RESUMEN
Contaminated marine bathing water has been reported to adversely affect human health. Our data demonstrated a correlation between total endotoxin (lipopolysaccharide; LPS) levels and degree of contamination of marine bathing waters. To assess the potential health implications of LPS present in marine bathing waters, the inflammation-inducing potency of water samples collected at different time points at multiple sampling sites were assessed using a cell culture-based assay. The numbers of fecal indicator bacteria (FIB) were also examined in the same samples. Water samples were used to stimulate two cell culture models: (1) a novel non-transformed continuously growing murine cell line Max Plank Institute (MPI) characteristic of alveolar macrophages and (2) human MonoMac 6 monocyte cell line. The inflammatory potential of the samples was assessed by measuring the release of inflammatory cytokines. The presence of high levels of LPS in contaminated bathing water led to induction of inflammatory response from our in vitro cell-based bioassays suggesting its potential health impact. This finding introduces an in vitro culture assay that reflects the level of LPS in water samples. These observations further promote previous finding that LPS is a reliable surrogate biomarker for fecal contamination of bathing water.
Asunto(s)
Citocinas/inmunología , Lipopolisacáridos/efectos adversos , Macrófagos/microbiología , Agua de Mar/microbiología , Contaminación del Agua/efectos adversos , Animales , Playas , Línea Celular , Inglaterra , Monitoreo del Ambiente , Humanos , Ratones , Microbiología del AguaRESUMEN
The use of total lipopolysaccharide (LPS) as a rapid biomarker for bacterial pollution was investigated at a bathing and surfing beach during the UK bathing season. The levels of faecal indicator bacteria Escherichia coli (E. coli), the Gram-positive enterococci, and organisms commonly associated with faecal material, such as total coliforms and Bacteroides, were culturally monitored over four months to include a period of heavy rainfall and concomitant pollution. Endotoxin measurement was performed using a kinetic Limulus Amebocyte Lysate (LAL) assay and found to correlate well with all indicators. Levels of LPS in excess of 50 Endotoxin Units (EU) mL(-1) were found to correlate with water that was unsuitable for bathing under the current European regulations. Increases in total LPS, mainly from Gram-negative indicator bacteria, are thus a potential real-time, qualitative method for testing bacterial quality of bathing waters.
Asunto(s)
Bacterias/aislamiento & purificación , Playas , Biomarcadores/análisis , Monitoreo del Ambiente/métodos , Heces/microbiología , Lipopolisacáridos/análisis , Agua de Mar/microbiología , Microbiología del Agua , Reino UnidoRESUMEN
BACKGROUND: Water quality testing is vital to protect human health. Current testing relies mainly on culture-based detection of faecal indicator organisms such as Escherichia coli (E.coli). However, bacterial cultures are a slow process, taking 24-48 h and requiring specialised laboratories and trained personnel. Access to such laboratories is often sparse in developing countries and there are many fatalities deriving from poor water quality. Endotoxin is a molecular component of Gram-negative bacterial cell walls and can be used to detect their presence in drinking water. METHOD: The current study used a novel assay (BacterisK) to rapidly detect endotoxin in various water samples and correlate the results with E. coli content measured by culture methods. The data generated by the BacterisK assay are presented as an 'endotoxin risk' (ER). RESULTS: The ER values correlate with E. coli and thus endotoxin can be used as a marker of faecal contamination in water. Moreover, the BacterisK assay provides data in near real-time and can be used in situ allowing water quality testing at different spatial and temporal locations. CONCLUSION: We suggest that BacterisK can be used as a convenient risk assessment tool to assess water quality where results are required quickly or access to laboratories is lacking.
Asunto(s)
Endotoxinas , Calidad del Agua , Humanos , Endotoxinas/análisis , Escherichia coli , Heces/microbiología , Bioensayo , Microbiología del AguaRESUMEN
Biosensors are important devices in clinical diagnostics, food processing, and environmental monitoring for detecting various analytes, especially viruses. These biosensors provide rapid and effective instruments for qualitative and quantitative detection of infectious diseases in real-time. Here, we report the development of biosensors based on various techniques. Additionally, we will explain the mechanisms, advantages, and disadvantages of the most common biosensors that are currently used for viral detection, which could be optical (e.g., surface-enhanced Raman scattering (SERS), Surface plasmon resonance (SPR)) and electrochemical biosensors. Based on that, this review recommends methods for efficient, simple, low-cost, and rapid detection of SARS-CoV-2 (the causative agent of COVID-19) that employ the two types of biosensors depending on attaching hemoglobin ß-chain and binding of specific antibodies with SARS-CoV-2 antigens, respectively.
Asunto(s)
Técnicas Biosensibles/métodos , Prueba de COVID-19/métodos , COVID-19/diagnóstico , Técnicas Biosensibles/instrumentación , COVID-19/virología , Prueba de COVID-19/instrumentación , Técnicas de Laboratorio Clínico/instrumentación , Técnicas de Laboratorio Clínico/métodos , Diseño de Equipo , Humanos , SARS-CoV-2/aislamiento & purificaciónRESUMEN
PURPOSE: The Limulus amebocytelysate (LAL) assay is widely used for the screening of lipopolysaccharide (LPS) in parenteral pharmaceuticals. However, correlation of LPS in Gram-negative bacterial infections by LAL assay has been problematic, partly due to the variable reactivity of different LPS structures. Recombinant factor C (rFC) has allowed the development of a new simple, specific and sensitive LPS detection system (PyroGene). In this work, the potential of the new assay for detecting various LPS structures has been investigated and compared with two LAL-based assays and a human monocyte activity assay. METHODOLOGY: The activity of the various LPS structures has been investigated by PyroGene and two LAL-based assays and a human monocyte activity assay. RESULTS: The rFC assay detected most LPS structures in picogram quantities and the potency of E. coli, B. cepacia, Salmonella smooth and Salmonella R345 LPS was no different when measured with PyroGene or LAL assays. However, the reactivity of K. pneumoniae, S. marcescens, B. pertussis and P. aeruginosa LPS differed significantly between these assays. Importantly, pairwise correlation analysis revealed that only the PyroGene assay produced a significant positive correlation with the release of IL-6 from a monocytic cell line. CONCLUSION: We conclude that the rFC-based assay is a good replacement for conventional LAL assays and as it correlates significantly with IL-6 produced by a human monocyte cell line it could potentially be more useful for detecting LPS in a clinical setting.