastorno del Sistema de Conducción Cardíaco , Diferenciación Celular/fisiología , Línea Celular , Humanos , Células Madre Pluripotentes Inducidas/fisiología , Síndrome de QT Prolongado/genética , Ratones , Ratones SCID , Ratones Transgénicos , Miocitos Cardíacos/fisiología , Canal de Sodio Activado por Voltaje NAV1.5 , Canales de Sodio/genética
20.
Nature ; 450(7171): 819-24, 2007 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-18064002

RESUMEN

Ventricular tachyarrhythmias are the main cause of sudden death in patients after myocardial infarction. Here we show that transplantation of embryonic cardiomyocytes (eCMs) in myocardial infarcts protects against the induction of ventricular tachycardia (VT) in mice. Engraftment of eCMs, but not skeletal myoblasts (SMs), bone marrow cells or cardiac myofibroblasts, markedly decreased the incidence of VT induced by in vivo pacing. eCM engraftment results in improved electrical coupling between the surrounding myocardium and the infarct region, and Ca2+ signals from engrafted eCMs expressing a genetically encoded Ca2+ indicator could be entrained during sinoatrial cardiac activation in vivo. eCM grafts also increased conduction velocity and decreased the incidence of conduction block within the infarct. VT protection is critically dependent on expression of the gap-junction protein connexin 43 (Cx43; also known as Gja1): SMs genetically engineered to express Cx43 conferred a similar protection to that of eCMs against induced VT. Thus, engraftment of Cx43-expressing myocytes has the potential to reduce life-threatening post-infarct arrhythmias through the augmentation of intercellular coupling, suggesting autologous strategies for cardiac cell-based therapy.


Asunto(s)
Arritmias Cardíacas/complicaciones , Arritmias Cardíacas/prevención & control , Conexina 43/metabolismo , Infarto del Miocardio/complicaciones , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/trasplante , Animales , Arritmias Cardíacas/patología , Arritmias Cardíacas/fisiopatología , Conexina 43/genética , Embrión de Mamíferos/citología , Corazón/fisiología , Corazón/fisiopatología , Humanos , Ratones , Ratones Transgénicos , Infarto del Miocardio/patología , Infarto del Miocardio/fisiopatología , Miocardio/citología , Miocardio/patología , Perfusión
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA