Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Cerebellum ; 22(5): 905-914, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36053392

RESUMEN

Cerebellar transcranial direct current stimulation (ctDCS) modulates the primary motor cortex (M1) via cerebellar brain inhibition (CBI), which affects motor control in humans. However, the effects of ctDCS on motor control are inconsistent because of an incomplete understanding of the real-time changes in the M1 excitability that occur during ctDCS, which determines motor output under regulation by the cerebellum. This study investigated changes in corticospinal excitability and motor control during ctDCS in healthy individuals. In total, 37 healthy individuals participated in three separate experiments. ctDCS (2 mA) was applied to the cerebellar hemisphere during the rest condition or a pinch force-tracking task. Motor-evoked potential (MEP) amplitude and the F-wave were assessed before, during, and after ctDCS, and pinch force control was assessed before and during ctDCS. The MEP amplitudes were significantly decreased during anodal ctDCS from 13 min after the onset of stimulation, whereas the F-wave was not changed. No significant changes in MEP amplitudes were observed during cathodal and sham ctDCS conditions. The MEP amplitudes were decreased during anodal ctDCS when combined with the pinch force-tracking task, and pinch force control was impaired during anodal ctDCS relative to sham ctDCS. The MEP amplitudes were not significantly changed before and after all ctDCS conditions. Motor cortical excitability was suppressed during anodal ctDCS, and motor control was unskilled during anodal ctDCS when combined with a motor task in healthy individuals. Our findings provided a basic understanding of the clinical application of ctDCS to neurorehabilitation.


Asunto(s)
Estimulación Transcraneal de Corriente Directa , Humanos , Cerebelo/fisiología , Potenciales Evocados Motores , Electrodos , Estimulación Magnética Transcraneal
2.
Microbiology (Reading) ; 163(7): 1071-1080, 2017 07.
Artículo en Inglés | MEDLINE | ID: mdl-28691662

RESUMEN

The Rcs phosphorelay signal transduction system of Escherichia coli controls genes for capsule production and many other envelope-related functions and is implicated in biofilm formation. The outer-membrane lipoprotein RcsF is an essential component of the Rcs system. Mislocalization of RcsF to the periplasm or the cytoplasmic membrane leads to high activation of the Rcs system, suggesting that RcsF functions by interacting with the cytoplasmic membrane component(s) of the system in activating the system. This is consistent with the result reported by Cho et al. (Cell159, 1652-1664, 2014) showing that RcsF interacts with the periplasmic domain (YrfFperi) of the inner-membrane protein YrfF (IgaA in Salmonella enterica serovar Typhimurium), which is a negative regulator of the Rcs system. In this study we show that RcsF also interacts with the periplasmic domain of the innermembrane-localized histidine kinase RcsC (RcsCperi). RcsCperi, which was secreted to the periplasm by fusion to maltose-binding protein, titrated RcsF's activating effect. A bimolecular fluorescence complementation experiment showed interaction of RcsF with RcsCperi, as well as with YrfFperi. We conclude that RcsF interacts with the periplasmically exposed region of RcsC, as well as with that of YrfF.


Asunto(s)
Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Histidina Quinasa/metabolismo , Lipoproteínas/metabolismo , Complejos Multienzimáticos/metabolismo , Fosfoproteínas Fosfatasas/metabolismo , Proteínas Quinasas/metabolismo , Transducción de Señal , Escherichia coli/enzimología , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Regulación Bacteriana de la Expresión Génica , Histidina Quinasa/genética , Lipoproteínas/genética , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Complejos Multienzimáticos/genética , Fosfoproteínas Fosfatasas/genética , Unión Proteica , Proteínas Quinasas/genética
3.
Front Neurosci ; 18: 1362607, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39010941

RESUMEN

Introduction: The conventional method of placing transcranial direct current stimulation (tDCS) electrodes is just above the target brain area. However, this strategy for electrode placement often fails to improve motor function and modulate cortical excitability. We investigated the effects of optimized electrode placement to induce maximum electrical fields in the leg regions of both M1 and SMA, estimated by electric field simulations in the T1and T2-weighted MRI-based anatomical models, on motor performance and cortical excitability in healthy individuals. Methods: A total of 36 healthy volunteers participated in this randomized, triple-blind, sham-controlled experiment. They were stratified by sex and were randomly assigned to one of three groups according to the stimulation paradigm, including tDCS with (1) anodal and cathodal electrodes positioned over FCz and POz, respectively, (A-P tDCS), (2) anodal and cathodal electrodes positioned over POz and FCz, respectively, (P-A tDCS), and (3) sham tDCS. The sit-to-stand training following tDCS (2 mA, 10 min) was conducted every 3 or 4 days over 3 weeks (5 sessions total). Results: Compared to sham tDCS, A-P tDCS led to significant increases in the number of sit-to-stands after 3 weeks training, whereas P-A tDCS significantly increased knee flexor peak torques after 3 weeks training, and decreased short-interval intracortical inhibition (SICI) immediately after the first session of training and maintained it post-training. Discussion: These results suggest that optimized electrode placement of the maximal EF estimated by electric field simulation enhances motor performance and modulates cortical excitability depending on the direction of current flow.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA