RESUMEN
BACKGROUND: Many patients with heart failure with preserved ejection fraction have metabolic syndrome and develop exercise-induced pulmonary hypertension (EIPH). Increases in pulmonary vascular resistance in patients with heart failure with preserved ejection fraction portend a poor prognosis; this phenotype is referred to as combined precapillary and postcapillary pulmonary hypertension (CpcPH). Therapeutic trials for EIPH and CpcPH have been disappointing, suggesting the need for strategies that target upstream mechanisms of disease. This work reports novel rat EIPH models and mechanisms of pulmonary vascular dysfunction centered around the transcriptional repression of the soluble guanylate cyclase (sGC) enzyme in pulmonary artery (PA) smooth muscle cells. METHODS: We used obese ZSF-1 leptin-receptor knockout rats (heart failure with preserved ejection fraction model), obese ZSF-1 rats treated with SU5416 to stimulate resting pulmonary hypertension (obese+sugen, CpcPH model), and lean ZSF-1 rats (controls). Right and left ventricular hemodynamics were evaluated using implanted catheters during treadmill exercise. PA function was evaluated with magnetic resonance imaging and myography. Overexpression of nuclear factor Y α subunit (NFYA), a transcriptional enhancer of sGC ß1 subunit (sGCß1), was performed by PA delivery of adeno-associated virus 6. Treatment groups received the SGLT2 inhibitor empagliflozin in drinking water. PA smooth muscle cells from rats and humans were cultured with palmitic acid, glucose, and insulin to induce metabolic stress. RESULTS: Obese rats showed normal resting right ventricular systolic pressures, which significantly increased during exercise, modeling EIPH. Obese+sugen rats showed anatomic PA remodeling and developed elevated right ventricular systolic pressure at rest, which was exacerbated with exercise, modeling CpcPH. Myography and magnetic resonance imaging during dobutamine challenge revealed PA functional impairment of both obese groups. PAs of obese rats produced reactive oxygen species and decreased sGCß1 expression. Mechanistically, cultured PA smooth muscle cells from obese rats and humans with diabetes or treated with palmitic acid, glucose, and insulin showed increased mitochondrial reactive oxygen species, which enhanced miR-193b-dependent RNA degradation of nuclear factor Y α subunit (NFYA), resulting in decreased sGCß1-cGMP signaling. Forced NYFA expression by adeno-associated virus 6 delivery increased sGCß1 levels and improved exercise pulmonary hypertension in obese+sugen rats. Treatment of obese+sugen rats with empagliflozin improved metabolic syndrome, reduced mitochondrial reactive oxygen species and miR-193b levels, restored NFYA/sGC activity, and prevented EIPH. CONCLUSIONS: In heart failure with preserved ejection fraction and CpcPH models, metabolic syndrome contributes to pulmonary vascular dysfunction and EIPH through enhanced reactive oxygen species and miR-193b expression, which downregulates NFYA-dependent sGCß1 expression. Adeno-associated virus-mediated NFYA overexpression and SGLT2 inhibition restore NFYA-sGCß1-cGMP signaling and ameliorate EIPH.
Asunto(s)
Factor de Unión a CCAAT/metabolismo , Insuficiencia Cardíaca/etiología , Hipertensión Pulmonar/complicaciones , Hipertensión Pulmonar/etiología , Síndrome Metabólico/genética , Síndrome Metabólico/metabolismo , MicroARNs/genética , Especies Reactivas de Oxígeno/metabolismo , Guanilil Ciclasa Soluble/genética , Animales , Animales Modificados Genéticamente , Biomarcadores , Modelos Animales de Enfermedad , Susceptibilidad a Enfermedades , Ejercicio Físico , Regulación de la Expresión Génica , Insuficiencia Cardíaca/diagnóstico , Humanos , Síndrome Metabólico/complicaciones , Mitocondrias Cardíacas , Miocitos del Músculo Liso/metabolismo , Fenotipo , Ratas , Transducción de Señal , Estrés Fisiológico , Volumen Sistólico , Disfunción Ventricular DerechaRESUMEN
OBJECTIVE: Pulmonary arterial hypertension is characterized by abnormal proliferation of pulmonary artery smooth muscle cells and vascular remodeling, which leads to right ventricular (RV) failure. Bsg (Basigin) is a transmembrane glycoprotein that promotes myofibroblast differentiation, cell proliferation, and matrix metalloproteinase activation. CyPA (cyclophilin A) binds to its receptor Bsg and promotes pulmonary artery smooth muscle cell proliferation and inflammatory cell recruitment. We previously reported that Bsg promotes cardiac fibrosis and failure in the left ventricle in response to pressure-overload in mice. However, the roles of Bsg and CyPA in RV failure remain to be elucidated. Approach and Results: First, we found that protein levels of Bsg and CyPA were upregulated in the heart of hypoxia-induced pulmonary hypertension (PH) in mice and monocrotaline-induced PH in rats. Furthermore, cardiomyocyte-specific Bsg-overexpressing mice showed exacerbated RV hypertrophy, fibrosis, and dysfunction compared with their littermates under chronic hypoxia and pulmonary artery banding. Treatment with celastrol, which we identified as a suppressor of Bsg and CyPA by drug screening, decreased proliferation, reactive oxygen species, and inflammatory cytokines in pulmonary artery smooth muscle cells. Furthermore, celastrol treatment ameliorated RV systolic pressure, hypertrophy, fibrosis, and dysfunction in hypoxia-induced PH in mice and SU5416/hypoxia-induced PH in rats with reduced Bsg, CyPA, and inflammatory cytokines in the hearts and lungs. CONCLUSIONS: These results indicate that elevated Bsg in pressure-overloaded RV exacerbates RV dysfunction and that celastrol ameliorates RV dysfunction in PH model animals by suppressing Bsg and its ligand CyPA. Thus, celastrol can be a novel drug for PH and RV failure that targets Bsg and CyPA. Graphic Abstract: A graphic abstract is available for this article.
Asunto(s)
Basigina/antagonistas & inhibidores , Ciclofilina A/antagonistas & inhibidores , Hipertensión Arterial Pulmonar/tratamiento farmacológico , Triterpenos/uso terapéutico , Disfunción Ventricular Derecha/tratamiento farmacológico , Animales , Antihipertensivos/uso terapéutico , Basigina/genética , Basigina/metabolismo , Ciclofilina A/metabolismo , Modelos Animales de Enfermedad , Humanos , Hipoxia/complicaciones , Indoles/toxicidad , Ratones , Ratones Transgénicos , Miocitos Cardíacos/metabolismo , Triterpenos Pentacíclicos , Hipertensión Arterial Pulmonar/patología , Hipertensión Arterial Pulmonar/fisiopatología , Pirroles/toxicidad , Ratas , Disfunción Ventricular Derecha/patología , Disfunción Ventricular Derecha/fisiopatologíaRESUMEN
RATIONALE: Pulmonary arterial hypertension (PAH) is characterized by pulmonary vascular remodeling with aberrant pulmonary artery smooth muscle cells (PASMCs) proliferation, endothelial dysfunction, and extracellular matrix remodeling. OBJECTIVE: Right ventricular (RV) failure is an important prognostic factor in PAH. Thus, we need to elucidate a novel therapeutic target in both PAH and RV failure. METHODS AND RESULTS: We performed microarray analysis in PASMCs from patients with PAH (PAH-PASMCs) and controls. We found a ADAMTS8 (disintegrin and metalloproteinase with thrombospondin motifs 8), a secreted protein specifically expressed in the lung and the heart, was upregulated in PAH-PASMCs and the lung in hypoxia-induced pulmonary hypertension (PH) in mice. To elucidate the role of ADAMTS8 in PH, we used vascular smooth muscle cell-specific ADAMTS8-knockout mice (ADAMTSΔSM22). Hypoxia-induced PH was attenuated in ADAMTSΔSM22 mice compared with controls. ADAMTS8 overexpression increased PASMC proliferation with downregulation of AMPK (AMP-activated protein kinase). In contrast, deletion of ADAMTS8 reduced PASMC proliferation with AMPK upregulation. Moreover, deletion of ADAMTS8 reduced mitochondrial fragmentation under hypoxia in vivo and in vitro. Indeed, PASMCs harvested from ADAMTSΔSM22 mice demonstrated that phosphorylated DRP-1 (dynamin-related protein 1) at Ser637 was significantly upregulated with higher expression of profusion genes (Mfn1 and Mfn2) and improved mitochondrial function. Moreover, recombinant ADAMTS8 induced endothelial dysfunction and matrix metalloproteinase activation in an autocrine/paracrine manner. Next, to elucidate the role of ADAMTS8 in RV function, we developed a cardiomyocyte-specific ADAMTS8 knockout mice (ADAMTS8ΔαMHC). ADAMTS8ΔαMHC mice showed ameliorated RV failure in response to chronic hypoxia. In addition, ADAMTS8ΔαMHC mice showed enhanced angiogenesis and reduced RV ischemia and fibrosis. Finally, high-throughput screening revealed that mebendazole, which is used for treatment of parasite infections, reduced ADAMTS8 expression and cell proliferation in PAH-PASMCs and ameliorated PH and RV failure in PH rodent models. CONCLUSIONS: These results indicate that ADAMTS8 is a novel therapeutic target in PAH.
Asunto(s)
Proteínas ADAMTS/deficiencia , Insuficiencia Cardíaca/metabolismo , Hipertensión Arterial Pulmonar/metabolismo , Disfunción Ventricular Derecha/metabolismo , Proteínas ADAMTS/antagonistas & inhibidores , Proteínas ADAMTS/genética , Adulto , Animales , Células Cultivadas , Sistemas de Liberación de Medicamentos/tendencias , Femenino , Insuficiencia Cardíaca/tratamiento farmacológico , Insuficiencia Cardíaca/patología , Humanos , Masculino , Mebendazol/administración & dosificación , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/patología , Hipertensión Arterial Pulmonar/tratamiento farmacológico , Hipertensión Arterial Pulmonar/patología , Distribución Aleatoria , Disfunción Ventricular Derecha/tratamiento farmacológico , Disfunción Ventricular Derecha/patologíaRESUMEN
RATIONALE: Pulmonary arterial hypertension (PAH) is characterized by enhanced proliferation of pulmonary artery smooth muscle cells (PASMCs) accompanying increased production of inflammatory factors and adaptation of the mitochondrial metabolism to a hyperproliferative state. However, all the drugs in clinical use target pulmonary vascular dilatation, which may not be effective for patients with advanced PAH. OBJECTIVE: We aimed to discover a novel drug for PAH that inhibits PASMC proliferation. METHODS AND RESULTS: We screened 5562 compounds from original library using high-throughput screening system to discover compounds which inhibit proliferation of PASMCs from patients with PAH (PAH-PASMCs). We found that celastramycin, a benzoyl pyrrole-type compound originally found in a bacteria extract, inhibited the proliferation of PAH-PASMCs in a dose-dependent manner with relatively small effects on PASMCs from healthy donors. Then, we made 25 analogs of celastramycin and selected the lead compound, which significantly inhibited cell proliferation of PAH-PASMCs and reduced cytosolic reactive oxygen species levels. Mechanistic analysis demonstrated that celastramycin reduced the protein levels of HIF-1α (hypoxia-inducible factor 1α), which impairs aerobic metabolism, and κB (nuclear factor-κB), which induces proinflammatory signals, in PAH-PASMCs, leading to reduced secretion of inflammatory cytokine. Importantly, celastramycin treatment reduced reactive oxygen species levels in PAH-PASMCs with increased protein levels of Nrf2 (nuclear factor erythroid 2-related factor 2), a master regulator of cellular response against oxidative stress. Furthermore, celastramycin treatment improved mitochondrial energy metabolism with recovered mitochondrial network formation in PAH-PASMCs. Moreover, these celastramycin-mediated effects were regulated by ZFC3H1 (zinc finger C3H1 domain-containing protein), a binding partner of celastramycin. Finally, celastramycin treatment ameliorated pulmonary hypertension in 3 experimental animal models, accompanied by reduced inflammatory changes in the lungs. CONCLUSIONS: These results indicate that celastramycin ameliorates pulmonary hypertension, reducing excessive proliferation of PAH-PASMCs with less inflammation and reactive oxygen species levels, and recovered mitochondrial energy metabolism. Thus, celastramycin is a novel drug for PAH that targets antiproliferative effects on PAH-PASMCs.
Asunto(s)
Miocitos del Músculo Liso/efectos de los fármacos , Naftoquinonas/farmacología , Hipertensión Arterial Pulmonar/tratamiento farmacológico , Pirroles/farmacología , Resorcinoles/farmacología , Animales , Células Cultivadas , Citocinas/biosíntesis , Modelos Animales de Enfermedad , Evaluación Preclínica de Medicamentos , Metabolismo Energético/efectos de los fármacos , Ensayos Analíticos de Alto Rendimiento , Humanos , Hipoxia/complicaciones , Subunidad alfa del Factor 1 Inducible por Hipoxia/biosíntesis , Indoles/toxicidad , Masculino , Metaboloma/efectos de los fármacos , Ratones , Mitocondrias/efectos de los fármacos , Monocrotalina/toxicidad , Músculo Liso Vascular/citología , Miocitos del Músculo Liso/metabolismo , Factor 2 Relacionado con NF-E2/metabolismo , FN-kappa B/biosíntesis , Naftoquinonas/uso terapéutico , Estrés Oxidativo , Hipertensión Arterial Pulmonar/inducido químicamente , Arteria Pulmonar/citología , Pirroles/uso terapéutico , Pirroles/toxicidad , Ratas , Especies Reactivas de Oxígeno/metabolismo , Resorcinoles/uso terapéutico , Factores de Transcripción/fisiologíaRESUMEN
OBJECTIVE: Pulmonary hypertension (PH) due to left heart disease (group 2), especially in the setting of heart failure with preserved ejection fraction (HFpEF), is the most common cause of PH worldwide; however, at present, there is no proven effective therapy available for its treatment. PH-HFpEF is associated with insulin resistance and features of metabolic syndrome. The stable prostacyclin analog, treprostinil, is an effective and widely used Food and Drug Administration-approved drug for the treatment of pulmonary arterial hypertension. While the effect of treprostinil on metabolic syndrome is unknown, a recent study suggests that the prostacyclin analog beraprost can improve glucose intolerance and insulin sensitivity. We sought to evaluate the effectiveness of treprostinil in the treatment of metabolic syndrome-associated PH-HFpEF. Approach and Results: Treprostinil treatment was given to mice with mild metabolic syndrome-associated PH-HFpEF induced by high-fat diet and to SU5416/obese ZSF1 rats, a model created by the treatment of rats with a more profound metabolic syndrome due to double leptin receptor defect (obese ZSF1) with a vascular endothelial growth factor receptor blocker SU5416. In high-fat diet-exposed mice, chronic treatment with treprostinil reduced hyperglycemia and pulmonary hypertension. In SU5416/Obese ZSF1 rats, treprostinil improved hyperglycemia with similar efficacy to that of metformin (a first-line drug for type 2 diabetes mellitus); the glucose-lowering effect of treprostinil was further potentiated by the combined treatment with metformin. Early treatment with treprostinil in SU5416/Obese ZSF1 rats lowered pulmonary pressures, and a late treatment with treprostinil together with metformin improved pulmonary artery acceleration time to ejection time ratio and tricuspid annular plane systolic excursion with AMPK (AMP-activated protein kinase) activation in skeletal muscle and the right ventricle. CONCLUSIONS: Our data suggest a potential use of treprostinil as an early treatment for mild metabolic syndrome-associated PH-HFpEF and that combined treatment with treprostinil and metformin may improve hyperglycemia and cardiac function in a more severe disease.
Asunto(s)
Epoprostenol/análogos & derivados , Insuficiencia Cardíaca/complicaciones , Hiperglucemia/tratamiento farmacológico , Hipertensión Pulmonar/tratamiento farmacológico , Metformina/uso terapéutico , Volumen Sistólico/fisiología , Proteínas Quinasas Activadas por AMP/efectos de los fármacos , Proteínas Quinasas Activadas por AMP/fisiología , Animales , Antihipertensivos , Dieta Alta en Grasa , Epoprostenol/uso terapéutico , Corazón/efectos de los fármacos , Corazón/fisiopatología , Insuficiencia Cardíaca/tratamiento farmacológico , Insuficiencia Cardíaca/fisiopatología , Hipertensión Pulmonar/etiología , Hipertensión Pulmonar/fisiopatología , Hipoglucemiantes , Resistencia a la Insulina , Masculino , Síndrome Metabólico , Ratones , Ratones Endogámicos C57BL , Obesidad/etiología , Obesidad/fisiopatología , Ratas , Receptores de Leptina/genéticaRESUMEN
Although postcapillary pulmonary hypertension (PH) is an important prognostic factor for patients with heart failure (HF), its pathogenesis remains to be fully elucidated. To elucidate the different roles of Rho-kinase isoforms, ROCK1 and ROCK2, in cardiomyocytes in response to chronic pressure overload, we performed transverse aortic constriction (TAC) in cardiac-specific ROCK1-deficient (cROCK1-/-) and ROCK2-deficient (cROCK2-/-) mice. Cardiomyocyte-specific ROCK1 deficiency promoted pressure-overload-induced cardiac dysfunction and postcapillary PH, whereas cardiomyocyte-specific ROCK2 deficiency showed opposite results. Histological analysis showed that pressure-overload-induced cardiac hypertrophy and fibrosis were enhanced in cROCK1-/- mice compared with controls, whereas cardiac hypertrophy was attenuated in cROCK2-/- mice after TAC. Consistently, the levels of oxidative stress were up-regulated in cROCK1-/- hearts and down-regulated in cROCK2-/- hearts compared with controls after TAC. Furthermore, cyclophilin A (CyPA) and basigin (Bsg), both of which augment oxidative stress, enhanced cardiac dysfunction and postcapillary PH in cROCK1-/- mice, whereas their expressions were significantly lower in cROCK2-/- mice. In clinical studies, plasma levels of CyPA were significantly increased in HF patients and were higher in patients with postcapillary PH compared with those without it. Finally, high-throughput screening demonstrated that celastrol, an antioxidant and antiinflammatory agent, reduced the expressions of CyPA and Bsg in the heart and the lung, ameliorating cardiac dysfunction and postcapillary PH induced by TAC. Thus, by differentially affecting CyPA and Bsg expressions, ROCK1 protects and ROCK2 jeopardizes the heart from pressure-overload HF with postcapillary PH, for which celastrol may be a promising agent.
Asunto(s)
Cardiomegalia/metabolismo , Insuficiencia Cardíaca/metabolismo , Hipertensión Pulmonar/metabolismo , Pulmón/metabolismo , Miocardio/metabolismo , Quinasas Asociadas a rho/metabolismo , Animales , Basigina/biosíntesis , Basigina/genética , Cardiomegalia/genética , Cardiomegalia/patología , Ciclofilina A/biosíntesis , Insuficiencia Cardíaca/genética , Insuficiencia Cardíaca/patología , Hipertensión Pulmonar/genética , Hipertensión Pulmonar/patología , Pulmón/patología , Ratones , Ratones Noqueados , Miocardio/patología , Quinasas Asociadas a rho/genéticaRESUMEN
BACKGROUND: Deficiencies of iron-sulfur (Fe-S) clusters, metal complexes that control redox state and mitochondrial metabolism, have been linked to pulmonary hypertension (PH), a deadly vascular disease with poorly defined molecular origins. BOLA3 (BolA Family Member 3) regulates Fe-S biogenesis, and mutations in BOLA3 result in multiple mitochondrial dysfunction syndrome, a fatal disorder associated with PH. The mechanistic role of BOLA3 in PH remains undefined. METHODS: In vitro assessment of BOLA3 regulation and gain- and loss-of-function assays were performed in human pulmonary artery endothelial cells using siRNA and lentiviral vectors expressing the mitochondrial isoform of BOLA3. Polymeric nanoparticle 7C1 was used for lung endothelium-specific delivery of BOLA3 siRNA oligonucleotides in mice. Overexpression of pulmonary vascular BOLA3 was performed by orotracheal transgene delivery of adeno-associated virus in mouse models of PH. RESULTS: In cultured hypoxic pulmonary artery endothelial cells, lung from human patients with Group 1 and 3 PH, and multiple rodent models of PH, endothelial BOLA3 expression was downregulated, which involved hypoxia inducible factor-2α-dependent transcriptional repression via histone deacetylase 1-mediated histone deacetylation. In vitro gain- and loss-of-function studies demonstrated that BOLA3 regulated Fe-S integrity, thus modulating lipoate-containing 2-oxoacid dehydrogenases with consequent control over glycolysis and mitochondrial respiration. In contexts of siRNA knockdown and naturally occurring human genetic mutation, cellular BOLA3 deficiency downregulated the glycine cleavage system protein H, thus bolstering intracellular glycine content. In the setting of these alterations of oxidative metabolism and glycine levels, BOLA3 deficiency increased endothelial proliferation, survival, and vasoconstriction while decreasing angiogenic potential. In vivo, pharmacological knockdown of endothelial BOLA3 and targeted overexpression of BOLA3 in mice demonstrated that BOLA3 deficiency promotes histological and hemodynamic manifestations of PH. Notably, the therapeutic effects of BOLA3 expression were reversed by exogenous glycine supplementation. CONCLUSIONS: BOLA3 acts as a crucial lynchpin connecting Fe-S-dependent oxidative respiration and glycine homeostasis with endothelial metabolic reprogramming critical to PH pathogenesis. These results provide a molecular explanation for the clinical associations linking PH with hyperglycinemic syndromes and mitochondrial disorders. These findings also identify novel metabolic targets, including those involved in epigenetics, Fe-S biogenesis, and glycine biology, for diagnostic and therapeutic development.
Asunto(s)
Endotelio Vascular/fisiología , Glicina/metabolismo , Hipertensión Pulmonar/genética , Proteínas Mitocondriales/metabolismo , Adolescente , Adulto , Animales , Respiración de la Célula , Células Cultivadas , Niño , Preescolar , Modelos Animales de Enfermedad , Femenino , Humanos , Hipertensión Pulmonar/metabolismo , Lactante , Proteínas Hierro-Azufre/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Proteínas Mitocondriales/genética , Mutación/genética , Oxidación-Reducción , ARN Interferente Pequeño/genética , Adulto JovenRESUMEN
OBJECTIVE: Excessive proliferation and apoptosis resistance are special characteristics of pulmonary artery smooth muscle cells (PASMCs) in pulmonary arterial hypertension (PAH). However, the drugs in clinical use for PAH target vascular dilatation, which do not exert adequate effects in patients with advanced PAH. Here, we report a novel therapeutic effect of emetine, a principal alkaloid extracted from the root of ipecac clinically used as an emetic and antiprotozoal drug. Approach and Results: We performed stepwise screenings for 5562 compounds from original library. First, we performed high-throughput screening with PASMCs from patients with PAH (PAH-PASMCs) and found 80 compounds that effectively inhibited proliferation. Second, we performed the repeatability and counter assay. Finally, we performed a concentration-dependent assay and found that emetine inhibits PAH-PASMC proliferation. Interestingly, emetine significantly reduced protein levels of HIFs (hypoxia-inducible factors; HIF-1α and HIF-2α) and downstream PDK1 (pyruvate dehydrogenase kinase 1). Moreover, emetine significantly reduced the protein levels of RhoA (Ras homolog gene family, member A), Rho-kinases (ROCK1 and ROCK2 [rho-associated coiled-coil containing protein kinases 1 and 2]), and their downstream CyPA (cyclophilin A), and Bsg (basigin) in PAH-PASMCs. Consistently, emetine treatment significantly reduced the secretion of cytokines/chemokines and growth factors from PAH-PASMCs. Interestingly, emetine reduced protein levels of BRD4 (bromodomain-containing protein 4) and downstream survivin, both of which are involved in many cellular functions, such as cell cycle, apoptosis, and inflammation. Finally, emetine treatment ameliorated pulmonary hypertension in 2 experimental rat models, accompanied by reduced inflammatory changes in the lungs and recovered right ventricular functions. CONCLUSIONS: Emetine is an old but novel drug for PAH that reduces excessive proliferation of PAH-PASMCs and improves right ventricular functions.
Asunto(s)
Antihipertensivos/farmacología , Antihipertensivos/uso terapéutico , Proliferación Celular/efectos de los fármacos , Emetina/farmacología , Emetina/uso terapéutico , Hipertensión Pulmonar/tratamiento farmacológico , Músculo Liso Vascular/efectos de los fármacos , Animales , Basigina/metabolismo , Proteínas Sanguíneas/metabolismo , Ciclofilina A/metabolismo , Modelos Animales de Enfermedad , Relación Dosis-Respuesta a Droga , Regulación hacia Abajo , Descubrimiento de Drogas , Ensayos Analíticos de Alto Rendimiento , Humanos , Hipertensión Pulmonar/fisiopatología , Masculino , Mitocondrias Musculares/metabolismo , Miocitos del Músculo Liso/efectos de los fármacos , Arteria Pulmonar , Ratas Sprague-Dawley , Transducción de Señal/efectos de los fármacos , Quinasas Asociadas a rho/metabolismoRESUMEN
OBJECTIVE: Despite the recent progress in upfront combination therapy for pulmonary arterial hypertension (PAH), useful biomarkers for the disorder still remain to be developed. SeP (Selenoprotein P) is a glycoprotein secreted from various kinds of cells including pulmonary artery smooth muscle cells to maintain cellular metabolism. We have recently demonstrated that SeP production from pulmonary artery smooth muscle cells is upregulated and plays crucial roles in the pathogenesis of PAH. However, it remains to be elucidated whether serum SeP levels could be a useful biomarker for PAH. Approach and Results: We measured serum SeP levels and evaluated their prognostic impacts in 65 consecutive patients with PAH and 20 controls during follow-up (mean, 1520 days; interquartile range, 1393-1804 days). Serum SeP levels were measured using a newly developed sol particle homogeneous immunoassay. The patients with PAH showed significantly higher serum SeP levels compared with controls. Higher SeP levels (cutoff point, 3.47 mg/L) were associated with the outcome (composite end point of all-cause death and lung transplantation) in patients with PAH (hazard ratio, 4.85 [1.42-16.6]; P<0.01). Importantly, we found that the absolute change in SeP of patients with PAH (ΔSeP) in response to the initiation of PAH-specific therapy significantly correlated with the absolute change in mean pulmonary artery pressure, pulmonary vascular resistance (ΔPVR), and cardiac index (ΔCI; R=0.78, 0.76, and -0.71 respectively, all P<0.0001). Moreover, increase in ΔSeP during the follow-up predicted poor outcome of PAH. CONCLUSIONS: Serum SeP is a novel biomarker for diagnosis and assessment of treatment efficacy and long-term prognosis in patients with PAH.
Asunto(s)
Hipertensión Pulmonar/diagnóstico , Arteria Pulmonar/fisiopatología , Selenoproteína P/sangre , Resistencia Vascular/fisiología , Biomarcadores/sangre , Cateterismo Cardíaco , Femenino , Estudios de Seguimiento , Humanos , Hipertensión Pulmonar/sangre , Hipertensión Pulmonar/fisiopatología , Inmunoensayo , Masculino , Persona de Mediana Edad , PronósticoRESUMEN
BACKGROUND: Thoracic aortic aneurysm (TAA) and dissection are fatal diseases that cause aortic rupture and sudden death. The small GTP-binding protein GDP dissociation stimulator (SmgGDS) is a crucial mediator of the pleiotropic effects of statins. Previous studies revealed that reduced force generation in aortic smooth muscle cells (AoSMCs) causes TAA and thoracic aortic dissection. METHODS: To examine the role of SmgGDS in TAA formation, we used an angiotensin II (1000 ng·min-1·kg-1, 4 weeks)-induced TAA model. RESULTS: We found that 33% of Apoe-/- SmgGDS+/- mice died suddenly as a result of TAA rupture, whereas there was no TAA rupture in Apoe-/- control mice. In contrast, there was no significant difference in the ratio of abdominal aortic aneurysm rupture between the 2 genotypes. We performed ultrasound imaging every week to follow up the serial changes in aortic diameters. The diameter of the ascending aorta progressively increased in Apoe-/- SmgGDS+/- mice compared with Apoe-/- mice, whereas that of the abdominal aorta remained comparable between the 2 genotypes. Histological analysis of Apoe-/- SmgGDS+/- mice showed dissections of major thoracic aorta in the early phase of angiotensin II infusion (day 3 to 5) and more severe elastin degradation compared with Apoe-/- mice. Mechanistically, Apoe-/- SmgGDS+/- mice showed significantly higher levels of oxidative stress, matrix metalloproteinases, and inflammatory cell migration in the ascending aorta compared with Apoe-/- mice. For mechanistic analyses, we primary cultured AoSMCs from the 2 genotypes. After angiotensin II (100 nmol/L) treatment for 24 hours, Apoe-/- SmgGDS+/- AoSMCs showed significantly increased matrix metalloproteinase activity and oxidative stress levels compared with Apoe-/- AoSMCs. In addition, SmgGDS deficiency increased cytokines/chemokines and growth factors in AoSMCs. Moreover, expressions of fibrillin-1 ( FBN1), α-smooth muscle actin ( ACTA2), myosin-11 ( MYH11), MYLLK, and PRKG1, which are force generation genes, were significantly reduced in Apoe-/- SmgGDS+/- AoSMCs compared with Apoe-/- AoSMCs. A similar tendency was noted in AoSMCs from patients with TAA compared with those from control subjects. Finally, local delivery of the SmgGDS gene construct reversed the dilation of the ascending aorta in Apoe-/- SmgGDS+/- mice. CONCLUSIONS: These results suggest that SmgGDS is a novel therapeutic target for the prevention and treatment of TAA.
Asunto(s)
Aorta/metabolismo , Aneurisma de la Aorta Torácica/patología , Factores de Intercambio de Guanina Nucleótido/metabolismo , Actinas/genética , Actinas/metabolismo , Angiotensina II/administración & dosificación , Angiotensina II/efectos adversos , Animales , Aorta/citología , Aorta/patología , Aneurisma de la Aorta Torácica/metabolismo , Aneurisma de la Aorta Torácica/prevención & control , Citocinas/genética , Citocinas/metabolismo , Modelos Animales de Enfermedad , Fibrilina-1/genética , Fibrilina-1/metabolismo , Factores de Intercambio de Guanina Nucleótido/deficiencia , Factores de Intercambio de Guanina Nucleótido/genética , Humanos , Metaloproteinasas de la Matriz/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Miocitos del Músculo Liso/citología , Miocitos del Músculo Liso/metabolismo , Estrés Oxidativo , Especies Reactivas de Oxígeno/metabolismo , Proteína Smad4/genética , Proteína Smad4/metabolismo , Proteína de Unión al GTP rhoA/genéticaRESUMEN
BACKGROUND: Excessive proliferation and apoptosis resistance of pulmonary artery smooth muscle cells (PASMCs) are key mechanisms of pulmonary arterial hypertension (PAH). Despite the multiple combination therapy, a considerable number of patients develop severe pulmonary hypertension (PH) because of the lack of diagnostic biomarker and antiproliferative therapies for PASMCs. METHODS: Microarray analyses were used to identify a novel therapeutic target for PAH. In vitro experiments, including lung and serum samples from patients with PAH, cultured PAH-PASMCs, and high-throughput screening of 3336 low-molecular-weight compounds, were used for mechanistic study and exploring a novel therapeutic agent. Five genetically modified mouse strains, including PASMC-specific selenoprotein P (SeP) knockout mice and PH model rats, were used to study the role of SeP and therapeutic capacity of the compounds for the development of PH in vivo. RESULTS: Microarray analysis revealed a 32-fold increase in SeP in PAH-PASMCs compared with control PASMCs. SeP is a widely expressed extracellular protein maintaining cellular metabolism. Immunoreactivity of SeP was enhanced in the thickened media of pulmonary arteries in PAH. Serum SeP levels were also elevated in patients with PH compared with controls, and high serum SeP predicted poor outcome. SeP-knockout mice ( SeP-/-) exposed to chronic hypoxia showed significantly reduced right ventricular systolic pressure, right ventricular hypertrophy, and pulmonary artery remodeling compared with controls. In contrast, systemic SeP-overexpressing mice showed exacerbation of hypoxia-induced PH. Furthermore, PASMC-specific SeP-/- mice showed reduced hypoxia-induced PH compared with controls, whereas neither liver-specific SeP knockout nor liver-specific SeP-overexpressing mice showed significant differences with controls. Altogether, protein levels of SeP in the lungs were associated with the development of PH. Mechanistic experiments demonstrated that SeP promotes PASMC proliferation and resistance to apoptosis through increased oxidative stress and mitochondrial dysfunction, which were associated with activated hypoxia-inducible factor-1α and dysregulated glutathione metabolism. It is important to note that the high-throughput screening of 3336 compounds identified that sanguinarine, a plant alkaloid with antiproliferative effects, reduced SeP expression and proliferation in PASMCs and ameliorated PH in mice and rats. CONCLUSIONS: These results indicate that SeP promotes the development of PH, suggesting that it is a novel biomarker and therapeutic target of the disorder.
Asunto(s)
Presión Arterial , Hipertensión Pulmonar/etiología , Hipoxia/complicaciones , Músculo Liso Vascular/metabolismo , Miocitos del Músculo Liso/metabolismo , Selenoproteína P/metabolismo , Remodelación Vascular , Animales , Antihipertensivos/farmacología , Apoptosis , Presión Arterial/efectos de los fármacos , Benzofenantridinas/farmacología , Proliferación Celular , Células Cultivadas , Modelos Animales de Enfermedad , Humanos , Hipertensión Pulmonar/metabolismo , Hipertensión Pulmonar/fisiopatología , Hipertensión Pulmonar/prevención & control , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Isoquinolinas/farmacología , Masculino , Ratones Noqueados , Mitocondrias Musculares/metabolismo , Músculo Liso Vascular/efectos de los fármacos , Músculo Liso Vascular/fisiopatología , Miocitos del Músculo Liso/efectos de los fármacos , Estrés Oxidativo , Arteria Pulmonar/metabolismo , Arteria Pulmonar/fisiopatología , Ratas Sprague-Dawley , Transducción de Señal , Remodelación Vascular/efectos de los fármacosRESUMEN
RATIONALE: Pulmonary hypertension is a fatal disease; however, its pathogenesis still remains to be elucidated. Thrombin-activatable fibrinolysis inhibitor (TAFI) is synthesized by the liver and inhibits fibrinolysis. Plasma TAFI levels are significantly increased in chronic thromboembolic pulmonary hypertension (CTEPH) patients. OBJECTIVE: To determine the role of activated TAFI (TAFIa) in the development of CTEPH. METHODS AND RESULTS: Immunostaining showed that TAFI and its binding partner thrombomodulin (TM) were highly expressed in the pulmonary arteries (PAs) and thrombus in patients with CTEPH. Moreover, plasma levels of TAFIa were increased 10-fold in CTEPH patients compared with controls. In mice, chronic hypoxia caused a 25-fold increase in plasma levels of TAFIa with increased plasma levels of thrombin and TM, which led to thrombus formation in PA, vascular remodeling, and pulmonary hypertension. Consistently, plasma clot lysis time was positively correlated with plasma TAFIa levels in mice. Additionally, overexpression of TAFIa caused organized thrombus with multiple obstruction of PA flow and reduced survival rate under hypoxia in mice. Bone marrow transplantation showed that circulating plasma TAFI from the liver, not in the bone marrow, was activated locally in PA endothelial cells through interactions with thrombin and TM. Mechanistic experiments demonstrated that TAFIa increased PA endothelial permeability, smooth muscle cell proliferation, and monocyte/macrophage activation. Importantly, TAFIa inhibitor and peroxisome proliferator-activated receptor-α agonists significantly reduced TAFIa and ameliorated animal models of pulmonary hypertension in mice and rats. CONCLUSIONS: These results indicate that TAFIa could be a novel biomarker and realistic therapeutic target of CTEPH.
Asunto(s)
Presión Arterial , Carboxipeptidasa B2/metabolismo , Hipertensión Pulmonar/etiología , Hígado/metabolismo , Arteria Pulmonar/metabolismo , Tromboembolia/complicaciones , Adulto , Animales , Permeabilidad Capilar , Carboxipeptidasa B2/deficiencia , Carboxipeptidasa B2/genética , Estudios de Casos y Controles , Proliferación Celular , Enfermedad Crónica , Modelos Animales de Enfermedad , Femenino , Células Hep G2 , Humanos , Hipertensión Pulmonar/metabolismo , Hipertensión Pulmonar/fisiopatología , Hipertensión Pulmonar/prevención & control , Hipoxia/complicaciones , Hígado/efectos de los fármacos , Activación de Macrófagos , Masculino , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Ratones Noqueados , Persona de Mediana Edad , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/patología , Músculo Liso Vascular/fisiopatología , Miocitos del Músculo Liso/metabolismo , Miocitos del Músculo Liso/patología , PPAR alfa/agonistas , PPAR alfa/metabolismo , Arteria Pulmonar/patología , Arteria Pulmonar/fisiopatología , Pirimidinas/farmacología , Ratas Sprague-Dawley , Transducción de Señal , Trombina/metabolismo , Tromboembolia/metabolismo , Tromboembolia/fisiopatología , Tromboembolia/prevención & control , Trombomodulina/metabolismo , Transfección , Regulación hacia ArribaRESUMEN
RATIONALE: Endothelial AMP-activated protein kinase (AMPK) plays an important role for vascular homeostasis, and its role is impaired by vascular inflammation. However, the role of endothelial AMPK in the pathogenesis of pulmonary arterial hypertension (PAH) remains to be elucidated. OBJECTIVE: To determine the role of endothelial AMPK in the development of PAH. METHODS AND RESULTS: Immunostaining showed that endothelial AMPK is downregulated in the pulmonary arteries of patients with PAH and hypoxia mouse model of pulmonary hypertension (PH). To elucidate the role of endothelial AMPK in PH, we used endothelial-specific AMPK-knockout mice (eAMPK(-/-)), which were exposed to hypoxia. Under normoxic condition, eAMPK(-/-) mice showed the normal morphology of pulmonary arteries compared with littermate controls (eAMPK(flox/flox)). In contrast, development of hypoxia-induced PH was accelerated in eAMPK(-/-) mice compared with controls. Furthermore, the exacerbation of PH in eAMPK(-/-) mice was accompanied by reduced endothelial function, upregulation of growth factors, and increased proliferation of pulmonary artery smooth muscle cells. Importantly, conditioned medium from endothelial cells promoted pulmonary artery smooth muscle cell proliferation, which was further enhanced by the treatment with AMPK inhibitor. Serum levels of inflammatory cytokines, including tumor necrosis factor-α and interferon-γ were significantly increased in patients with PAH compared with healthy controls. Consistently, endothelial AMPK and cell proliferation were significantly reduced by the treatment with serum from patients with PAH compared with controls. Importantly, long-term treatment with metformin, an AMPK activator, significantly attenuated hypoxia-induced PH in mice. CONCLUSIONS: These results indicate that endothelial AMPK is a novel therapeutic target for the treatment of PAH.
Asunto(s)
Proteínas Quinasas Activadas por AMP/metabolismo , Endotelio Vascular/enzimología , Hipertensión Pulmonar/enzimología , Hipertensión Pulmonar/prevención & control , Hipoxia/enzimología , Hipoxia/prevención & control , Adulto , Anciano , Animales , Células Cultivadas , Activación Enzimática/fisiología , Femenino , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Persona de Mediana EdadRESUMEN
OBJECTIVE: Cyclophilin A (CyPA) is secreted from vascular smooth muscle cells, inflammatory cells, and activated platelets in response to oxidative stress. We have recently demonstrated that plasma CyPA level is a novel biomarker for diagnosing coronary artery disease. However, it remains to be elucidated whether plasma CyPA levels also have a prognostic impact in such patients. APPROACH AND RESULTS: In 511 consecutive patients undergoing diagnostic coronary angiography, we measured the plasma levels of CyPA, high-sensitivity C-reactive protein (hsCRP), and brain natriuretic peptide and evaluated their prognostic impacts during the follow-up (42 months, interquartile range: 25-55 months). Higher CyPA levels (≥12 ng/mL) were significantly associated with all-cause death, rehospitalization, and coronary revascularization. Higher hsCRP levels (≥1 mg/L) were also significantly correlated with the primary end point and all-cause death, but not with rehospitalization or coronary revascularization. Similarly, higher brain natriuretic peptide levels (≥100 pg/mL) were significantly associated with all-cause death and rehospitalization, but not with coronary revascularization. Importantly, the combination of CyPA (≥12 ng/mL) and hsCRP (≥1 mg/L) was more significantly associated with all-cause death (hazard ratio, 21.2; 95% confidence interval, 4.9-92.3,; P<0.001) than CyPA (≥12 ng/mL) or hsCRP (≥1 mg/L) alone. CONCLUSIONS: The results indicate that plasma CyPA levels can be used to predict all-cause death, rehospitalization, and coronary revascularization in patients with coronary artery disease and that when combined with other biomarkers (hsCRP and brain natriuretic peptide levels), the CyPA levels have further enhanced prognostic impacts in those patients.
Asunto(s)
Enfermedad de la Arteria Coronaria/sangre , Ciclofilina A/sangre , Anciano , Biomarcadores/sangre , Proteína C-Reactiva/análisis , Causas de Muerte , Angiografía Coronaria , Enfermedad de la Arteria Coronaria/diagnóstico por imagen , Enfermedad de la Arteria Coronaria/mortalidad , Enfermedad de la Arteria Coronaria/terapia , Femenino , Humanos , Estimación de Kaplan-Meier , Masculino , Persona de Mediana Edad , Revascularización Miocárdica , Péptido Natriurético Encefálico/sangre , Readmisión del Paciente , Fragmentos de Péptidos/sangre , Valor Predictivo de las Pruebas , Pronóstico , Modelos de Riesgos Proporcionales , Retratamiento , Factores de Riesgo , Factores de TiempoRESUMEN
Pulmonary arterial hypertension (PAH) and chronic thromboembolic pulmonary hypertension (CTEPH) are fatal diseases; however, their pathogenesis still remains to be elucidated. We have recently screened novel pathogenic molecules and have performed drug discovery targeting those molecules. Pulmonary artery smooth muscle cells (PASMCs) in patients with PAH (PAH-PASMCs) have high proliferative properties like cancer cells, which leads to thickening and narrowing of distal pulmonary arteries. Thus, we conducted a comprehensive analysis of PAH-PASMCs and lung tissues to search for novel pathogenic proteins. We validated the pathogenic role of the selected proteins by using tissue-specific knockout mice. To confirm its clinical significance, we used patient-derived blood samples to evaluate the potential as a biomarker for diagnosis and prognosis. Finally, we conducted a high throughput screening and found inhibitors for the pathogenic proteins.
Asunto(s)
Sistemas de Liberación de Medicamentos , Hipertensión Pulmonar , Músculo Liso Vascular , Miocitos del Músculo Liso , Arteria Pulmonar , Animales , Humanos , Hipertensión Pulmonar/tratamiento farmacológico , Hipertensión Pulmonar/metabolismo , Hipertensión Pulmonar/patología , Hipertensión Pulmonar/fisiopatología , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/patología , Músculo Liso Vascular/fisiopatología , Miocitos del Músculo Liso/metabolismo , Miocitos del Músculo Liso/patología , Arteria Pulmonar/metabolismo , Arteria Pulmonar/patología , Arteria Pulmonar/fisiopatologíaRESUMEN
OBJECTIVE: The pathogenesis of chronic thromboembolic pulmonary hypertension (CTEPH) remains to be elucidated. Thrombin-activatable fibrinolysis inhibitor (TAFI) inhibits fibrinolysis. It remains to be elucidated whether TAFI is directly involved in the pathogenesis of CTEPH. We examined potential involvement of TAFI in the pathogenesis of CTEPH in humans. APPROACH AND RESULTS: We enrolled 68 consecutive patients undergoing right heart catheterization in our hospital, including those with CTEPH (n=27), those with pulmonary arterial hypertension (n=22), and controls (non-pulmonary hypertension, n=19). Whole blood clot lysis assay showed that the extent of clot remaining after 4 hours was significantly higher in CTEPH compared with pulmonary arterial hypertension or controls (41.9 versus 26.5 and 24.6%, both P<0.01). Moreover, plasma levels of TAFI were significantly higher in CTEPH than in pulmonary arterial hypertension or controls (19.4±4.2 versus 16.1±4.5 or 16.3±3.3 µg/mL, both P<0.05), which remained unchanged even after hemodynamic improvement by percutaneous transluminal pulmonary angioplasty. Furthermore, the extent of clot remaining after 4 hours was significantly improved with CPI-2KR (an inhibitor of activated TAFI) or prostaglandin E1 (an inhibitor of activation of platelets). Importantly, plasma levels of TAFI were significantly correlated with the extent of clot remaining after 4 hours. In addition, the extent of clot remaining after 4 hours was improved with an activated TAFI inhibitor. CONCLUSIONS: These results indicate that plasma levels of TAFI are elevated in patients with CTEPH and are correlated with resistance to clot lysis in those patients.
Asunto(s)
Plaquetas/enzimología , Carboxipeptidasa B2/sangre , Fibrinólisis , Hipertensión Pulmonar/sangre , Embolia Pulmonar/sangre , Adulto , Anciano , Biomarcadores/sangre , Pruebas de Coagulación Sanguínea , Plaquetas/efectos de los fármacos , Carboxipeptidasa B2/antagonistas & inhibidores , Carboxipeptidasa B2/genética , Cateterismo Cardíaco , Estudios de Casos y Controles , Enfermedad Crónica , Femenino , Fibrinólisis/efectos de los fármacos , Frecuencia de los Genes , Humanos , Hipertensión Pulmonar/diagnóstico , Hipertensión Pulmonar/enzimología , Hipertensión Pulmonar/etiología , Masculino , Persona de Mediana Edad , Polimorfismo de Nucleótido Simple , Inhibidores de Proteasas/farmacología , Embolia Pulmonar/complicaciones , Embolia Pulmonar/diagnóstico , Embolia Pulmonar/enzimología , Factores de Tiempo , Regulación hacia ArribaRESUMEN
OBJECTIVE: Basigin (Bsg) is a transmembrane glycoprotein that activates matrix metalloproteinases and promotes inflammation. However, the role of Bsg in the pathogenesis of cardiac hypertrophy and failure remains to be elucidated. We examined the role of Bsg in cardiac hypertrophy and failure in mice and humans. APPROACH AND RESULTS: We performed transverse aortic constriction in Bsg(+/-) and in wild-type mice. Bsg(+/-) mice showed significantly less heart and lung weight and cardiac interstitial fibrosis compared with littermate controls after transverse aortic constriction. Both matrix metalloproteinase activities and oxidative stress in loaded left ventricle were significantly less in Bsg(+/-) mice compared with controls. Echocardiography showed that Bsg(+/-) mice showed less hypertrophy, less left ventricular dilatation, and preserved left ventricular fractional shortening compared with littermate controls after transverse aortic constriction. Consistently, Bsg(+/-) mice showed a significantly improved long-term survival after transverse aortic constriction compared with Bsg(+/+) mice, regardless of the source of bone marrow (Bsg(+/+) or Bsg(+/-)). Conversely, cardiac-specific Bsg-overexpressing mice showed significantly poor survival compared with littermate controls. Next, we isolated cardiac fibroblasts and examined their responses to angiotensin II or mechanical stretch. Both stimuli significantly increased Bsg expression, cytokines/chemokines secretion, and extracellular signal-regulated kinase/Akt/JNK activities in Bsg(+/+) cardiac fibroblasts, all of which were significantly less in Bsg(+/-) cardiac fibroblasts. Consistently, extracellular and intracellular Bsg significantly promoted cardiac fibroblast proliferation. Finally, serum levels of Bsg were significantly elevated in patients with heart failure and predicted poor prognosis. CONCLUSIONS: These results indicate the crucial roles of intracellular and extracellular Bsg in the pathogenesis of cardiac hypertrophy, fibrosis, and failure in mice and humans.
Asunto(s)
Enfermedades de la Aorta/complicaciones , Basigina/metabolismo , Insuficiencia Cardíaca/etiología , Hipertrofia Ventricular Izquierda/etiología , Miocardio/metabolismo , Disfunción Ventricular Izquierda/etiología , Angiotensina II/farmacología , Animales , Animales Recién Nacidos , Enfermedades de la Aorta/genética , Enfermedades de la Aorta/metabolismo , Enfermedades de la Aorta/fisiopatología , Basigina/genética , Proteínas Sanguíneas/metabolismo , Células Cultivadas , Modelos Animales de Enfermedad , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Fibroblastos/efectos de los fármacos , Fibroblastos/metabolismo , Fibroblastos/patología , Fibrosis , Insuficiencia Cardíaca/genética , Insuficiencia Cardíaca/metabolismo , Insuficiencia Cardíaca/patología , Insuficiencia Cardíaca/fisiopatología , Insuficiencia Cardíaca/prevención & control , Hipertrofia Ventricular Izquierda/genética , Hipertrofia Ventricular Izquierda/metabolismo , Hipertrofia Ventricular Izquierda/patología , Hipertrofia Ventricular Izquierda/fisiopatología , Hipertrofia Ventricular Izquierda/prevención & control , Mediadores de Inflamación/metabolismo , Proteínas Quinasas JNK Activadas por Mitógenos/metabolismo , Masculino , Metaloproteinasas de la Matriz/metabolismo , Mecanotransducción Celular , Ratones Noqueados , Miocardio/patología , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/patología , Estrés Oxidativo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Ratas , Ratas Wistar , Factores de Tiempo , Disfunción Ventricular Izquierda/genética , Disfunción Ventricular Izquierda/metabolismo , Disfunción Ventricular Izquierda/patología , Disfunción Ventricular Izquierda/fisiopatología , Disfunción Ventricular Izquierda/prevención & control , Función Ventricular IzquierdaRESUMEN
RATIONALE: Cyclophilin A (CyPA) is secreted from vascular smooth muscle cells (VSMCs) by oxidative stress and promotes VSMC proliferation. However, the role of extracellular CyPA and its receptor Basigin (Bsg, encoded by Bsg) in the pathogenesis of pulmonary hypertension (PH) remains to be elucidated. OBJECTIVE: To determine the role of CyPA/Bsg signaling in the development of PH. METHODS AND RESULTS: In the pulmonary arteries of patients with PH, immunostaining revealed strong expression of CyPA and Bsg. The pulmonary arteries of CyPA(±) and Bsg(±) mice exposed to normoxia did not differ in morphology compared with their littermate controls. In contrast, CyPA(±) and Bsg(±) mice exposed to hypoxia for 4 weeks revealed significantly reduced right ventricular systolic pressure, pulmonary artery remodeling, and right ventricular hypertrophy compared with their littermate controls. These features were unaltered by bone marrow reconstitution. To further evaluate the role of vascular Bsg, we harvested pulmonary VSMCs from Bsg(+/+) and Bsg(±) mice. Proliferation was significantly reduced in Bsg(±) compared with Bsg(+/+) VSMCs. Mechanistic studies demonstrated that Bsg(±) VSMCs revealed reduced extracellular signal-regulated kinase 1/2 activation and less secretion of cytokines/chemokines and growth factors (eg, platelet-derived growth factor-BB). Finally, in the clinical study, plasma CyPA levels in patients with PH were increased in accordance with the severity of pulmonary vascular resistance. Furthermore, event-free curve revealed that high plasma CyPA levels predicted poor outcome in patients with PH. CONCLUSIONS: These results indicate the crucial role of extracellular CyPA and vascular Bsg in the pathogenesis of PH.