Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
Phys Rev Lett ; 126(15): 153401, 2021 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-33929220

RESUMEN

We prepare mixtures of ultracold CaF molecules and Rb atoms in a magnetic trap and study their inelastic collisions. When the atoms are prepared in the spin-stretched state and the molecules in the spin-stretched component of the first rotationally excited state, they collide inelastically with a rate coefficient k_{2}=(6.6±1.5)×10^{-11} cm^{3}/s at temperatures near 100 µK. We attribute this to rotation-changing collisions. When the molecules are in the ground rotational state we see no inelastic loss and set an upper bound on the spin-relaxation rate coefficient of k_{2}<5.8×10^{-12} cm^{3}/s with 95% confidence. We compare these measurements to the results of a single-channel loss model based on quantum defect theory. The comparison suggests a short-range loss parameter close to unity for rotationally excited molecules, but below 0.04 for molecules in the rotational ground state.

2.
Phys Rev Lett ; 124(6): 063001, 2020 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-32109098

RESUMEN

Polar molecules in superpositions of rotational states exhibit long-range dipolar interactions, but maintaining their coherence in a trapped sample is a challenge. We present calculations that show many laser-coolable molecules have convenient rotational transitions that are exceptionally insensitive to magnetic fields. We verify this experimentally for CaF where we find a transition with sensitivity below 5 Hz G^{-1} and use it to demonstrate a rotational coherence time of 6.4(8) ms in a magnetic trap. Simulations suggest it is feasible to extend this to more than 1 s using a smaller cloud in a biased magnetic trap.

3.
Phys Rev Lett ; 123(3): 033202, 2019 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-31386461

RESUMEN

We introduce a scheme for deep laser cooling of molecules based on robust dark states at zero velocity. By simulating this scheme, we show it to be a widely applicable method that can reach the recoil limit or below. We demonstrate and characterize the method experimentally, reaching a temperature of 5.4(7) µK. We solve a general problem of measuring low temperatures for large clouds by rotating the phase-space distribution and then directly imaging the complete velocity distribution. Using the same phase-space rotation method, we rapidly compress the cloud. Applying the cooling method a second time, we compress both the position and velocity distributions.

4.
Phys Rev Lett ; 120(8): 083201, 2018 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-29543030

RESUMEN

We present the properties and advantages of a new magneto-optical trap (MOT) where blue-detuned light drives "type-II" transitions that have dark ground states. Using ^{87}Rb, we reach a radiation-pressure-limited density exceeding 10^{11} cm^{-3} and a temperature below 30 µK. The phase-space density is higher than in normal atomic MOTs and a million times higher than comparable red-detuned type-II MOTs, making the blue-detuned MOT particularly attractive for molecular MOTs, which rely on type-II transitions. The loss of atoms from the trap is dominated by ultracold collisions between Rb atoms. For typical trapping conditions, we measure a loss rate of 1.8(4)×10^{-10} cm^{3} s^{-1}.

5.
Phys Rev Lett ; 120(12): 123201, 2018 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-29694100

RESUMEN

We demonstrate one-dimensional sub-Doppler laser cooling of a beam of YbF molecules to 100 µK. This is a key step towards a measurement of the electron's electric dipole moment using ultracold molecules. We compare the effectiveness of magnetically assisted and polarization-gradient sub-Doppler cooling mechanisms. We model the experiment and find good agreement with our data.

6.
Phys Rev Lett ; 120(16): 163201, 2018 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-29756945

RESUMEN

We demonstrate coherent microwave control of the rotational, hyperfine, and Zeeman states of ultracold CaF molecules, and the magnetic trapping of these molecules in a single, selectable quantum state. We trap about 5×10^{3} molecules for almost 2 s at a temperature of 70(8) µK and a density of 1.2×10^{5} cm^{-3}. We measure the state-specific loss rate due to collisions with background helium.

7.
Nature ; 473(7348): 493-6, 2011 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-21614077

RESUMEN

The electron is predicted to be slightly aspheric, with a distortion characterized by the electric dipole moment (EDM), d(e). No experiment has ever detected this deviation. The standard model of particle physics predicts that d(e) is far too small to detect, being some eleven orders of magnitude smaller than the current experimental sensitivity. However, many extensions to the standard model naturally predict much larger values of d(e) that should be detectable. This makes the search for the electron EDM a powerful way to search for new physics and constrain the possible extensions. In particular, the popular idea that new supersymmetric particles may exist at masses of a few hundred GeV/c(2) (where c is the speed of light) is difficult to reconcile with the absence of an electron EDM at the present limit of sensitivity. The size of the EDM is also intimately related to the question of why the Universe has so little antimatter. If the reason is that some undiscovered particle interaction breaks the symmetry between matter and antimatter, this should result in a measurable EDM in most models of particle physics. Here we use cold polar molecules to measure the electron EDM at the highest level of precision reported so far, providing a constraint on any possible new interactions. We obtain d(e) = (-2.4 ± 5.7(stat) ± 1.5(syst)) × 10(-28)e cm, where e is the charge on the electron, which sets a new upper limit of |d(e)| < 10.5 × 10(-28)e cm with 90 per cent confidence. This result, consistent with zero, indicates that the electron is spherical at this improved level of precision. Our measurement of atto-electronvolt energy shifts in a molecule probes new physics at the tera-electronvolt energy scale.

8.
Phys Chem Chem Phys ; 15(29): 12299-307, 2013 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-23775176

RESUMEN

We present a combined experimental and theoretical study of beam formation from a cryogenic buffer gas cell. Atoms and molecules are loaded into the cell by laser ablation of a target, and are cooled and swept out of the cell by a flow of cold helium. We study the thermalization and flow dynamics inside the cell and measure how the speed, temperature, divergence and extraction efficiency of the beam are influenced by the helium flow. We use a finite element model to simulate the flow dynamics and use the predictions of this model to interpret our experimental results.

9.
Phys Chem Chem Phys ; 13(42): 18991-9, 2011 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-21776450

RESUMEN

We report the Stark deceleration of CaF molecules in the strong-field seeking ground state and in a weak-field seeking component of a rotationally-excited state. We use two types of decelerator, a conventional Stark decelerator for the weak-field seekers and an alternating gradient decelerator for the strong-field seekers, and we compare their relative merits. We also consider the application of laser cooling to increase the phase-space density of decelerated molecules.

10.
Phys Chem Chem Phys ; 13(42): 19013-7, 2011 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-21822518

RESUMEN

The fluorescence spectrum resulting from laser excitation of the A(2)Π(1/2)←X(2)Σ(+) (0,0) band of ytterbium monofluoride, YbF, has been recorded and analyzed to determine the Franck-Condon factors. The measured values are compared with those predicted from Rydberg-Klein-Rees (RKR) potential energy curves. From the fluorescence decay curve the radiative lifetime of the A(2)Π(1/2) state is measured to be 28 ± 2 ns, and the corresponding transition dipole moment is 4.39 ± 0.16 D. The implications for laser cooling YbF are discussed.

11.
Rev Sci Instrum ; 87(11): 115110, 2016 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-27910460

RESUMEN

We describe a parallel pair of high voltage electric field plates designed and constructed to minimise magnetic Johnson noise. They are formed by laminating glass substrates with a commercially available polyimide (Kapton) tape, covered with a thin gold film. Tested in vacuum, the outgassing rate is less than 5 × 10-5 mbar l/s. The plates have been operated at electric fields up to 8.3 kV/cm, when the leakage current is at most a few hundred pA. The design is discussed in the context of a molecular spin precession experiment to measure the permanent electric dipole moment of the electron.

12.
Faraday Discuss ; 142: 37-56; discussion 93-111, 2009.
Artículo en Inglés | MEDLINE | ID: mdl-20151537

RESUMEN

Heavy polar molecules can be used to measure the electric dipole moment of the electron, which is a sensitive probe of physics beyond the Standard Model. The value is determined by measuring the precession of the molecule's spin in a plane perpendicular to an applied electric field. The longer this precession evolves coherently, the higher the precision of the measurement. For molecules in a trap, this coherence time could be very long indeed. We evaluate the sensitivity of an experiment where neutral molecules are trapped electrically, and compare this to an equivalent measurement in a molecular beam. We consider the use of a Stark decelerator to load the trap from a supersonic source, and calculate the deceleration efficiency for YbF molecules in both strong-field seeking and weak-field seeking states. With a 1 s holding time in the trap, the statistical sensitivity could be ten times higher than it is in the beam experiment, and this could improve by a further factor of five if the trap can be loaded from a source of larger emittance. We study some effects due to field inhomogeneity in the trap and find that rotation of the electric field direction, leading to an inhomogeneous geometric phase shift, is the primary obstacle to a sensitive trap-based measurement.

13.
Rev Sci Instrum ; 79(12): 126102, 2008 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-19123593

RESUMEN

A circuit capable of measuring nanoampere currents while floating at voltages up to at least 25kV is described. The circuit relays its output to ground potential via an optical fiber. We particularly emphasize the design and construction techniques, which allow robust operation in the presence of high voltage spikes and discharges.

14.
J Chem Phys ; 126(12): 124314, 2007 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-17411130

RESUMEN

We have developed a source of cold LiH molecules for Stark deceleration and trapping experiments. Lithium metal is ablated from a solid target into a supersonically expanding carrier gas. The translational, rotational, and vibrational temperatures are 0.9+/-0.1, 5.9+/-0.5, and 468+/-17 K, respectively. Although they have not reached thermal equilibrium with the carrier gas, we estimate that 90% of the LiH molecules are in the ground state, X (1)Sigma(+)(v=0,J=0). With a single 7 ns ablation pulse, the number of molecules in the ground state is 4.5+/-1.8 x 10(7) molecules/sr. A second, delayed, ablation pulse produces another LiH beam in a different part of the same gas pulse, thereby almost doubling the signal. A long pulse, lasting 150 micros, can make the beam up to 15 times more intense.

15.
J Chem Phys ; 123(23): 231101, 2005 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-16392903

RESUMEN

We have measured the Stark shift of the A2Pi(1/2)-X2Sigma+ transition in YbF. We use a molecular beam triple resonance method, with two laser transitions acting as pump and probe, assisted by an rf transition that tags a single hyperfine transition of the X state. After subtracting the known ground state Stark shift, we obtain a value of 70.3(1.5) Hz/(V/cm)2 for the static electric polarizability of the state A2Pi(1/2) (J=1/2),f by fitting our data to a purely quadratic Stark shift in the interval 0-5 kV/cm. A more exact analysis that does not assume a perfectly quadratic Stark effect yields the value mu(e)=2.48(3) D for the electric dipole moment of the A2Pi(1/2)(v=0) state.

16.
Phys Rev Lett ; 89(2): 023003, 2002 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-12096992

RESUMEN

The most sensitive measurements of the electron electric dipole moment d(e) have previously been made using heavy atoms. Heavy polar molecules offer a greater sensitivity to d(e) because the interaction energy to be measured is typically 10(3) times larger than in a heavy atom. We have used YbF to make the first measurement of this kind. Together, the large interaction energy and the strong tensor polarizability of the molecule make our experiment essentially free of the systematic errors that currently limit d(e) measurements in atoms. Our first result d(e) = (-0.2+/-3.2)x10(-26)e cm is less sensitive than the best atom measurement but is limited only by counting statistics and demonstrates the power of the method.

17.
Phys Rev Lett ; 92(17): 173002, 2004 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-15169143

RESUMEN

We have decelerated a supersonic beam of 174YbF molecules using a switched sequence of electrostatic field gradients. These molecules are 7 times heavier than any previously decelerated. An alternating gradient structure allows us to decelerate and focus the molecules in their ground state. We show that the decelerator exhibits the axial and transverse stability required to bring the molecules to rest. Our work significantly extends the range of molecules amenable to this powerful method of cooling and trapping.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA