Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Hum Mol Genet ; 25(12): 2588-2599, 2016 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-27126637

RESUMEN

Obesity and ectopic fat disposition are risk factors for metabolic disease. Recent data indicate that IGFBP2 expression in liver is epigenetically inhibited during hepatic steatosis. The aim of this study was to investigate if epigenetic de-regulation of hepatic Igfbp2 occurs already early in life and is associated with increased risk for diet-induced obesity (DIO) during adolescence. Male C57BL/6J mice received a high-fat diet. After 3 weeks on this diet (age of 6 weeks), DIO-susceptible (responder, Resp) and DIO-resistant (non-responder, nResp) mice were identified by early weight gain. At the age of 6 weeks, Resp mice exhibited elevated blood glucose (p < 0.05), plasma insulin (p < 0.01), HOMA-IR and leptin/adiponectin ratio, whereas liver triglycerides were identical but significantly increased (p < 0.01) in Resp mice at 20 weeks of age. Igfbp2 expression was reduced in young Resp compared with nResp mice (p < 0.01), an effect that correlated with elevated DNA methylation of intronic CpG2605 (p < 0.01). The epigenetic inhibition of Igfbp2 was stable over time and preceded DIO and hepatosteatosis in adult mice. In vitro studies demonstrated that selective methylation of CpG2605 significantly reduced reporter activity by ∼85%, indicating that Igfbp2 expression is modulated by methylation. In human whole blood cells, methylation of IGFBP2 at the homologous CpG site was increased in obese men with impaired glucose tolerance. In conclusion, our data show that increased methylation of hepatic Igfbp2 during infancy predicts the development of fatty liver later in life and is linked to deterioration of glucose metabolism.


Asunto(s)
Metilación de ADN/genética , Hígado Graso/genética , Proteína 2 de Unión a Factor de Crecimiento Similar a la Insulina/genética , Obesidad/genética , Tejido Adiposo/metabolismo , Tejido Adiposo/patología , Animales , Glucemia , Dieta Alta en Grasa , Hígado Graso/sangre , Hígado Graso/patología , Femenino , Regulación de la Expresión Génica , Humanos , Insulina/sangre , Resistencia a la Insulina/genética , Proteína 2 de Unión a Factor de Crecimiento Similar a la Insulina/biosíntesis , Hígado/metabolismo , Hígado/patología , Masculino , Ratones , Persona de Mediana Edad , Obesidad/sangre , Obesidad/patología
2.
Mol Metab ; 75: 101774, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37429525

RESUMEN

OBJECTIVES: Better disease management can be achieved with earlier detection through robust, sensitive, and easily accessible biomarkers. The aim of the current study was to identify novel epigenetic biomarkers determining the risk of type 2 diabetes (T2D). METHODS: Livers of 10-week-old female New Zealand Obese (NZO) mice, slightly differing in their degree of hyperglycemia and liver fat content and thereby in their diabetes susceptibility were used for expression and methylation profiling. We screened for differences in hepatic expression and DNA methylation in diabetes-prone and -resistant mice, and verified a candidate (HAMP) in human livers and blood cells. Hamp expression was manipulated in primary hepatocytes and insulin-stimulated pAKT was detected. Luciferase reporter assays were conducted in a murine liver cell line to test the impact of DNA methylation on promoter activity. RESULTS: In livers of NZO mice, the overlap of methylome and transcriptome analyses revealed a potential transcriptional dysregulation of 12 hepatokines. The strongest effect with a 52% decreased expression in livers of diabetes-prone mice was detected for the Hamp gene, mediated by elevated DNA methylation of two CpG sites located in the promoter. Hamp encodes the iron-regulatory hormone hepcidin, which had a lower abundance in the livers of mice prone to developing diabetes. Suppression of Hamp reduces the levels of pAKT in insulin-treated hepatocytes. In liver biopsies of obese insulin-resistant women, HAMP expression was significantly downregulated along with increased DNA methylation of a homologous CpG site. In blood cells of incident T2D cases from the prospective EPIC-Potsdam cohort, higher DNA methylation of two CpG sites was related to increased risk of incident diabetes. CONCLUSIONS: We identified epigenetic changes in the HAMP gene which may be used as an early marker preceding T2D.


Asunto(s)
Diabetes Mellitus Tipo 2 , Hepcidinas , Humanos , Femenino , Ratones , Animales , Hepcidinas/genética , Hepcidinas/metabolismo , Metilación de ADN , Diabetes Mellitus Tipo 2/metabolismo , Estudios Prospectivos , Insulina/metabolismo , Obesidad/genética , Biomarcadores/metabolismo , Células Sanguíneas/metabolismo
3.
Diabetes ; 69(11): 2503-2517, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32816961

RESUMEN

The identification of individuals with a high risk of developing type 2 diabetes (T2D) is fundamental for prevention. Here, we used a translational approach and prediction criteria to identify changes in DNA methylation visible before the development of T2D. Islets of Langerhans were isolated from genetically identical 10-week-old female New Zealand Obese mice, which differ in their degree of hyperglycemia and in liver fat content. The application of a semiexplorative approach identified 497 differentially expressed and methylated genes (P = 6.42e-09, hypergeometric test) enriched in pathways linked to insulin secretion and extracellular matrix-receptor interaction. The comparison of mouse data with DNA methylation levels of incident T2D cases from the prospective European Prospective Investigation of Cancer (EPIC)-Potsdam cohort, revealed 105 genes with altered DNA methylation at 605 cytosine-phosphate-guanine (CpG) sites, which were associated with future T2D. AKAP13, TENM2, CTDSPL, PTPRN2, and PTPRS showed the strongest predictive potential (area under the receiver operating characteristic curve values 0.62-0.73). Among the new candidates identified in blood cells, 655 CpG sites, located in 99 genes, were differentially methylated in islets of humans with T2D. Using correction for multiple testing detected 236 genes with an altered DNA methylation in blood cells and 201 genes in diabetic islets. Thus, the introduced translational approach identified novel putative biomarkers for early pancreatic islet aberrations preceding T2D.


Asunto(s)
Glucemia , Composición Corporal , Peso Corporal , Epigénesis Genética , Islotes Pancreáticos/metabolismo , Animales , Femenino , Hiperglucemia , Hígado , Ratones , Ratones Obesos , Técnicas de Cultivo de Tejidos , Transcriptoma
4.
J Nutr Biochem ; 63: 109-116, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30359860

RESUMEN

Dipeptidyl peptidase 4 (DPP4) is known to be elevated in metabolic disturbances such as obesity, type 2 diabetes and fatty liver disease. Lowering DPP4 concentration by pharmacological inhibition improves glucose homeostasis and exhibits beneficial effects to reduce hepatic fat content. As factors regulating the endogenous expression of Dpp4 are unknown, the aim of this study was to examine whether the Dpp4 expression is epigenetically regulated in response to dietary components. Primary hepatocytes were treated with different macronutrients, and Dpp4 mRNA levels and DPP4 activity were evaluated. Moreover, dietary low-protein intervention was conducted in New Zealand obese (NZO) mice, and subsequently, effects on Dpp4 expression, methylation as well as plasma concentration and activity were determined. Our results indicate that Dpp4 mRNA expression is mediated by DNA methylation in several tissues. We therefore consider the Dpp4 southern shore as tissue differentially methylated region. Amino acids increased Dpp4 expression in primary hepatocytes, whereas glucose and fatty acids were without effect. Dietary protein restriction in NZO mice increased Dpp4 DNA methylation in liver leading to diminished Dpp4 expression and consequently to lowered plasma DPP4 activity. We conclude that protein restriction in the adolescent and adult states is a sufficient strategy to reduce DPP4 which in turn contributes to improve glucose homeostasis.


Asunto(s)
Proteínas en la Dieta/farmacología , Dipeptidil Peptidasa 4/genética , Epigénesis Genética , Aminoácidos/farmacología , Animales , Islas de CpG , Metilación de ADN/efectos de los fármacos , Dipeptidil Peptidasa 4/metabolismo , Regulación de la Expresión Génica/efectos de los fármacos , Hepatocitos/efectos de los fármacos , Hepatocitos/metabolismo , Masculino , Ratones Endogámicos C57BL , Ratones Obesos
5.
J Nutr Biochem ; 57: 86-92, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29680662

RESUMEN

Perinatal maternal high-fat consumption is known to increase the obesity and type 2 diabetes susceptibility and to impair exercise performance in the offspring. We hypothesize that epigenetic modifications in the skeletal muscle are partly responsible for this phenotype. To detect skeletal muscle genes affected by maternal nutrition, male offspring of low-fat (LF) and high-fat (HF) diet fed dams (BL6 mice) received LF diet upon weaning and were sacrificed at 6 or 25 weeks of age. Gene expression of Musculus quadriceps was investigated by microarray analysis revealing an up-regulation of the nuclear receptor Nr4a1 by maternal HF feeding. This was accompanied by promoter hypomethylation of CpG-1408 which correlated with increased Nr4a1 gene expression at both ages. Offspring voluntary exercise training (by supplying running wheels from 7 to 25 weeks of age) normalized Nr4a1 methylation and gene expression respectively, and ameliorated the negative effects of maternal HF feeding on insulin sensitivity. Overall, Nr4a1 gene expression in skeletal muscle correlated with higher insulin levels during an oral glucose tolerance test and could, therefore, be involved in programming type 2 diabetes susceptibility in offspring exposed to perinatal high fat diet.


Asunto(s)
Metilación de ADN , Resistencia a la Insulina , Fenómenos Fisiologicos Nutricionales Maternos , Miembro 1 del Grupo A de la Subfamilia 4 de Receptores Nucleares/genética , Animales , Dieta Alta en Grasa/efectos adversos , Epigénesis Genética , Femenino , Regulación de la Expresión Génica , Prueba de Tolerancia a la Glucosa , Masculino , Ratones Endogámicos C57BL , Miembro 1 del Grupo A de la Subfamilia 4 de Receptores Nucleares/metabolismo , Condicionamiento Físico Animal , Regiones Promotoras Genéticas , Músculo Cuádriceps/fisiología
6.
Mol Metab ; 11: 145-159, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29605715

RESUMEN

OBJECTIVE: Obesity and type 2 diabetes (T2D) arise from the interplay between genetic, epigenetic, and environmental factors. The aim of this study was to combine bioinformatics and functional studies to identify miRNAs that contribute to obesity and T2D. METHODS: A computational framework (miR-QTL-Scan) was applied by combining QTL, miRNA prediction, and transcriptomics in order to enhance the power for the discovery of miRNAs as regulative elements. Expression of several miRNAs was analyzed in human adipose tissue and blood cells and miR-31 was manipulated in a human fat cell line. RESULTS: In 17 partially overlapping QTL for obesity and T2D 170 miRNAs were identified. Four miRNAs (miR-15b, miR-30b, miR-31, miR-744) were recognized in gWAT (gonadal white adipose tissue) and six (miR-491, miR-455, miR-423-5p, miR-132-3p, miR-365-3p, miR-30b) in BAT (brown adipose tissue). To provide direct functional evidence for the achievement of the miR-QTL-Scan, miR-31 located in the obesity QTL Nob6 was experimentally analyzed. Its expression was higher in gWAT of obese and diabetic mice and humans than of lean controls. Accordingly, 10 potential target genes involved in insulin signaling and adipogenesis were suppressed. Manipulation of miR-31 in human SGBS adipocytes affected the expression of GLUT4, PPARγ, IRS1, and ACACA. In human peripheral blood mononuclear cells (PBMC) miR-15b levels were correlated to baseline blood glucose concentrations and might be an indicator for diabetes. CONCLUSION: Thus, miR-QTL-Scan allowed the identification of novel miRNAs relevant for obesity and T2D.


Asunto(s)
Diabetes Mellitus Tipo 2/genética , MicroARNs/genética , Obesidad/genética , Sitios de Carácter Cuantitativo , Transcriptoma , Tejido Adiposo/metabolismo , Animales , Células Sanguíneas/metabolismo , Línea Celular , Diabetes Mellitus Tipo 2/metabolismo , Humanos , Ratones , Obesidad/metabolismo
7.
Diabetes ; 67(7): 1310-1321, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29728363

RESUMEN

In type 2 diabetes (T2D), hepatic insulin resistance is strongly associated with nonalcoholic fatty liver disease (NAFLD). In this study, we hypothesized that the DNA methylome of livers from patients with T2D compared with livers of individuals with normal plasma glucose levels can unveil some mechanism of hepatic insulin resistance that could link to NAFLD. Using DNA methylome and transcriptome analyses of livers from obese individuals, we found that hypomethylation at a CpG site in PDGFA (encoding platelet-derived growth factor α) and PDGFA overexpression are both associated with increased T2D risk, hyperinsulinemia, increased insulin resistance, and increased steatohepatitis risk. Genetic risk score studies and human cell modeling pointed to a causative effect of high insulin levels on PDGFA CpG site hypomethylation, PDGFA overexpression, and increased PDGF-AA secretion from the liver. We found that PDGF-AA secretion further stimulates its own expression through protein kinase C activity and contributes to insulin resistance through decreased expression of insulin receptor substrate 1 and of insulin receptor. Importantly, hepatocyte insulin sensitivity can be restored by PDGF-AA-blocking antibodies, PDGF receptor inhibitors, and by metformin, opening therapeutic avenues. Therefore, in the liver of obese patients with T2D, the increased PDGF-AA signaling contributes to insulin resistance, opening new therapeutic avenues against T2D and possibly NAFLD.


Asunto(s)
Diabetes Mellitus Tipo 2/metabolismo , Resistencia a la Insulina , Hígado/metabolismo , Obesidad/metabolismo , Factor de Crecimiento Derivado de Plaquetas/genética , Factor de Crecimiento Derivado de Plaquetas/metabolismo , Adulto , Estudios de Casos y Controles , Células Cultivadas , Metilación de ADN , Diabetes Mellitus Tipo 2/etiología , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/patología , Epigénesis Genética/fisiología , Femenino , Predisposición Genética a la Enfermedad , Humanos , Resistencia a la Insulina/genética , Hígado/patología , Masculino , Persona de Mediana Edad , Enfermedad del Hígado Graso no Alcohólico/genética , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Enfermedad del Hígado Graso no Alcohólico/patología , Obesidad/complicaciones , Obesidad/genética , Obesidad/patología , Transducción de Señal/genética , Regulación hacia Arriba/genética
8.
Mol Metab ; 6(10): 1254-1263, 2017 10.
Artículo en Inglés | MEDLINE | ID: mdl-29031724

RESUMEN

OBJECTIVE: Increased hepatic expression of dipeptidyl peptidase 4 (DPP4) is associated with non-alcoholic fatty liver disease (NAFLD). Whether this is causative for the development of NAFLD is not yet clarified. Here we investigate the effect of hepatic DPP4 overexpression on the development of liver steatosis in a mouse model of diet-induced obesity. METHODS: Plasma DPP4 activity of subjects with or without NAFLD was analyzed. Wild-type (WT) and liver-specific Dpp4 transgenic mice (Dpp4-Liv-Tg) were fed a high-fat diet and characterized for body weight, body composition, hepatic fat content and insulin sensitivity. In vitro experiments on HepG2 cells and primary mouse hepatocytes were conducted to validate cell autonomous effects of DPP4 on lipid storage and insulin sensitivity. RESULTS: Subjects suffering from insulin resistance and NAFLD show an increased plasma DPP4 activity when compared to healthy controls. Analysis of Dpp4-Liv-Tg mice revealed elevated systemic DPP4 activity and diminished active GLP-1 levels. They furthermore show increased body weight, fat mass, adipose tissue inflammation, hepatic steatosis, liver damage and hypercholesterolemia. These effects were accompanied by increased expression of PPARγ and CD36 as well as severe insulin resistance in the liver. In agreement, treatment of HepG2 cells and primary hepatocytes with physiological concentrations of DPP4 resulted in impaired insulin sensitivity independent of lipid content. CONCLUSIONS: Our results give evidence that elevated expression of DPP4 in the liver promotes NAFLD and insulin resistance. This is linked to reduced levels of active GLP-1, but also to auto- and paracrine effects of DPP4 on hepatic insulin signaling.


Asunto(s)
Dipeptidil Peptidasa 4/metabolismo , Resistencia a la Insulina/fisiología , Hígado/enzimología , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Adulto , Animales , Dipeptidil Peptidasa 4/sangre , Dipeptidil Peptidasa 4/genética , Modelos Animales de Enfermedad , Femenino , Células Hep G2 , Hepatocitos/metabolismo , Humanos , Insulina/sangre , Insulina/metabolismo , Hígado/metabolismo , Masculino , Ratones , Ratones Transgénicos , Persona de Mediana Edad , Enfermedad del Hígado Graso no Alcohólico/enzimología , Obesidad/sangre , Obesidad/metabolismo
9.
Diabetes ; 66(1): 25-35, 2017 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-27999105

RESUMEN

Hepatic DPP4 expression is elevated in subjects with ectopic fat accumulation in the liver. However, whether increased dipeptidyl peptidase 4 (DPP4) is involved in the pathogenesis or is rather a consequence of metabolic disease is not known. We therefore studied the transcriptional regulation of hepatic Dpp4 in young mice prone to diet-induced obesity. Already at 6 weeks of age, expression of hepatic Dpp4 was increased in mice with high weight gain, independent of liver fat content. In the same animals, methylation of four intronic CpG sites was decreased, amplifying glucose-induced transcription of hepatic Dpp4 In older mice, hepatic triglyceride content was increased only in animals with elevated Dpp4 expression. Expression and release of DPP4 were markedly higher in the liver compared with adipose depots. Analysis of human liver biopsy specimens revealed a correlation of DPP4 expression and DNA methylation to stages of hepatosteatosis and nonalcoholic steatohepatitis. In summary, our results indicate a crucial role of the liver in participation to systemic DPP4 levels. Furthermore, the data show that glucose-induced expression of Dpp4 in the liver is facilitated by demethylation of the Dpp4 gene early in life. This might contribute to early deteriorations in hepatic function, which in turn result in metabolic disease such as hepatosteatosis later in life.


Asunto(s)
Dipeptidil Peptidasa 4/genética , Dipeptidil Peptidasa 4/metabolismo , Hígado Graso/metabolismo , Hígado/metabolismo , Animales , Western Blotting , Línea Celular , Células Cultivadas , Islas de CpG/genética , Metilación de ADN/genética , Metilación de ADN/fisiología , Regulación de la Expresión Génica , Glucosa/metabolismo , Hepatocitos/metabolismo , Inmunohistoquímica , Masculino , Ratones , Ratones Endogámicos C57BL , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Triglicéridos/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA