Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 62
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Virol ; 93(10)2019 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-30842321

RESUMEN

Most human immunodeficiency virus type 1 (HIV-1) infections begin at mucosal surfaces. Providing a barrier of protection at these may assist in combating the earliest events in infection. Systemic immunization by intramuscular (i.m.) injection can drive mucosal immune responses, but there are data suggesting that mucosal immunization can better educate these mucosal immune responses. To test this, rhesus macaques were immunized with replicating single-cycle adenovirus (SC-Ad) vaccines expressing clade B HIV-1 gp160 by the intranasal (i.n.) and i.m. routes to compare mucosal and systemic routes of vaccination. SC-Ad vaccines generated significant circulating antibody titers against Env after a single i.m. immunization. Switching the route of second immunization with the same SC-Ad serotype allowed a significant boost in these antibody levels. When these animals were boosted with envelope protein, envelope-binding antibodies were amplified 100-fold, but qualitatively different immune responses were generated. Animals immunized by only the i.m. route had high peripheral T follicular helper (pTfh) cell counts in blood but low Tfh cell counts in lymph nodes. Conversely, animals immunized by the i.n. route had high Tfh cell counts in lymph nodes but low pTfh cell counts in the blood. Animals immunized by only the i.m. route had lower antibody-dependent cellular cytotoxicity (ADCC) antibody activity, whereas animals immunized by the mucosal i.n. route had higher ADCC antibody activity. When these Env-immunized animals were challenged rectally with simian-human immunodeficiency virus (SHIV) strain SF162P3 (SHIVSF162P3), they all became infected. However, mucosally SC-Ad-immunized animals had lower viral loads in their gastrointestinal tracts. These data suggest that there may be benefits in educating the immune system at mucosal sites during HIV vaccination.IMPORTANCE HIV-1 infections usually start at a mucosal surface after sexual contact. Creating a barrier of protection at these mucosal sites may be a good strategy for to protect against HIV-1 infections. While HIV-1 enters at mucosa, most vaccines are not delivered here. Most are instead injected into the muscle, a site well distant and functionally different than mucosal tissues. This study tested if delivering HIV vaccines at mucosa or in the muscle makes a difference in the quality, quantity, and location of immune responses against the virus. These data suggest that there are indeed advantages to educating the immune system at mucosal sites with an HIV-1 vaccine.


Asunto(s)
Vacunas contra el SIDA/inmunología , VIH-1/inmunología , Inmunización/métodos , Adenoviridae/inmunología , Administración Intranasal/métodos , Animales , Anticuerpos Antivirales/inmunología , Productos del Gen env/inmunología , Infecciones por VIH/inmunología , Inmunidad Innata/inmunología , Inmunidad Mucosa/inmunología , Inyecciones Intramusculares/métodos , Macaca mulatta/virología , Vacunas contra el SIDAS/inmunología , Virus de la Inmunodeficiencia de los Simios/inmunología , Linfocitos T Colaboradores-Inductores/inmunología , Vacunación/métodos , Carga Viral
2.
PLoS Pathog ; 14(8): e1007273, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-30153307

RESUMEN

Human whipworm (Trichuris trichiura) infects approximately 1 in 15 people worldwide, representing the leading infectious cause of colitis and subsequent, inflammatory bowel disease (IBD). Current control measures focused on mass deworming have had limited success due to low drug efficacies. Vaccination would be an ideal, cost-effective strategy to induce protective immunity, leading to control of infection and transmission. Here we report the identification of whey acidic protein, a whipworm secretory protein, as a strong immunogen for inducing protective efficacy in a surrogate mouse T. muris infection model. The recombinant WAP protein (rTm-WAP49), as well as a single, highly conserved repeat within WAP (fragment 8) expressed as an Na-GST-1 fusion protein (rTm-WAP-F8+Na-GST-1), generate a strong T helper type 2 (Th2) immune response when delivered as subcutaneous vaccines formulated with Montanide ISA 720. Oral challenge with T. muris infective eggs following vaccination led to a significant reduction in worm burden of 48% by rTm-WAP49 and 33% by rTm-WAP-F8+Na-GST-1. The cellular immune correlates of protection included significant antigen-specific production of Th2 cytokines IL-4, IL-9, and IL-13 by cells isolated from the vaccine-draining inguinal lymph nodes, parasite-draining mesenteric lymph nodes, and spleen in mice vaccinated with either rTm-WAP49 or rTm-WAP-F8+Na-GST-1. The humoral immune correlates included a high antigen-specific ratio of IgG1 to IgG2a, without eliciting an IgE-mediated allergic response. Immunofluorescent staining of adult T. muris with WAP antisera identified the worm's pathogenic stichosome organ as the site of secretion of native Tm-WAP protein into the colonic mucosa. Given the high sequence conservation for the WAP proteins from T. muris and T. trichiura, the results presented here support the WAP protein to be further evaluated as a potential human whipworm vaccine candidate.


Asunto(s)
Inmunidad , Proteínas de la Leche/inmunología , Tricuriasis/prevención & control , Trichuris/inmunología , Animales , Anticuerpos Antihelmínticos/metabolismo , Antígenos Helmínticos/genética , Antígenos Helmínticos/inmunología , Antígenos Helmínticos/farmacología , Inmunidad/efectos de los fármacos , Inmunidad/genética , Masculino , Ratones , Ratones Endogámicos AKR , Ratones Noqueados , Ratones SCID , Proteínas de la Leche/genética , Proteínas de la Leche/farmacología , Tricuriasis/inmunología , Trichuris/genética , Vacunación/métodos
3.
Virol J ; 16(1): 22, 2019 02 20.
Artículo en Inglés | MEDLINE | ID: mdl-30786885

RESUMEN

BACKGROUND: The regulatory cyclin, Cyclin T1 (CycT1), is a host factor essential for HIV-1 replication in CD4 T cells and macrophages. The importance of CycT1 and the Positive Transcription Elongation Factor b (P-TEFb) complex for HIV replication is well-established, but regulation of CycT1 expression and protein levels during HIV replication and latency establishment in CD4 T cells is less characterized. METHODS: To better define the regulation of CycT1 levels during HIV replication in CD4 T cells, multiparameter flow cytometry was utilized to study the interaction between HIV replication (intracellular p24) and CycT1 of human peripheral blood memory CD4 T cells infected with HIV in vitro. CycT1 was further examined in CD4 T cells of human lymph nodes. RESULTS: In activated (CD3+CD28 costimulation) uninfected blood memory CD4 T cells, CycT1 was most significantly upregulated in maximally activated (CD69+CD25+ and HLA.DR+CD38+) cells. In memory CD4 T cells infected with HIV in vitro, two distinct infected populations of p24+CycT1+ and p24+CycT1- cells were observed during 7 days infection, suggestive of different phases of productive HIV replication and subsequent latency establishment. Intriguingly, p24+CycT1- cells were the predominant infected population in activated CD4 T cells, raising the possibility that productively infected cells may transition into latency subsequent to CycT1 downregulation. Additionally, when comparing infected p24+ cells to bystander uninfected p24- cells (after bulk HIV infections), HIV replication significantly increased T cell activation (CD69, CD25, HLA.DR, CD38, and Ki67) without concomitantly increasing CycT1 protein levels, possibly due to hijacking of P-TEFb by the viral Tat protein. Lastly, CycT1 was constitutively expressed at higher levels in lymph node CD4 T cells compared to blood T cells, potentially enhancing latency generation in lymphoid tissues. CONCLUSIONS: CycT1 is most highly upregulated in maximally activated memory CD4 T cells as expected, but may become less associated with T cell activation during HIV replication. The progression into latency may further be predicated by substantial generation of p24+CycT1- cells during HIV replication.


Asunto(s)
Linfocitos T CD4-Positivos/virología , Ciclina T/genética , Infecciones por VIH/inmunología , Latencia del Virus/fisiología , Replicación Viral/fisiología , Linfocitos T CD4-Positivos/inmunología , Citometría de Flujo , Regulación de la Expresión Génica , VIH-1/fisiología , Interacciones Microbiota-Huesped , Humanos , Factor B de Elongación Transcripcional Positiva/genética , Activación Transcripcional
4.
Proc Natl Acad Sci U S A ; 112(38): E5290-9, 2015 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-26351680

RESUMEN

Antibody modulation of T-cell coinhibitory (e.g., CTLA-4) or costimulatory (e.g., 4-1BB) receptors promotes clinical responses to a variety of cancers. Therapeutic cancer vaccination, in contrast, has produced limited clinical benefit and no curative therapies. The E6 and E7 oncoproteins of human papilloma virus (HPV) drive the majority of genital cancers, and many oropharyngeal tumors. We discovered 15-19 amino acid peptides from HPV-16 E6/E7 for which induction of T-cell immunity correlates with disease-free survival in patients treated for high-grade cervical neoplasia. We report here that intranasal vaccination with these peptides and the adjuvant alpha-galactosylceramide elicits systemic and mucosal T-cell responses leading to reduced HPV(+) TC-1 tumor growth and prolonged survival in mice. We hypothesized that the inability of these T cells to fully reject established tumors resulted from suppression in the tumor microenvironment which could be ameliorated through checkpoint modulation. Combining this E6/E7 peptide vaccine with checkpoint blockade produced only modest benefit; however, coadministration with a 4-1BB agonist antibody promoted durable regression of established genital TC-1 tumors. Relative to other therapies tested, this combination of vaccine and α4-1BB promoted the highest CD8(+) versus regulatory FoxP3(+) T-cell ratios, elicited 2- to 5-fold higher infiltration by E7-specific CTL, and evoked higher densities of highly cytotoxic TcEO (T cytotoxic Eomesodermin) CD8 (>70-fold) and ThEO (T helper Eomesodermin) CD4 (>17-fold) T cells. These findings have immediate clinical relevance both in terms of the direct clinical utility of the vaccine studied and in illustrating the potential of 4-1BB antibody to convert therapeutic E6/E7 vaccines already in clinical trials into curative therapies.


Asunto(s)
Anticuerpos/química , Vacunas contra Papillomavirus/química , Miembro 9 de la Superfamilia de Receptores de Factores de Necrosis Tumoral/agonistas , Animales , Separación Celular , Citocinas/metabolismo , Femenino , Citometría de Flujo , Inmunoterapia/métodos , Ratones , Ratones Endogámicos C57BL , Trasplante de Neoplasias , Proteínas Oncogénicas Virales/química , Papillomaviridae , Proteínas E7 de Papillomavirus/química , Vacunas contra Papillomavirus/inmunología , Péptidos/química , Bazo/metabolismo , Miembro 9 de la Superfamilia de Receptores de Factores de Necrosis Tumoral/inmunología , Vacunas de Subunidad/química , Vacunas de Subunidad/inmunología , Vagina/patología
5.
J Virol ; 89(1): 669-75, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25355873

RESUMEN

UNLABELLED: Replication-competent adenoviral (RC-Ad) vectors generate exceptionally strong gene-based vaccine responses by amplifying the antigen transgenes they carry. While they are potent, they also risk causing adenovirus infections. More common replication-defective Ad (RD-Ad) vectors with deletions of E1 avoid this risk but do not replicate their transgene and generate markedly weaker vaccine responses. To amplify vaccine transgenes while avoiding production of infectious progeny viruses, we engineered "single-cycle" adenovirus (SC-Ad) vectors by deleting the gene for IIIa capsid cement protein of lower-seroprevalence adenovirus serotype 6. In mouse, human, hamster, and macaque cells, SC-Ad6 still replicated its genome but prevented genome packaging and virion maturation. When used for mucosal intranasal immunization of Syrian hamsters, both SC-Ad and RC-Ad expressed transgenes at levels hundreds of times higher than that of RD-Ad. Surprisingly, SC-Ad, but not RC-Ad, generated higher levels of transgene-specific antibody than RD-Ad, which notably climbed in serum and vaginal wash samples over 12 weeks after single mucosal immunization. When RD-Ad and SC-Ad were tested by single sublingual immunization in rhesus macaques, SC-Ad generated higher gamma interferon (IFN-γ) responses and higher transgene-specific serum antibody levels. These data suggest that SC-Ad vectors may have utility as mucosal vaccines. IMPORTANCE: This work illustrates the utility of our recently developed single-cycle adenovirus (SC-Ad6) vector as a new vaccine platform. Replication-defective (RD-Ad6) vectors produce low levels of transgene protein, which leads to minimal antibody responses in vivo. This study shows that replicating SC-Ad6 produces higher levels of luciferase and induces higher levels of green fluorescent protein (GFP)-specific antibodies than RD in a permissive Syrian hamster model. Surprisingly, although a replication-competent (RC-Ad6) vector produces more luciferase than SC-Ad6, it does not elicit comparable levels of anti-GFP antibodies in permissive hamsters. When tested in the larger rhesus macaque model, SC-Ad6 induces higher transgene-specific antibody and T cell responses. Together, these data suggest that SC-Ad6 could be a more effective platform for developing vaccines against more relevant antigens. This could be especially beneficial for developing vaccines for pathogens for which traditional replication-defective adenovirus vectors have not been effective.


Asunto(s)
Adenovirus Humanos/genética , Portadores de Fármacos/administración & dosificación , Vectores Genéticos , Vacunas Atenuadas/inmunología , Vacunas Sintéticas/inmunología , Adenovirus Humanos/fisiología , Administración Intranasal , Administración Sublingual , Animales , Anticuerpos/análisis , Anticuerpos/sangre , Femenino , Inmunidad Mucosa , Interferón gamma/metabolismo , Leucocitos Mononucleares/inmunología , Macaca mulatta , Mesocricetus , Ratones , Vacunas Atenuadas/administración & dosificación , Vacunas Sintéticas/administración & dosificación , Vagina/inmunología , Replicación Viral
6.
J Biol Chem ; 288(22): 15474-80, 2013 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-23612978

RESUMEN

Viral pathogens utilize host cell machinery for their benefits. Herein, we identify that HIV-1 Vpr (viral protein R) negatively modulates telomerase activity. Telomerase enables stem and cancer cells to evade cell senescence by adding telomeric sequences to the ends of chromosomes. We found that Vpr inhibited telomerase activity by down-regulating TERT protein, a catalytic subunit of telomerase. As a molecular adaptor, Vpr enhanced the interaction between TERT and the VPRBP substrate receptor of the DYRK2-associated EDD-DDB1-VPRBP E3 ligase complex, resulting in increased ubiquitination of TERT. In contrast, the Vpr mutant identified in HIV-1-infected long-term nonprogressors failed to promote TERT destabilization. Our results suggest that Vpr inhibits telomerase activity by hijacking the host E3 ligase complex, and we propose the novel molecular mechanism of telomerase deregulation in possibly HIV-1 pathogenesis.


Asunto(s)
Proteínas Portadoras/metabolismo , Proteínas de Unión al ADN/metabolismo , Infecciones por VIH/metabolismo , VIH-1/metabolismo , Proteolisis , Telomerasa/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitinación , Productos del Gen vpr del Virus de la Inmunodeficiencia Humana/metabolismo , Proteínas Portadoras/genética , Proteínas de Unión al ADN/genética , Infecciones por VIH/genética , Infecciones por VIH/patología , VIH-1/genética , Células HeLa , Humanos , Células Jurkat , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Estabilidad Proteica , Proteínas Tirosina Quinasas/genética , Proteínas Tirosina Quinasas/metabolismo , Telomerasa/genética , Ubiquitina-Proteína Ligasas/genética , Productos del Gen vpr del Virus de la Inmunodeficiencia Humana/genética , Quinasas DyrK
7.
Vaccines (Basel) ; 12(2)2024 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-38400189

RESUMEN

High-risk human papillomaviruses (HPVs) are associated with genital and oral cancers, and the incidence of HPV+ head and neck squamous cell cancers is fast increasing in the USA and worldwide. Survival rates for patients with locally advanced disease are poor after standard-of-care chemoradiation treatment. Identifying the antitumor host immune mediators important for treatment response and designing strategies to promote them are essential. We reported earlier that in a syngeneic immunocompetent preclinical HPV tumor mouse model, intranasal immunization with an HPV peptide therapeutic vaccine containing the combination of aGalCer and CpG-ODN adjuvants (TVAC) promoted clearance of HPV vaginal tumors via induction of a strong cytotoxic T cell response. However, TVAC was insufficient in the clearance of HPV oral tumors. To overcome this deficiency, we tested substituting aGalCer with a clinically relevant adjuvant QS21 (TVQC) and observed sustained, complete regression of over 70% of oral and 80% of vaginal HPV tumors. The TVQC-mediated protection in the oral tumor model correlated with not only strong total and HPV-antigen-specific CD8 T cells, but also natural killer dendritic cells (NKDCs), a novel subset of NK cells expressing the DC marker CD11c. Notably, we observed induction of significantly higher overall innate NK effector responses by TVQC relative to TVAC. Furthermore, in mice treated with TVQC, the frequencies of total and functional CD11c+ NK cell populations were significantly higher than the CD11c- subset, highlighting the importance of the contributions of NKDCs to the vaccine response. These results emphasize the importance of NK-mediated innate immune effector responses in total antitumor immunity to treat HPV+ cancers.

8.
PLoS One ; 18(1): e0279590, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36607962

RESUMEN

We evaluated the association of disease outcome with T cell immune-related characteristics and T cell receptor (TCR) repertoire in malignant ascites from patients with high-grade epithelial ovarian cancer. Ascitic fluid samples were collected from 47 high-grade epithelial ovarian cancer patients and analyzed using flow cytometry and TCR sequencing to characterize the complementarity determining region 3 TCR ß-chain. TCR functions were analyzed using the McPAS-TCR and VDJ databases. TCR clustering was implemented using Grouping of Lymphocyte Interactions by Paratope Hotspots software. Patients with poor prognosis had ascites characterized by an increased ratio of CD8+ T cells to regulatory T cells, which correlated with an increased productive frequency of the top 100 clones and decreased productive entropy. TCRs enriched in patients with an excellent or good prognosis were more likely to recognize cancer antigens and contained more TCR reads predicted to recognize epithelial ovarian cancer antigens. In addition, a TCR motif that is predicted to bind the TP53 neoantigen was identified, and this motif was enriched in patients with an excellent or good prognosis. Ascitic fluid in high-grade epithelial ovarian cancer patients with an excellent or good prognosis is enriched with TCRs that may recognize ovarian cancer-specific neoantigens, including mutated TP53 and TEAD1. These results suggest that an effective antigen-specific immune response in ascites is vital for a good outcome in high-grade epithelial ovarian cancer.


Asunto(s)
Ascitis , Neoplasias Ováricas , Humanos , Femenino , Carcinoma Epitelial de Ovario/metabolismo , Ascitis/metabolismo , Receptores de Antígenos de Linfocitos T , Neoplasias Ováricas/metabolismo , Linfocitos T CD8-positivos , Inmunidad
9.
Cancer Cell ; 41(11): 1945-1962.e11, 2023 11 13.
Artículo en Inglés | MEDLINE | ID: mdl-37863066

RESUMEN

Tumor microbiota can produce active metabolites that affect cancer and immune cell signaling, metabolism, and proliferation. Here, we explore tumor and gut microbiome features that affect chemoradiation response in patients with cervical cancer using a combined approach of deep microbiome sequencing, targeted bacterial culture, and in vitro assays. We identify that an obligate L-lactate-producing lactic acid bacterium found in tumors, Lactobacillus iners, is associated with decreased survival in patients, induces chemotherapy and radiation resistance in cervical cancer cells, and leads to metabolic rewiring, or alterations in multiple metabolic pathways, in tumors. Genomically similar L-lactate-producing lactic acid bacteria commensal to other body sites are also significantly associated with survival in colorectal, lung, head and neck, and skin cancers. Our findings demonstrate that lactic acid bacteria in the tumor microenvironment can alter tumor metabolism and lactate signaling pathways, causing therapeutic resistance. Lactic acid bacteria could be promising therapeutic targets across cancer types.


Asunto(s)
Microbiota , Neoplasias del Cuello Uterino , Femenino , Humanos , Ácido Láctico/metabolismo , Neoplasias del Cuello Uterino/radioterapia , Lactobacillus/genética , Lactobacillus/metabolismo , Microambiente Tumoral
10.
Proc Natl Acad Sci U S A ; 106(39): 16776-81, 2009 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-19805372

RESUMEN

Mucosal dendritic cells have been implicated in the capture, storage, and transmission of HIV to CD4(+) T cells as well as in the promotion of HIV replication in activated CD4(+) T cells during the cognate T-cell and DC interaction. We report that HIV induces human genital mucosal epithelial cells to produce thymic stromal lymphopoietin (TSLP) via activation of the NFkappaB signaling pathway. The TSLP secreted by HIV exposed epithelial cells activated DC, which promoted proliferation and HIV-1 replication of co-cultured autologous CD4(+) T cells. In rhesus macaques, we observed dramatic increases in TSLP expression concurrent with an increase in viral replication in the vaginal tissues within the first 2 weeks after vaginal SIV exposure. These data suggest that HIV-mediated TSLP production by mucosal epithelial cells is a critical trigger for DC-mediated amplification of HIV-infection in activated CD4(+) T cells. The cross talk between mucosal epithelial cells and DC, mediated by HIV-induced TSLP, may be an important mechanism for the high rate of HIV infection in women through the vaginal mucosa.


Asunto(s)
Linfocitos T CD4-Positivos/inmunología , Citocinas/biosíntesis , Células Dendríticas/metabolismo , Células Epiteliales/metabolismo , Células Epiteliales/virología , VIH-1/fisiología , Animales , Linfocitos T CD4-Positivos/metabolismo , Células Cultivadas , Femenino , VIH-1/patogenicidad , Humanos , Macaca mulatta , FN-kappa B/metabolismo , Virus de la Inmunodeficiencia de los Simios/patogenicidad , Linfopoyetina del Estroma Tímico
11.
Front Immunol ; 13: 800295, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35197976

RESUMEN

Trichuriasis is one of the most common neglected tropical diseases of the world's poorest people. A recombinant vaccine composed of Tm-WAP49, an immunodominant antigen secreted by adult Trichuris stichocytes into the mucosa of the cecum to which the parasite attaches, is under development. The prototype is being evaluated in a mouse model of Trichuris muris infection, with the ultimate goal of producing a mucosal vaccine through intranasal delivery. Intranasal immunization of mice with Tm-WAP49 formulated with the adjuvant OCH, a truncated analog of alpha-GalCer with adjuvanticity to stimulate natural killer T cells (NKT) and mucosal immunity, induced significantly high levels of IgG and its subclasses (IgG1 and IgG2a) in immunized mice. This also resulted in a significant reduction of worm burden after challenge with T. muris-infective eggs. The addition of QS-21 adjuvant to this vaccine formulation further reduced worm counts. The improved protection from the dual-adjuvanted vaccine correlated with higher serum antibody responses (IgG, IgG1, IgG2a, IgA) as well as with the induction of antigen-specific IgA in the nasal mucosa. It was also associated with the robust cellular responses including functional subsets of CD4 T cells producing IL-4, and cytotoxic CD8 T cells expressing granzyme B. The worm reduction achieved by mucosal immunization was higher than that induced by subcutaneous immunization. Intranasal immunization also induced a significantly higher nasal mucosa-secreted antigen-specific IgA response, as well as higher functional cellular responses including CD4+IL4+ (Th1) and CD8+GnzB+ (Th2) T cells, and antigen-specific INFγ-producing T cells in both spleen and MLNs and antibody-producing B cells (CD19+B220+/B220+GL7+). Mucosal immunization further induced long-term T lymphocyte memory with increased central (CD62L+CD44+) and effector (CD62L-CD44+) memory subsets of both CD4 and CD8 T cells at 60 days after the last immunization. In summary, intranasal immunization with recombinant Tm-WAP49 protein induced strong protection versus murine trichuriasis. It represents a promising vaccination approach against intestinal nematodes.


Asunto(s)
Tricuriasis/inmunología , Adyuvantes Inmunológicos/farmacología , Administración Intranasal , Animales , Formación de Anticuerpos/efectos de los fármacos , Linfocitos T CD8-positivos/inmunología , Femenino , Inmunidad Celular/efectos de los fármacos , Inmunidad Mucosa/inmunología , Inmunización , Inmunoglobulina A/inmunología , Inmunoglobulina G/inmunología , Ratones , Ratones Endogámicos AKR , Ratones Endogámicos BALB C , Membrana Mucosa/inmunología , Células TH1/inmunología , Trichuris/inmunología , Vacunación/métodos , Vacunas Sintéticas
12.
Cancer Immunol Res ; 10(2): 259-271, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-35045973

RESUMEN

Human papillomavirus (HPV) infection causes 600,000 new cancers worldwide each year. HPV-related cancers express the oncogenic proteins E6 and E7, which could serve as tumor-specific antigens. It is not known whether immunity to E6 and E7 evolves during chemoradiotherapy or affects survival. Using T cells from 2 HPV16+ patients, we conducted functional T-cell assays to identify candidate HPV-specific T cells and common T-cell receptor motifs, which we then analyzed across 86 patients with HPV-related cancers. The HPV-specific clones and E7-related T-cell receptor motifs expanded in the tumor microenvironment over the course of treatment, whereas non-HPV-specific T cells did not. In HPV16+ patients, improved recurrence-free survival was associated with HPV-responsive T-cell expansion during chemoradiotherapy.


Asunto(s)
Proteínas Oncogénicas Virales , Infecciones por Papillomavirus , Neoplasias del Cuello Uterino , Quimioradioterapia , Femenino , Papillomavirus Humano 16 , Humanos , Proteínas E7 de Papillomavirus , Pronóstico , Proteínas Represoras , Linfocitos T , Microambiente Tumoral
13.
J Control Release ; 330: 427-437, 2021 02 10.
Artículo en Inglés | MEDLINE | ID: mdl-33358974

RESUMEN

The objective of this study is to develop a simple biopolymer platform of mucoadhesive wafers that enables effective sublingual delivery and preservation of protein vaccines. The wafers were composed of a series of binary polymer blends of carboxymethylcellulose (CMC) and alginate (ALG). Varying the ratio between CMC and ALG resulted in wafers with different microstructure, mechanical properties, disintegration time, and release kinetics of model compounds. Wafers with high CMC content were highly mucoadhesive to sublingual mucosal tissue and could withstand extensive washing, leading to improved protein permeation into the tissue. On the other hand, wafers with high ALG content were not only mechanically robust, but also able to protect a model enzyme (ß-galactosidase) against lyophilization and heat challenge. HIV gp140 protein loaded in wafers of the optimal composition could be stored and transported without cold chain, while maintaining antigen-specific immunogenicity after sublingual vaccination in mice. These findings established that the CMC/ALG binary blend polymer wafers have the potential to improve the sublingual delivery and storage stability of protein-based vaccines.


Asunto(s)
Polímeros , Vacunas , Administración Sublingual , Alginatos , Animales , Carboximetilcelulosa de Sodio , Ratones
14.
Cell Rep Med ; 2(8): 100372, 2021 08 17.
Artículo en Inglés | MEDLINE | ID: mdl-34467249

RESUMEN

Although the BCG vaccine offers partial protection, tuberculosis remains a leading cause of infectious disease death, killing ∼1.5 million people annually. We developed mucosal vaccines expressing the autophagy-inducing peptide C5 and mycobacterial Ag85B-p25 epitope using replication-defective human adenovirus (HAdv85C5) and bovine adenovirus (BAdv85C5) vectors. BAdv85C5-infected dendritic cells (DCs) expressed a robust transcriptome of genes regulating antigen processing compared to HAdv85C5-infected DCs. BAdv85C5-infected DCs showed enhanced galectin-3/8 and autophagy-dependent in vitro Ag85B-p25 epitope presentation to CD4 T cells. BCG-vaccinated mice were intranasally boosted using HAdv85C5 or BAdv85C5 followed by infection using aerosolized Mycobacterium tuberculosis (Mtb). BAdv85C5 protected mice against tuberculosis both as a booster after BCG vaccine (>1.4-log10 reduction in Mtb lung burden) and as a single intranasal dose (>0.5-log10 reduction). Protection was associated with robust CD4 and CD8 effector (TEM), central memory (TCM), and CD103+/CD69+ lung-resident memory (TRM) T cell expansion, revealing BAdv85C5 as a promising mucosal vaccine for tuberculosis.


Asunto(s)
Adenoviridae/inmunología , Antígenos Bacterianos/inmunología , Membrana Mucosa/inmunología , Mycobacterium tuberculosis/inmunología , Vacunas contra la Tuberculosis/inmunología , Vacunas Sintéticas/inmunología , Animales , Autofagosomas/metabolismo , Vacuna BCG/inmunología , Catepsinas/metabolismo , Bovinos , Citocinas/metabolismo , Replicación del ADN , Células Dendríticas/inmunología , Femenino , Galectinas/metabolismo , Vectores Genéticos/metabolismo , Humanos , Memoria Inmunológica , Lisosomas/metabolismo , Masculino , Ratones Endogámicos C57BL , Linfocitos T/inmunología , Transcriptoma/genética , Vacunación
15.
Biomed Pharmacother ; 138: 111457, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33721754

RESUMEN

With continued expansion of the coronavirus disease (COVID-19) pandemic, caused by severe acute respiratory syndrome 2 (SARS-CoV-2), both antiviral drugs as well as effective vaccines are desperately needed to treat patients at high risk of life-threatening disease. Here, we present in vitro evidence for significant inhibition of SARS-CoV-2 by oleandrin and a defined extract of N. oleander (designated as PBI-06150). Using Vero cells, we found that prophylactic (pre-infection) oleandrin (as either the pure compound or as the active principal ingredient in PBI-06150) administration at concentrations as low as 0.05 µg/ml exhibited potent antiviral activity against SARS-CoV-2, with an 800-fold reduction in virus production, and a 0.1 µg/ml concentration resulted in a greater than 3000-fold reduction in infectious virus production. The half maximal effective concentration (EC50) values were 11.98 ng/ml when virus output was measured at 24 h post-infection, and 7.07 ng/ml measured at 48 h post-infection. Therapeutic (post-infection) treatment up to 24 h after SARS-CoV-2 infection of Vero cells also reduced viral titers, with 0.1 µg/ml and 0.05 µg/ml concentrations causing greater than 100-fold reduction as measured at 48 h, and the 0.05 µg/ml concentration resulting in a 78-fold reduction. Concentrations of oleandrin up to 10 µg/ml were well tolerated in Vero cells. We also present in vivo evidence of the safety and efficacy of defined N. oleander extract (PBI-06150), which was administered to golden Syrian hamsters in a preparation containing as high as 130 µg/ml of oleandrin. In comparison to administration of control vehicle, PBI-06150 provided a statistically significant reduction of the viral titer in the nasal turbinates (nasal conchae). The potent prophylactic and therapeutic antiviral activities demonstrated here, together with initial evidence of its safety and efficacy in a relevant hamster model of COVID-19, support the further development of oleandrin and/or defined extracts containing this molecule for the treatment of SARS-CoV-2 and associated COVID-19 disease and potentially also for reduction of virus spread by persons diagnosed early after infection.


Asunto(s)
Antivirales/uso terapéutico , Tratamiento Farmacológico de COVID-19 , Cardenólidos/uso terapéutico , Nerium , Extractos Vegetales/uso terapéutico , SARS-CoV-2 , Animales , Antivirales/farmacología , COVID-19/prevención & control , Cardenólidos/farmacología , Chlorocebus aethiops , Cricetinae , Femenino , Genoma Viral , Fitoterapia , Extractos Vegetales/farmacología , SARS-CoV-2/genética , Células Vero
16.
Adv Ther (Weinh) ; 4(3)2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33997267

RESUMEN

Pre-exposure prophylaxis (PrEP) using antiretroviral oral drugs is effective at preventing HIV transmission when individuals adhere to the dosing regimen. Tenofovir alafenamide (TAF) is a potent antiretroviral drug, with numerous long-acting (LA) delivery systems under development to improve PrEP adherence. However, none has undergone preventive efficacy assessment. Here we show that LA TAF using a novel subcutaneous nanofluidic implant (nTAF) confers partial protection from HIV transmission. We demonstrate that sustained subcutaneous delivery through nTAF in rhesus macaques maintained tenofovir diphosphate concentration at a median of 390.00 fmol/106 peripheral blood mononuclear cells, 9 times above clinically protective levels. In a non-blinded, placebo-controlled rhesus macaque study with repeated low-dose rectal SHIVSF162P3 challenge, the nTAF cohort had a 62.50% reduction (95% CI: 1.72% to 85.69%; p=0.068) in risk of infection per exposure compared to the control. Our finding mirrors that of tenofovir disoproxil fumarate (TDF) monotherapy, where 60.00% protective efficacy was observed in macaques, and clinically, 67.00% reduction in risk with 86.00% preventive efficacy in individuals with detectable drug in the plasma. Overall, our nanofluidic technology shows potential as a subcutaneous delivery platform for long-term PrEP and provides insights for clinical implementation of LA TAF for HIV prevention.

17.
Commun Biol ; 4(1): 237, 2021 02 22.
Artículo en Inglés | MEDLINE | ID: mdl-33619320

RESUMEN

Diversity of the gut microbiome is associated with higher response rates for cancer patients receiving immunotherapy but has not been investigated in patients receiving radiation therapy. Additionally, current studies investigating the gut microbiome and outcomes in cancer patients may not have adjusted for established risk factors. Here, we sought to determine if diversity and composition of the gut microbiome was independently associated with survival in cervical cancer patients receiving chemoradiation. Our study demonstrates that the diversity of gut microbiota is associated with a favorable response to chemoradiation. Additionally, compositional variation among patients correlated with short term and long-term survival. Short term survivor fecal samples were significantly enriched in Porphyromonas, Porphyromonadaceae, and Dialister, whereas long term survivor samples were significantly enriched in Escherichia Shigella, Enterobacteriaceae, and Enterobacteriales. Moreover, analysis of immune cells from cervical tumor brush samples by flow cytometry revealed that patients with a high microbiome diversity had increased tumor infiltration of CD4+ lymphocytes as well as activated subsets of CD4 cells expressing ki67+ and CD69+ over the course of radiation therapy. Modulation of the gut microbiota before chemoradiation might provide an alternative way to enhance treatment efficacy and improve treatment outcomes in cervical cancer patients.


Asunto(s)
Quimioradioterapia , Microbioma Gastrointestinal , Intestinos/microbiología , Neoplasias del Cuello Uterino/terapia , Adulto , Anciano , Antígenos CD/metabolismo , Antígenos de Diferenciación de Linfocitos T/metabolismo , Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD4-Positivos/metabolismo , Quimioradioterapia/efectos adversos , Quimioradioterapia/mortalidad , Femenino , Humanos , Antígeno Ki-67/metabolismo , Lectinas Tipo C/metabolismo , Linfocitos Infiltrantes de Tumor/inmunología , Linfocitos Infiltrantes de Tumor/metabolismo , Persona de Mediana Edad , Estudios Prospectivos , Factores de Tiempo , Resultado del Tratamiento , Microambiente Tumoral , Neoplasias del Cuello Uterino/inmunología , Neoplasias del Cuello Uterino/microbiología , Neoplasias del Cuello Uterino/mortalidad
18.
J Exp Pharmacol ; 12: 503-515, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33262663

RESUMEN

Over the past 15 years, investigators have reported on the utility and safety of cardiac glycosides for numerous health benefits including those as treatments for malignant disease, stroke-mediated ischemic injury and certain neurodegenerative diseases. In addition to those, there is a growing body of evidence for novel antiviral effects of selected cardiac glycoside molecules. One unique cardiac glycoside, oleandrin derived from Nerium oleander, has been reported to have antiviral activity specifically against 'enveloped' viruses including HIV and HTLV-1. Importantly, a recent publication has presented in vitro evidence for oleandrin's ability to inhibit production of infectious virus particles when used for treatment prior to, as well as after infection by SARS-CoV-2/COVID-19. This review will highlight the known in vitro antiviral effects of oleandrin as well as present previously unpublished effects of this novel cardiac glycoside against Ebola virus, Cytomegalovirus, and Herpes simplex viruses.

19.
Vaccines (Basel) ; 8(2)2020 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-32485935

RESUMEN

Human papillomavirus (HPV)-induced cancers continue to affect millions of women around the world, and the five year survival rate under the current standard of care for these cancers is less than 60% in some demographics. Therefore there is still an unmet need to develop an effective therapy that can be easily administered to treat established HPV cervical cancer lesions. We sought to investigate the potential of an intranasal HPV peptide therapeutic vaccine incorporating the combination of α-Galactosylceramide (α-GalCer) and CpG-ODN adjuvants (TVAC) against established HPV genital tumors in a syngeneic C57BL/6J mouse model. We obtained evidence to show that TVAC, delivered by the mucosal intranasal route, induced high frequencies of antigen-specific CD8 T cells concurrent with significant reduction in the immunosuppressive regulatory T cells and myeloid derived suppressor cells in the tumor microenvironment (TME), correlating with sustained elimination of established HPV genital tumors in over 85% of mice. Inclusion of both the adjuvants in the vaccine was necessary for significant increase of antigen-specific CD8 T cells to the tumor and antitumor efficacy because vaccination incorporating either adjuvant alone was inefficient. These results strongly support the utility of the TVAC administered by needle-free intranasal route as a safe and effective strategy for the treatment of established genital HPV tumors.

20.
bioRxiv ; 2020 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-32699848

RESUMEN

With continued expansion of the COVID-19 pandemic, antiviral drugs are desperately needed to treat patients at high risk of life-threatening disease and even to limit spread if administered early during infection. Typically, the fastest route to identifying and licensing a safe and effective antiviral drug is to test those already shown safe in early clinical trials for other infections or diseases. Here, we tested in vitro oleandrin, derived from the Nerium oleander plant and shown previously to have inhibitory activity against several viruses. Using Vero cells, we found that prophylactic oleandrin administration at concentrations down to 0.05 µg/ml exhibited potent antiviral activity against SARS-CoV-2, with an 800-fold reduction in virus production, and a 0.1 µg/ml dose resulted in a greater than 3,000-fold reduction in infectious virus production. The EC 50 values were 11.98ng/ml when virus output was measured at 24 hours post-infection, and 7.07ng/ml measured at 48 hours post-infection. Therapeutic (post-infection) treatment up to 24 hours after infection of Vero cells also reduced viral titers, with the 0.1 µg/ml dose causing greater than 100-fold reductions as measured at 48 hours, and the 0.05 µg/ml dose resulting in a 78-fold reduction. The potent prophylactic and therapeutic antiviral activities demonstrated here strongly support the further development of oleandrin to reduce the severity of COVID-19 and potentially also to reduce spread by persons diagnosed early after infection. IMPORTANCE: COVID-19, a pandemic disease caused by infection with SARS-CoV-2, has swept around the world to cause millions of infections and hundreds-of-thousands of deaths due to the lack of vaccines and effective therapeutics. We tested oleandrin, derived from the Nerium oleander plant and shown previously to reduce the replication of several viruses, against SARS-CoV-2 infection of Vero cells. When administered both before and after virus infection, nanogram doses of oleandrin significantly inhibited replication by up to 3,000-fold, indicating the potential to prevent disease and virus spread in persons recently exposed to SARS-CoV-2, as well as to prevent severe disease in persons at high risk. These results indicate that oleandrin should be tested in animal models and in humans exposed to infection to determine its medical usefulness in controlling the pandemic.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA