Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Inorg Chem ; 62(21): 8334-8346, 2023 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-37184364

RESUMEN

Due to its presence in the nuclear industry and its strong radiotoxicity, plutonium is an actinide of major interest in the event of internal contamination. To improve the understanding of its mechanisms of transport and accumulation in the body, the complexation of Pu(IV) to the most common protein calcium-binding motif found in cells, the EF-hand motif of calmodulin, was investigated. Visible and X-ray absorption spectroscopies (XAS) in solution made it possible to investigate the speciation of plutonium at physiological pH (pH 7.4) and pH 6 in two variants of the calmodulin Ca-binding site I and using Pu(IV) in different media: carbonate, chloride, or nitrate solutions. Three different species of Pu were identified in the samples, with formation of 1:1 Pu(IV):calmodulin peptide complexes, Pu(IV) reduction, and formation of peptide-mediated Pu(IV) hexanuclear cluster.


Asunto(s)
Plutonio , Plutonio/química , Calmodulina , Oxidación-Reducción , Calcio , Sitios de Unión
2.
Inorg Chem ; 61(50): 20480-20492, 2022 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-36469451

RESUMEN

As an alpha emitter and chemical toxicant, uranium toxicity in living organisms is driven by its molecular interactions. It is therefore essential to identify main determinants of uranium affinity for proteins. Others and we showed that introducing a phosphoryl group in the coordination sphere of uranyl confers a strong affinity of proteins for uranyl. In this work, using calmodulin site 1 as a template, we modulate the structural organization of a metal-binding loop comprising carboxylate and/or carbonyl ligands and reach affinities for uranyl comparable to that provided by introducing a strong phosphoryl ligand. Shortening the metal binding loop of calmodulin site 1 from 12 to 10 amino acids in CaMΔ increases the uranyl-binding affinity by about 2 orders of magnitude to log KpH7 = 9.55 ± 0.11 (KdpH7 = 280 ± 60 pM). Structural analysis by FTIR, XAS, and molecular dynamics simulations suggests an optimized coordination of the CaMΔ-uranyl complex involving bidentate and monodentate carboxylate groups in the uranyl equatorial plane. The main role of this coordination sphere in reaching subnanomolar dissociation constants for uranyl is supported by similar uranyl affinities obtained in a cyclic peptide reproducing CaMΔ binding loop. In addition, CaMΔ presents a uranyl/calcium selectivity of 107 that is even higher in the cyclic peptide.


Asunto(s)
Calmodulina , Uranio , Calmodulina/química , Calmodulina/metabolismo , Uranio/química , Calcio/metabolismo , Ligandos , Ácidos Carboxílicos/química , Péptidos Cíclicos/química
3.
Chemistry ; 23(61): 15505-15517, 2017 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-28869680

RESUMEN

Better understanding of uranyl-protein interactions is a prerequisite to predict uranium chemical toxicity in cells. The EF-hand motif of the calmodulin site I is about thousand times more affine for uranyl than for calcium, and threonine phosphorylation increases the uranyl affinity by two orders of magnitude at pH 7. In this study, we confront X-ray absorption spectroscopy with Fourier transform infrared (FTIR) spectroscopy, time-resolved laser-induced fluorescence spectroscopy (TRLFS), and structural models obtained by molecular dynamics simulations to analyze the uranyl coordination in the native and phosphorylated calmodulin site I. For the native site I, extended X-ray absorption fine structure (EXAFS) data evidence a short U-Oeq distance, in addition to distances compatible with mono- and bidentate coordination by carboxylate groups. Further analysis of uranyl speciation by TRLFS and thorough investigation of the fluorescence decay kinetics strongly support the presence of a hydroxide uranyl ligand. For a phosphorylated site I, the EXAFS and FTIR data support a monodentate uranyl coordination by the phosphoryl group and strong interaction with mono- and bidentate carboxylate ligands. This study confirms the important role of a phosphoryl ligand in the stability of uranyl-protein interactions. By evidencing a hydroxide uranyl ligand in calmodulin site I, this study also highlights the possible role of less studied ligands as water or hydroxide ions in the stability of protein-uranyl complexes.


Asunto(s)
Calmodulina/metabolismo , Complejos de Coordinación/metabolismo , Uranio/química , Secuencias de Aminoácidos , Sitios de Unión , Calmodulina/química , Complejos de Coordinación/química , Simulación de Dinámica Molecular , Paramecium tetraurelia/metabolismo , Fosforilación , Espectrometría de Fluorescencia , Espectroscopía Infrarroja por Transformada de Fourier , Espectroscopía de Absorción de Rayos X
4.
Inorg Chem ; 55(6): 2728-36, 2016 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-26954703

RESUMEN

Because of their presence in the nuclear fuel cycle, neptunium and uranium are two actinides of main interest in case of internal contamination. Complexation of U(VI) and Np(V) by the target protein calmodulin (CaM(WT)) was therefore studied herein. Both actinides have two axial oxygen atoms, which, charge aside, makes them very similar structurally wise. This work combines spectroscopy and theoretical density functional theory (DFT) calculations. Structural characterization was performed by extended X-ray absorption fine structure (EXAFS) at the L(III)-edge for each studied actinide. Models for the binding site of the protein were developed and then refined by using DFT to fit the obtained experimental EXAFS data. The effect of hydrolysis was also considered for both actinides (the uranyl experiment was performed at pH 3 and 6, while the neptunyl experiment was conducted at pH 7 and 9). The effect of the pH variation was apparent on the coordination sphere of the uranyl complexes, while the neptunyl complex characteristics remained stable under both studied conditions. The DFT calculations showed that at near physiological pH the complex formed by CaM(WT) with the neptunium ion is more stable than the one formed with uranyl.


Asunto(s)
Elementos de Series Actinoides/química , Calmodulina/química , Concentración de Iones de Hidrógeno , Modelos Moleculares , Espectroscopía de Absorción de Rayos X
5.
J Biol Inorg Chem ; 20(5): 905-19, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-26070361

RESUMEN

Calmodulin (CaM) is an essential Ca(II)-dependent regulator of cell physiology. To understand its interaction with Ca(II) at a molecular level, it is essential to examine Ca(II) binding at each site of the protein, even if it is challenging to estimate the site-specific binding properties of the interdependent CaM-binding sites. In this study, we evaluated the site-specific Ca(II)-binding affinity of sites I and II of the N-terminal domain by combining site-directed mutagenesis and spectrofluorimetry. The mutations had very low impact on the protein structure and stability. We used these binding constants to evaluate the inter-site cooperativity energy and compared it with its lower limit value usually reported in the literature. We found that site I affinity for Ca(II) was 1.5 times that of site II and that cooperativity induced an approximately tenfold higher affinity for the second Ca(II)-binding event, as compared to the first one. We further showed that insertion of a tryptophan at position 7 of site II binding loop significantly increased site II affinity for Ca(II) and the intra-domain cooperativity. ΔH and ΔS parameters were studied by isothermal titration calorimetry for Ca(II) binding to site I, site II and to the entire N-terminal domain. They showed that calcium binding is mainly entropy driven for the first and second binding events. These findings provide molecular information on the structure-affinity relationship of the individual sites of the CaM N-terminal domain and new perspectives for the optimization of metal ion binding by mutating the EF-hand loops sequences.


Asunto(s)
Calcio/química , Calmodulina/química , Termodinámica , Secuencia de Aminoácidos , Sitios de Unión , Calmodulina/genética , Calmodulina/aislamiento & purificación , Modelos Moleculares , Datos de Secuencia Molecular , Mutagénesis Sitio-Dirigida , Ingeniería de Proteínas , Estructura Terciaria de Proteína
6.
Biosensors (Basel) ; 13(5)2023 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-37232922

RESUMEN

The dispersion of uranium in the environment can pose a problem for the health of humans and other living organisms. It is therefore important to monitor the bioavailable and hence toxic fraction of uranium in the environment, but no efficient measurement methods exist for this. Our study aims to fill this gap by developing a genetically encoded FRET-based ratiometric uranium biosensor. This biosensor was constructed by grafting two fluorescent proteins to both ends of calmodulin, a protein that binds four calcium ions. By modifying the metal-binding sites and the fluorescent proteins, several versions of the biosensor were generated and characterized in vitro. The best combination results in a biosensor that is affine and selective for uranium compared to metals such as calcium or other environmental compounds (sodium, magnesium, chlorine). It has a good dynamic range and should be robust to environmental conditions. In addition, its detection limit is below the uranium limit concentration in drinking water defined by the World Health Organization. This genetically encoded biosensor is a promising tool to develop a uranium whole-cell biosensor. This would make it possible to monitor the bioavailable fraction of uranium in the environment, even in calcium-rich waters.


Asunto(s)
Técnicas Biosensibles , Uranio , Humanos , Transferencia Resonante de Energía de Fluorescencia/métodos , Calcio , Proteínas Fluorescentes Verdes , Técnicas Biosensibles/métodos
7.
Biomolecules ; 12(11)2022 11 17.
Artículo en Inglés | MEDLINE | ID: mdl-36421716

RESUMEN

Uranyl-protein interactions participate in uranyl trafficking or toxicity to cells. In addition to their qualitative identification, thermodynamic data are needed to predict predominant mechanisms that they mediate in vivo. We previously showed that uranyl can substitute calcium at the canonical EF-hand binding motif of calmodulin (CaM) site I. Here, we investigate thermodynamic properties of uranyl interaction with site II and with the whole CaM N-terminal domain by spectrofluorimetry and ITC. Site II has an affinity for uranyl about 10 times lower than site I. Uranyl binding at site I is exothermic with a large enthalpic contribution, while for site II, the enthalpic contribution to the Gibbs free energy of binding is about 10 times lower than the entropic term. For the N-terminal domain, macroscopic binding constants for uranyl are two to three orders of magnitude higher than for calcium. A positive cooperative process driven by entropy increases the second uranyl-binding event as compared with the first one, with ΔΔG = -2.0 ± 0.4 kJ mol-1, vs. ΔΔG = -6.1 ± 0.1 kJ mol-1 for calcium. Site I phosphorylation largely increases both site I and site II affinity for uranyl and uranyl-binding cooperativity. Combining site I phosphorylation and site II Thr7Trp mutation leads to picomolar dissociation constants Kd1 = 1.7 ± 0.3 pM and Kd2 = 196 ± 21 pM at pH 7. A structural model obtained by MD simulations suggests a structural role of site I phosphorylation in the affinity modulation.


Asunto(s)
Calcio , Calmodulina , Calmodulina/química , Fosforilación , Calcio/metabolismo , Sitios de Unión , Termodinámica
8.
Dalton Trans ; 46(5): 1389-1396, 2017 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-28112296

RESUMEN

Capillary electrophoresis coupled with an inductively coupled plasma mass spectrometer was applied for the first time to determine the binding constant of human transferrin (Tf) for tetravalent plutonium. The experiments were carried out in a buffer 2-(N-morpholino)ethanesulfonic acid (MES) at pH 6, 0.1 M NaCl and at a temperature of 25 °C. The nitrilotriacetate anion (NTA) used in this study prevents the hydrolysis of plutonium and is an ideal competitor with Tf for Pu, both ligands sharing comparable binding strength. The separation revealed unambiguous two peaks associated with the complex Pu(NTA)2 used as the initial species and with Pu-transferrin. Two series of independent experiments were conducted and gave the first stepwise conditional bicarbonate-free Pu-transferrin binding constant of . In the absence of bicarbonate the affinity of transferrin for plutonium at pH 6 is about 104 times stronger than that of iron at pH 6.7 .


Asunto(s)
Plutonio/metabolismo , Transferrina/metabolismo , Electroforesis Capilar , Humanos , Espectrometría de Masas , Unión Proteica
9.
J Inorg Biochem ; 172: 46-54, 2017 07.
Artículo en Inglés | MEDLINE | ID: mdl-28427004

RESUMEN

The threat of a dirty bomb which could cause internal contamination has been of major concern for the past decades. Because of their high chemical toxicity and their presence in the nuclear fuel cycle, uranium and neptunium are two actinides of high interest. Calmodulin (CaM) which is a ubiquitous protein present in all eukaryotic cells and is involved in calcium-dependent signaling pathways has a known affinity for uranyl and neptunyl ions. The impact of the complexation of these actinides on the physiological response of the protein remains, however, largely unknown. An isothermal titration calorimetry (ITC) was developed to monitor in vitro the enzymatic activity of the phosphodiesterase enzyme which is known to be activated by CaM and calcium. This approach showed that addition of actinyl ions (AnO2n+), uranyl (UO22+) and neptunyl (NpO2+), resulted in a decrease of the enzymatic activity, due to the formation of CaM-actinide complexes, which inhibit the enzyme and alter its interaction with the substrate by direct interaction. Results from dynamic light scattering rationalized this result by showing that the CaM-actinyl complexes adopted a specific conformation different from that of the CaM-Ca2+ complex. The effect of actinides could be reversed using a hydroxypyridonate actinide decorporation agent (5-LIO(Me-3,2-HOPO)) in the experimental medium demonstrating its capacity to efficiently bind the actinides and restore the calcium-dependent enzyme activation.


Asunto(s)
Elementos de Series Actinoides/química , Calmodulina/metabolismo , Fosfodiesterasas de Nucleótidos Cíclicos Tipo 1/química , Fosfodiesterasas de Nucleótidos Cíclicos Tipo 1/metabolismo , Elementos de Series Actinoides/farmacología , Arabidopsis/efectos de los fármacos , Arabidopsis/enzimología , Complejos de Coordinación/química , Complejos de Coordinación/farmacología , Activación Enzimática/efectos de los fármacos , Iones/química , Iones/farmacología , Cinética , Neptunio/química , Unión Proteica , Espectroscopía Infrarroja por Transformada de Fourier
10.
Chemosphere ; 88(8): 918-24, 2012 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-22560974

RESUMEN

Metallothioneins (MTs) are ubiquitous metal-binding, cysteine-rich, small proteins known to provide protection against toxic heavy metals such as cadmium. In an attempt to increase the ability of bacterial cells to accumulate heavy metals, sheep MTII was produced in fusion with the maltose binding protein (MBP) and localized to the cytoplasmic or periplasmic compartments of Escherichia coli. For all metals tested, higher levels of bioaccumulation were measured with strains over-expressing MBP-MT in comparison with control strains. A marked bioaccumulation of Cd, As, Hg and Zn was observed in the strain over-expressing MBP-MT in the cytoplasm, whereas Cu was accumulated to higher levels when MBP-MT was over-expressed in the periplasm. Metal export systems may also play a role in this bioaccumulation. To illustrate this, we over-expressed MBP-MT in the cytoplasm of two mutant strains of E. coli affected in metal export. The first, deficient in the transporter ZntA described to export numerous divalent metal ions, showed increasing quantities of Zn, Cd, Hg and Pb being bioaccumulated. The second, strain LF20012, deficient in As export, showed that As was bioaccumulated in the form of arsenite. Furthermore, high quantities of accumulated metals, chelated by MBP-MT in the cytoplasm, conferred greater metal resistance levels to the cells in the presence of added toxic metals, such as Cd or Hg, while other metals showed toxic effects when the export systems were deficient. The strain over-expressing MBP-MT in the cytoplasm, in combination, with disruption of metal export systems, could be used to develop strategies for bioremediation.


Asunto(s)
Escherichia coli/metabolismo , Metalotioneína/química , Metales Pesados/metabolismo , Animales , Restauración y Remediación Ambiental , Escherichia coli/efectos de los fármacos , Proteínas de Unión a Maltosa/química , Proteínas de Unión a Maltosa/genética , Proteínas de Unión a Maltosa/metabolismo , Metalotioneína/genética , Metalotioneína/metabolismo , Metales Pesados/química , Metales Pesados/toxicidad , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
11.
PLoS One ; 7(8): e41922, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22870263

RESUMEN

To improve our understanding of uranium toxicity, the determinants of uranyl affinity in proteins must be better characterized. In this work, we analyzed the contribution of a phosphoryl group on uranium binding affinity in a protein binding site, using the site 1 EF-hand motif of calmodulin. The recombinant domain 1 of calmodulin from A. thaliana was engineered to impair metal binding at site 2 and was used as a structured template. Threonine at position 9 of the loop was phosphorylated in vitro, using the recombinant catalytic subunit of protein kinase CK2. Hence, the T(9)TKE(12) sequence was substituted by the CK2 recognition sequence TAAE. A tyrosine was introduced at position 7, so that uranyl and calcium binding affinities could be determined by following tyrosine fluorescence. Phosphorylation was characterized by ESI-MS spectrometry, and the phosphorylated peptide was purified to homogeneity using ion-exchange chromatography. The binding constants for uranyl were determined by competition experiments with iminodiacetate. At pH 6, phosphorylation increased the affinity for uranyl by a factor of ∼5, from K(d) = 25±6 nM to K(d) = 5±1 nM. The phosphorylated peptide exhibited a much larger affinity at pH 7, with a dissociation constant in the subnanomolar range (K(d) = 0.25±0.06 nM). FTIR analyses showed that the phosphothreonine side chain is partly protonated at pH 6, while it is fully deprotonated at pH 7. Moreover, formation of the uranyl-peptide complex at pH 7 resulted in significant frequency shifts of the ν(as)(P-O) and ν(s)(P-O) IR modes of phosphothreonine, supporting its direct interaction with uranyl. Accordingly, a bathochromic shift in ν(as)(UO(2))(2+) vibration (from 923 cm(-1) to 908 cm(-1)) was observed upon uranyl coordination to the phosphorylated peptide. Together, our data demonstrate that the phosphoryl group plays a determining role in uranyl binding affinity to proteins at physiological pH.


Asunto(s)
Proteínas de Arabidopsis/química , Arabidopsis/química , Calmodulina/química , Ingeniería de Proteínas , Uranio/química , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Calmodulina/genética , Calmodulina/metabolismo , Quinasa de la Caseína II/química , Quinasa de la Caseína II/genética , Quinasa de la Caseína II/metabolismo , Concentración de Iones de Hidrógeno , Fosforilación , Unión Proteica , Estructura Terciaria de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Uranio/metabolismo , Uranio/toxicidad
12.
Appl Environ Microbiol ; 69(1): 490-4, 2003 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-12514032

RESUMEN

Phytochelatins (PCs) are metal-binding cysteine-rich peptides, enzymatically synthesized in plants and yeasts from glutathione in response to heavy metal stress by PC synthase (EC 2.3.2.15). In an attempt to increase the ability of bacterial cells to accumulate heavy metals, the Arabidopsis thaliana gene encoding PC synthase (AtPCS) was expressed in Escherichia coli. A marked accumulation of PCs was observed in vivo together with a decrease in the glutathione cellular content. When bacterial cells expressing AtPCS were placed in the presence of heavy metals such as cadmium or the metalloid arsenic, cellular metal contents were increased 20- and 50-fold, respectively. We discuss the possibility of using genes of the PC biosynthetic pathway to design bacterial strains or higher plants with increased abilities to accumulate toxic metals, and also arsenic, for use in bioremediation and/or phytoremediation processes.


Asunto(s)
Aminoaciltransferasas/metabolismo , Arabidopsis/enzimología , Escherichia coli/enzimología , Ingeniería Genética/métodos , Metales Pesados/metabolismo , Aminoaciltransferasas/genética , Arabidopsis/genética , Medios de Cultivo , Escherichia coli/genética , Escherichia coli/crecimiento & desarrollo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA