Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 179
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
J Immunol ; 212(7): 1094-1104, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38426888

RESUMEN

Type 1 diabetes (T1D) is a prototypic T cell-mediated autoimmune disease. Because the islets of Langerhans are insulated from blood vessels by a double basement membrane and lack detectable lymphatic drainage, interactions between endocrine and circulating T cells are not permitted. Thus, we hypothesized that initiation and progression of anti-islet immunity required islet neolymphangiogenesis to allow T cell access to the islet. Combining microscopy and single cell approaches, the timing of this phenomenon in mice was situated between 5 and 8 wk of age when activated anti-insulin CD4 T cells became detectable in peripheral blood while peri-islet pathology developed. This "peri-insulitis," dominated by CD4 T cells, respected the islet basement membrane and was limited on the outside by lymphatic endothelial cells that gave it the attributes of a tertiary lymphoid structure. As in most tissues, lymphangiogenesis seemed to be secondary to local segmental endothelial inflammation at the collecting postcapillary venule. In addition to classic markers of inflammation such as CD29, V-CAM, and NOS, MHC class II molecules were expressed by nonhematopoietic cells in the same location both in mouse and human islets. This CD45- MHC class II+ cell population was capable of spontaneously presenting islet Ags to CD4 T cells. Altogether, these observations favor an alternative model for the initiation of T1D, outside of the islet, in which a vascular-associated cell appears to be an important MHC class II-expressing and -presenting cell.


Asunto(s)
Diabetes Mellitus Tipo 1 , Islotes Pancreáticos , Humanos , Ratones , Animales , Células Endoteliales , Antígenos de Histocompatibilidad Clase II , Inflamación/patología , Ratones Endogámicos NOD
2.
Immunity ; 41(4): 543-54, 2014 Oct 16.
Artículo en Inglés | MEDLINE | ID: mdl-25367571

RESUMEN

Glycosylceramides in mammalian species are thought to be present in the form of ß-anomers. This conclusion was reinforced by the identification of only one glucosylceramide and one galactosylceramide synthase, both ß-transferases, in mammalian genomes. Thus, the possibility that small amounts of α-anomers could be produced by an alternative enzymatic pathway, by an unfaithful enzyme, or spontaneously in unusual cellular compartments has not been examined in detail. We approached the question by taking advantage of the exquisite specificity of T and B lymphocytes and combined it with the specificity of catabolic enzymes of the sphingolipid pathway. Here, we demonstrate that mammalian immune cells produce constitutively very small quantities of α-glycosylceramides, which are the major endogenous ligands of natural killer T cells. Catabolic enzymes of the ceramide and glycolipid pathway tightly control the amount of these α-glycosylceramides. The exploitation of this pathway to manipulate the immune response will create new therapeutic opportunities.


Asunto(s)
Linfocitos B/enzimología , Glucosilceramidas/biosíntesis , Células T Asesinas Naturales/inmunología , Linfocitos T/enzimología , Animales , Antígenos CD1d , Línea Celular , Glucosilceramidas/inmunología , Glucolípidos/inmunología , Humanos , Activación de Linfocitos/inmunología , Ratones , Unión Proteica
3.
J Immunol ; 206(2): 386-397, 2021 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-33310870

RESUMEN

Sepsis results from a heavy-handed response to infection that may culminate in organ failure and death. Many patients who survive acute sepsis become immunosuppressed and succumb to opportunistic infections. Therefore, to be successful, sepsis immunotherapies must target both the initial and the protracted phase of the syndrome to relieve early immunopathology and late immunosuppression, respectively. Invariant NKT (iNKT) cells are attractive therapeutic targets in sepsis. However, repeated treatments with α-galactosylceramide, the prototypic glycolipid ligand of iNKT cells, result in anergy. We designed a double-hit treatment that allows iNKT cells to escape anergy and exert beneficial effects in biphasic sepsis. We tested the efficacy of this approach in the sublethal cecal ligation and puncture mouse model, which mirrors polymicrobial sepsis with progression to an immunosuppressed state. Septic mice were treated with [(C2S, 3S, 4R)-1-O-(α-d-galactopyranosyl)-N-tetracosanoyl-2-amino-1,3,4-nonanetriol] (OCH), a TH2-polarizing iNKT cell agonist, before they received α-galactosylceramide. This regimen reduced the morbidity and mortality of cecal ligation and puncture, induced a transient but robust IFN-γ burst within a proinflammatory cytokine/chemokine landscape, transactivated NK cells, increased MHC class II expression on macrophages, and restored delayed-type hypersensitivity to a model hapten, consistent with recovery of immunocompetence in protracted sepsis. Structurally distinct TH2-polarizing agonists varied in their ability to replace OCH as the initial hit, with their lipid chain length being a determinant of efficacy. The proposed approach effectively exploits iNKT cells' versatility in biphasic sepsis and may have translational potentials in the development of new therapies.


Asunto(s)
Inmunoterapia/métodos , Células T Asesinas Naturales/inmunología , Sepsis/inmunología , Células Th2/inmunología , Animales , Ciego/cirugía , Células Cultivadas , Anergia Clonal , Modelos Animales de Enfermedad , Galactosilceramidas/inmunología , Humanos , Activación de Linfocitos , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Células T Asesinas Naturales/trasplante , Sepsis/terapia
4.
Curr Microbiol ; 80(6): 210, 2023 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-37191731

RESUMEN

Myroides spp. are rare opportunistic pathogens, but they can be life-threatening because of their multidrug-resistant drug properties and their potential to cause outbreaks, especially in immunosuppressed patients. In this study, 33 isolates isolated from intensive care patients with urinary tract infections were examined for drug susceptibility. All isolates except three proved to be resistant to the tested conventional antibiotics. The effects of ceragenins, a class of compounds developed to mimic endogenous antimicrobial peptides, were evaluated against these organisms. The MIC values of nine ceragenins were determined, and the most effective ceragenins were CSA-131 and CSA-138. Three isolates that were susceptible to levofloxacin and two isolates resistant to all antibiotics underwent 16 s rDNA analysis, and whereas resistant isolates were identified as M. odoratus, susceptible isolates were identified as M. odoratimimus. CSA-131 and CSA-138 showed rapid antimicrobial effects observed in time-kill analyses. Combinations of ceragenins and levofloxacin caused a significant increase in antimicrobial and antibiofilm activities against M. odoratimimus isolates. In this study, Myroides spp. were found to be multidrug-resistant and have biofilm forming capacity, and ceragenins CSA-131 and CSA-138 were found to be especially effective on both planktonic and biofilm forms of Myroides spp.


Asunto(s)
Antiinfecciosos , Flavobacteriaceae , Infecciones Urinarias , Humanos , Levofloxacino/farmacología , Pruebas de Sensibilidad Microbiana , Antibacterianos/farmacología , Antiinfecciosos/farmacología , Infecciones Urinarias/tratamiento farmacológico , Infecciones Urinarias/microbiología , Biopelículas
5.
Curr Microbiol ; 80(10): 327, 2023 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-37620557

RESUMEN

Ceragenins (CSAs) that mimic the activities of antimicrobial peptides may be new options for the treatment of infections caused by multidrug-resistant pathogens. This study investigated the antibacterial activities of eight different ceragenins against MDR pathogens and the synergistic effects of some ceragenins in combinations with antibiotics (meropenem-MEM, ceftazidime + avibactam-CZA, tigecycline-TIG). A disc diffusion method was used for antibiotic susceptibility tests, a broth microdilution, and checkerboard methods were used to detect minimum inhibitory concentrations (MICs) and the effects of combinations, respectively. While MIC90 values CSA-13, CSA-44, CSA-131 against Klebsiella pneumoniae isolates had similar effect with MEM (8 µg/ml); CSA-13, CSA-44, CSA-131, CSA-138, and CSA-144 had better activity than MEM against Acinetobacter baumannii and Pseudomonas aeruginosa isolates. In particular, CSA-44 and CSA-131 were effective against A. baumannii and P. aeruginosa isolates which resistant to both COL and MEM. CSA-44+MEM and CSA-131+CZA combinations showed synergistic activity against most (70%) of MDR- E. coli isolates. Although TIG is known to have weak activity in nonfermentative bacteria, CSA-44+TIG combination showed synergistic activity against two (17%) of the A. baumanni isolates. In addition, CSA-44+TIG and CSA-131+TIG combinations showed additive effects against all P. aeruginosa isolates. Antagonism was not detected in any of the combinations. CSA-44 and CSA-131 alone/or in combinations with MEM or CZA can be considered as new alternative treatments in serious infections caused by MDR pathogens.


Asunto(s)
Antibacterianos , Sepsis , Humanos , Antibacterianos/farmacología , Escherichia coli , Meropenem , Pseudomonas aeruginosa
6.
Int J Mol Sci ; 24(19)2023 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-37834369

RESUMEN

Healthcare-acquired infections and multi-drug resistance in pathogens pose a major crisis for the healthcare industry. Novel antibiotics which are effective against resistant strains and unlikely to elicit strong resistance are sought after in these settings. We have previously developed synthetic mimics of ubiquitous antimicrobial peptides and have worked to apply a lead compound, CSA-131, to the crisis. We aimed to generate a system of CSA-131-containing coatings for medical devices that can be adjusted to match elution and compound load for various environments and establish their efficacy in preventing the growth of common pathogens in and around these devices. Peripherally inserted central catheter (PICC) lines were selected for our substrate in this work, and a polyurethane-based system was used to establish coatings for evaluation. Microbial challenges by methicillin-resistant Staphylococcus aureus, Pseudomonas aeruginosa, Klebsiella pneumoniae, and Candida albicans were performed and SEM was used to evaluate coating structure and colonization. The results indicate that selected coatings show activity against selected planktonic pathogens that extend between 16 and 33 days, with similar periods of biofilm prevention.


Asunto(s)
Staphylococcus aureus Resistente a Meticilina , Pruebas de Sensibilidad Microbiana , Antibacterianos/farmacología , Catéteres , Biopelículas
7.
Nat Immunol ; 11(4): 313-20, 2010 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-20190758

RESUMEN

Cross-priming allows dendritic cells (DCs) to induce cytotoxic T cell (CTL) responses to extracellular antigens. DCs require cognate 'licensing' for cross-priming, classically by helper T cells. Here we demonstrate an alternative mechanism for cognate licensing by natural killer T (NKT) cells recognizing microbial or synthetic glycolipid antigens. Such licensing caused cross-priming CD8alpha(+) DCs to produce the chemokine CCL17, which attracted naive CTLs expressing the chemokine receptor CCR4. In contrast, DCs licensed by helper T cells recruited CTLs using CCR5 ligands. Thus, depending on the type of antigen they encounter, DCs can be licensed for cross-priming by NKT cells or helper T cells and use at least two independent chemokine pathways to attract naive CTLs. Because these chemokines acted synergistically, this can potentially be exploited to improve vaccinations.


Asunto(s)
Quimiocina CCL17/inmunología , Reactividad Cruzada/inmunología , Células Dendríticas/inmunología , Células T Asesinas Naturales/inmunología , Receptores CCR4/inmunología , Linfocitos T Citotóxicos/inmunología , Animales , Presentación de Antígeno/inmunología , Movimiento Celular/inmunología , Separación Celular , Ensayo de Inmunoadsorción Enzimática , Citometría de Flujo , Técnica del Anticuerpo Fluorescente , Ratones , Ratones Endogámicos C57BL , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Subgrupos de Linfocitos T/inmunología , Linfocitos T Colaboradores-Inductores/inmunología
8.
Immunity ; 39(6): 1032-42, 2013 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-24239091

RESUMEN

The nature of the antigens recognized by γδ T cells and their potential recognition of major histocompatibility complex (MHC)-like molecules has remained unclear. Members of the CD1 family of lipid-presenting molecules are suggested ligands for Vδ1 TCR-expressing γδ T cells, the major γδ lymphocyte population in epithelial tissues. We crystallized a Vδ1 TCR in complex with CD1d and the self-lipid sulfatide, revealing the unusual recognition of CD1d by germline Vδ1 residues spanning all complementarity-determining region (CDR) loops, as well as sulfatide recognition separately encoded by nongermline CDR3δ residues. Binding and functional analysis showed that CD1d presenting self-lipids, including sulfatide, was widely recognized by gut Vδ1+ γδ T cells. These findings provide structural demonstration of MHC-like recognition of a self-lipid by γδ T cells and reveal the prevalence of lipid recognition by innate-like T cell populations.


Asunto(s)
Antígenos CD1d/química , Lípidos/inmunología , Modelos Moleculares , Receptores de Antígenos de Linfocitos T gamma-delta/química , Receptores de Antígenos de Linfocitos T gamma-delta/metabolismo , Linfocitos T/metabolismo , Animales , Presentación de Antígeno , Antígenos CD1d/metabolismo , Cristalografía por Rayos X , Epítopos , Humanos , Células Jurkat , Complejo Mayor de Histocompatibilidad/inmunología , Estructura Cuaternaria de Proteína , Sulfoglicoesfingolípidos/química , Sulfoglicoesfingolípidos/metabolismo
9.
J Antimicrob Chemother ; 76(2): 443-450, 2021 01 19.
Artículo en Inglés | MEDLINE | ID: mdl-33094334

RESUMEN

BACKGROUND: Stenotrophomonas maltophilia is a Gram-negative bacterium resistant to several antibiotics and its prevalence in cystic fibrosis (CF) patients is increasing. OBJECTIVES: To evaluate the effects of ceragenins, non-peptide mimics of antimicrobial peptides, against both planktonic and biofilm forms of S. maltophilia and the cytotoxicity of ceragenins to the IB3-1 CF cell line. METHODS: Ceragenin CSA-131, with and without 5% Pluronic® F127 (a non-ionic amphiphilic poloxamer), and ceragenin CSA-13 were evaluated against S. maltophilia clinical isolates (n = 40). MICs and MBCs of ceragenins and conventional antibiotics were determined. Time-kill curve experiments were performed with 1×, 2× and 4× MICs of ceragenins. The highest non-cytotoxic concentrations of ceragenins against IB3-1, a CF cell line, were determined by MTT assay. The effects of ceragenins against biofilm adhesion, formation and mature biofilms were investigated. RESULTS: CSA-131 with Pluronic® F127 displayed the lowest MICs (MIC50/MIC90: 1/2 mg/L) followed by CSA-131 (MIC50/MIC90: 2/4 mg/L), while those of CSA-13 were much higher (MIC50/MIC90: 16/32 mg/L). According to time-kill curve results, all concentrations at 4× MICs of ceragenins showed bactericidal activity (3 log reduction) after 4 h. While CSA-131 and CSA-131-poloxamer inhibited biofilm adhesion and formation by 87.74% and 83.42%, respectively, after 24 h, CSA-131 was more effective on mature biofilms. Formulating CSA-131 in poloxamer micelles did not affect the cytotoxicity of CSA-131 to IB3-1 cells. CONCLUSIONS: CSA-131 could be a potential antimicrobial agent for the treatment of S. maltophilia infections in CF, due to its low cytotoxicity on the CF cell line and good antimicrobial and antibiofilm effects.


Asunto(s)
Fibrosis Quística , Stenotrophomonas maltophilia , Antibacterianos/farmacología , Biopelículas , Fibrosis Quística/complicaciones , Humanos , Pruebas de Sensibilidad Microbiana , Poloxámero , Esteroides
10.
J Antimicrob Chemother ; 76(5): 1168-1173, 2021 04 13.
Artículo en Inglés | MEDLINE | ID: mdl-33544817

RESUMEN

BACKGROUND: Ventilator-associated pneumonia is one of the most common nosocomial infections, caused mainly by bacterial/fungal biofilm. Therefore, it is necessary to develop preventive strategies to avoid biofilm formation based on new compounds. OBJECTIVES: We performed an in vitro study to compare the efficacy of endotracheal tubes (ETTs) coated with the ceragenin CSA-131 and that of uncoated ETTs against the biofilm of clinical strains of Pseudomonas aeruginosa (PA), Escherichia coli (EC) and Staphylococcus aureus (SA). METHODS: We applied an in vitro bench top model using coated and uncoated ETTs that were treated with three different clinical strains of PA, EC and SA for 5 days. After exposure to biofilm, ETTs were analysed for cfu count by culture of sonicate and total number of cells by confocal laser scanning microscopy. RESULTS: The median (IQR) cfu/mL counts of PA, EC and SA in coated and uncoated ETTs were, respectively, as follows: 1.00 × 101 (0.0-3.3 × 102) versus 3.32 × 109 (6.6 × 108-3.8 × 109), P < 0.001; 0.0 (0.0-5.4 × 103) versus 1.32 × 106 (2.3 × 103-5.0 × 107), P < 0.001; and 8.1 × 105 (8.5 × 101-1.4 × 109) versus 2.7 × 108 (8.6 × 106-1.6 × 1011), P = 0.058. The median (IQR) total number of cells of PA, EC and SA in coated and non-coated ETTs were, respectively, as follows: 11.0 [5.5-not applicable (NA)] versus 87.9 (60.5-NA), P = 0.05; 9.1 (6.7-NA) versus 62.6 (42.0-NA), P = 0.05; and 97.7 (94.6-NA) versus 187.3 (43.9-NA), P = 0.827. CONCLUSIONS: We demonstrated significantly reduced biofilm formation in coated ETTs. However, the difference for SA was not statistically significant. Future clinical studies are needed to support our findings.


Asunto(s)
Biopelículas , Neumonía Asociada al Ventilador , Antibacterianos/farmacología , Humanos , Intubación Intratraqueal , Neumonía Asociada al Ventilador/prevención & control , Pseudomonas aeruginosa , Esteroides
11.
Molecules ; 26(6)2021 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-33799713

RESUMEN

Osteomyelitis and orthopedic infections are major clinical problems, limited by a lack of antibiotics specialized for such applications. In this paper, we describe the design and synthesis of a novel bone-binding antibiotic (BBA-1) and its subsequent structural and functional characterization. The synthesis of BBA-1 was the result of a two-step chemical conjugation of cationic selective antimicrobial-90 (CSA-90) and the bisphosphonate alendronate (ALN) via a heterobifunctional linker. This was analytically confirmed by HPLC, FT-IR, MS and NMR spectroscopy. BBA-1 showed rapid binding and high affinity to bone mineral in an in vitro hydroxyapatite binding assay. Kirby-Baur assays confirmed that BBA-1 shows a potent antibacterial activity against Staphylococcus aureus and methicillin-resistant S. aureus comparable to CSA-90. Differentiation of cultured osteoblasts in media supplemented with BBA-1 led to increased alkaline phosphatase expression, which is consistent with the pro-osteogenic activity of CSA-90. Bisphosphonates, such as ALN, are inhibitors of protein prenylation, however, the amine conjugation of ALN to CSA-90 disrupted this activity in an in vitro protein prenylation assay. Overall, these findings support the antimicrobial, bone-binding, and pro-osteogenic activities of BBA-1. The compound and related agents have the potential to ensure lasting activity against osteomyelitis after systemic delivery.


Asunto(s)
Alendronato/química , Antibacterianos/síntesis química , Osteomielitis/tratamiento farmacológico , Pregnanos/química , Propilaminas/química , Células 3T3 , Alendronato/farmacología , Animales , Antibacterianos/farmacología , Antiinfecciosos/farmacología , Huesos/efectos de los fármacos , Calcificación Fisiológica/efectos de los fármacos , Diferenciación Celular/efectos de los fármacos , Células Cultivadas , Difosfonatos/química , Difosfonatos/farmacología , Staphylococcus aureus Resistente a Meticilina/efectos de los fármacos , Ratones , Osteoblastos/efectos de los fármacos , Osteogénesis/efectos de los fármacos , Pregnanos/farmacología , Propilaminas/farmacología , Espectroscopía Infrarroja por Transformada de Fourier , Infecciones Estafilocócicas/microbiología , Staphylococcus aureus/efectos de los fármacos
12.
J Nanobiotechnology ; 18(1): 3, 2020 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-31898542

RESUMEN

Nanotechnology-based therapeutic approaches have attracted attention of scientists, in particular due to the special features of nanomaterials, such as adequate biocompatibility, ability to improve therapeutic efficiency of incorporated drugs and to limit their adverse effects. Among a variety of reported nanomaterials for biomedical applications, metal and metal oxide-based nanoparticles offer unique physicochemical properties allowing their use in combination with conventional antimicrobials and as magnetic field-controlled drug delivery nanocarriers. An ever-growing number of studies demonstrate that by combining magnetic nanoparticles with membrane-active, natural human cathelicidin-derived LL-37 peptide, and its synthetic mimics such as ceragenins, innovative nanoagents might be developed. Between others, they demonstrate high clinical potential as antimicrobial, anti-cancer, immunomodulatory and regenerative agents. Due to continuous research, knowledge on pleiotropic character of natural antibacterial peptides and their mimics is growing, and it is justifying to stay that the therapeutic potential of nanosystems containing membrane active compounds has not been exhausted yet.


Asunto(s)
Antibacterianos/farmacología , Péptidos Catiónicos Antimicrobianos/farmacología , Membrana Celular/efectos de los fármacos , Invenciones , Nanopartículas de Magnetita/química , Esteroides/farmacología , Humanos , Catelicidinas
13.
Curr Microbiol ; 77(8): 1419-1428, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32189050

RESUMEN

Acinetobacter baumannii is an emerging opportunistic pathogen that primarily infects critically ill patients in nosocomial settings and there is a need for identifying new alternative therapeutic agents against these organisms. Ceragenins are non-peptide, membrane-active agents that mimic the antimicrobial properties of antimicrobial peptides (AMPs) and affect the membrane permeability of microorganisms. The in vitro activities of CSA-8, CSA-13, CSA-44, CSA-131, CSA-138 either alone or in combination with colistin (sulphate) were determined against 25 carbapenem-resistant A. baumannii strains. Minimum inhibitory concentrations (MICs) and minimum bactericidal concentrations (MBCs) of selected ceragenins and colistin against these isolates were measured by in vitro microbroth dilution techniques. Checkerboard techniques and time-kill assays were performed to determine the activities of combinations. The MIC50 values (mg/L) of CSA-8, CSA-13, CSA-44, CSA-131, CSA-138 and colistin were 32, 4, 8, 2, 4 and 0.5, respectively. The MIC90 (mg/L) of CSA-8, CSA-13, CSA-44, CSA-131, CSA-138 and colistin were 128, 8, 16, 8, 16 and 16, respectively. At 6 h, 1×MIC and 2×MIC of CSA-13 were bactericidal. CSA-13 + colistin combination displayed synergistic interaction. Antagonism between antimicrobials was not observed. According to the results, CSA-13 and CSA-131 can be good alternatives for infections caused by carbapenem-resistant A. baumannii.


Asunto(s)
Acinetobacter baumannii/efectos de los fármacos , Antibacterianos/farmacología , Farmacorresistencia Bacteriana , Viabilidad Microbiana/efectos de los fármacos , Esteroides/farmacología , Colistina/farmacología , Sinergismo Farmacológico , Pruebas de Sensibilidad Microbiana , Esteroides/clasificación
14.
J Allergy Clin Immunol ; 143(2): 565-576.e7, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-29852257

RESUMEN

BACKGROUND: Infection of suckling mice with influenza virus expands a CD4-CD8- double-negative (DN) natural killer T (NKT) cell subpopulation that protects the mice as adults against allergen-induced airway hyperreactivity (AHR). However, this NKT cell subset has not been characterized, and the underlying mechanisms of protection remain unknown. OBJECTIVE: We characterized this specific NKT cell subpopulation that developed during influenza infection in neonatal mice and that suppressed the subsequent development of AHR. METHODS: A cell-surface marker was identified by comparing the mRNA expression profile of wild-type CD4+ NKT cells with that of suppressive Vα14 DN NKT cells. The marker-enriched NKT cell subset was then analyzed for its cytokine profile and its suppressive in vitro and in vivo abilities. RESULTS: We showed that DN NKT cells with high CD38 expression produced IFN-γ, but not IL-17, IL-4, or IL-13, and inhibited development of AHR through contact-dependent suppression of helper CD4 T-cell proliferation. The NKT subset expanded in the lungs of neonatal mice after infection with influenza and also after treatment of neonatal mice with Nu-α-GalCer, which effectively increased DN CD38hi NKT cell numbers. CONCLUSION: These results suggest that early/neonatal exposure to infection or antigen challenge affects subsequent lung immunity by altering the cellular composition of cells in the lung and that some subsets of NKT cells suppress AHR. These results provide a possible mechanism by which prior infections can protect against the development of allergic asthma and might be further explored as a protective measure for young children.


Asunto(s)
Asma/inmunología , Virus de la Influenza A/fisiología , Gripe Humana/inmunología , Pulmón/inmunología , Células T Asesinas Naturales/inmunología , Infecciones por Orthomyxoviridae/inmunología , Hipersensibilidad Respiratoria/inmunología , Animales , Animales Recién Nacidos , Células Cultivadas , Citocinas/metabolismo , Modelos Animales de Enfermedad , Resistencia a la Enfermedad , Humanos , Tolerancia Inmunológica , Inmunidad Materno-Adquirida , Pulmón/virología , Ratones , Ratones Endogámicos BALB C , Ratones Transgénicos , Transcriptoma
15.
Immunol Rev ; 272(1): 109-19, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-27319346

RESUMEN

The recognition of CD1-lipid complexes by T cells was discovered 20 years ago and has since been an emerging and expanding field of investigation. Unlike protein antigens, which are presented on MHC class I and II molecules, lipids can only be presented by CD1 molecules, a unique family of MHC-like proteins whose singularity is a hydrophobic antigen-binding groove. The processing and loading of lipid antigens inside this groove of CD1 molecules require localization to endosomal and lysosomal subcellular compartments and their acidic pHs. This particular environment provides the necessary glycolytic enzymes and lipases that process lipid and glycolipid antigens, as well as a set of lipid transfer proteins that load the final version of the antigen inside the groove of CD1. The overall sequence of events needed for efficient presentation of lipid antigens is now understood and presented in this review. However, a large number of important details have been elusive. This elusiveness is linked to the inherent technical difficulties of studying lipids and the lipid-protein interface in vitro and in vivo. Here, we will expose some of those limitations and describe new approaches to address them during the characterization of lipids and glycolipids antigen presentation.


Asunto(s)
Antígenos CD1/metabolismo , Antígenos/inmunología , Glucolípidos/inmunología , Sistema Inmunológico , Lípidos/inmunología , Animales , Presentación de Antígeno , Proteínas Portadoras/metabolismo , Humanos , Linfocitos T/inmunología
16.
Med Mycol ; 57(3): 291-299, 2019 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-29846682

RESUMEN

Vulvovaginal candidiasis (VVC) is the second most common cause of vaginitis after bacterial vaginosis, affecting millions of women worldwide every year. Candida albicans is the most frequent agent of VVC followed by other species of Candida such as C. glabrata and C. parapsilosis. Out of a total of 100 clinical isolates of Candida spp. obtained from patients diagnosed with VVC, 84 were identified as C. albicans, while the remaining isolates were identified as non--albicans Candida strains. Phospholipases and proteinases were produced by a majority of the C. albicans strains and esterases and hemolysins a minority of these strains. Among the non-C. albicans strains, only a few of the strains produced these proteins. Nearly all of the isolates formed biofilms. Our results showed that the butoconazole, clotrimazole, and fluconazole were active against C. albicans and less so against the non-albicans Candida strains. The MIC90 of amphotericin B and nystatins were 2 and 4 µg/ml, respectively, against either C. albicans or non-albicans Candida spp. Representative ceragenins (CSA-13, CSA-131, and CSA-138), developed as mimics of endogenous antimicrobial peptides, were active against fluconazole-resistant strains, both alone and in combination with fluconazole. These results suggest the potential use of ceragenins in treating VVC, including infections caused by fluconazole-resistant isolates.


Asunto(s)
Antifúngicos/farmacología , Candida/efectos de los fármacos , Candidiasis Vulvovaginal/microbiología , Esteroides/farmacología , Biopelículas/efectos de los fármacos , Candida/enzimología , Candida/aislamiento & purificación , Candida albicans/efectos de los fármacos , Candida glabrata/efectos de los fármacos , Candida parapsilosis/efectos de los fármacos , Farmacorresistencia Fúngica , Esterasas/metabolismo , Femenino , Fluconazol/farmacología , Humanos , Pruebas de Sensibilidad Microbiana , Estructura Molecular , Péptido Hidrolasas/metabolismo , Fosfolipasas/metabolismo , Factores de Virulencia
17.
BMC Infect Dis ; 19(1): 369, 2019 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-31046689

RESUMEN

BACKGROUND: Urinary tract infections (UTIs) are one of the most common bacterial infections. High recurrence rates and the increasing antibiotic resistance among uropathogens constitute a large social and economic problem in current public health. We assumed that combination of treatment that includes the administration ceragenins (CSAs), will reinforce the effect of antimicrobial LL-37 peptide continuously produced by urinary tract epithelial cells. Such treatment might be an innovative approach to enhance innate antibacterial activity against multidrug-resistant E. coli. METHODS: Antibacterial activity measured using killing assays. Biofilm formation was assessed using crystal violet staining. Viability of bacteria and bladder epithelial cells subjected to incubation with tested agents was determined using MTT assays. We investigated the effects of chosen molecules, both alone and in combinations against four clinical strains of E. coli, obtained from patients diagnosed with recurrent UTI. RESULTS: We observed that the LL-37 peptide, whose concentration increases at sites of urinary infection, exerts increased bactericidal effect against E. coli when combined with ceragenins CSA-13 and CSA-131. CONCLUSION: We suggest that the employment of combination of natural peptide LL-37 with synthetic analogs might be a potential solution to treat urinary tract infections caused by drug-resistant bacteria.


Asunto(s)
Antibacterianos/uso terapéutico , Esteroides/uso terapéutico , Infecciones Urinarias/tratamiento farmacológico , Péptidos Catiónicos Antimicrobianos/farmacología , Péptidos Catiónicos Antimicrobianos/uso terapéutico , Biopelículas/efectos de los fármacos , Línea Celular , Supervivencia Celular/efectos de los fármacos , Farmacorresistencia Bacteriana Múltiple/efectos de los fármacos , Escherichia coli/efectos de los fármacos , Escherichia coli/fisiología , Humanos , Esteroides/farmacología , Infecciones Urinarias/microbiología , Catelicidinas
18.
J Antimicrob Chemother ; 73(1): 143-150, 2018 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-29029265

RESUMEN

BACKGROUND: Endotracheal tubes provide an abiotic surface on which bacteria and fungi form biofilms, and the release of endotoxins and planktonic organisms can cause damaging inflammation and infections. OBJECTIVES: Ceragenins are small molecule mimics of antimicrobial peptides with broad-spectrum antibacterial and antifungal activity, and a ceragenin may be used to provide antimicrobial protection to the abiotic surface of an endotracheal tube. METHODS: A hydrogel film, containing CSA-131, was generated on endotracheal tubes. Elution of CSA-131 was quantified in drip-flow and static systems, antifungal and antibacterial activity was measured with repeated inoculation in growth media, biofilm formation was observed through electron microscopy, safety was determined by intubation of pigs with coated and uncoated endotracheal tubes. RESULTS: Optimized coatings containing CSA-131 provided controlled elution of CSA-131, with concentrations released of less than 1 µg/mL. The eluting ceragenin prevented fungal and bacterial colonization of coated endotracheal tubes for extended periods, while uncoated tubes were colonized by bacteria and fungi. Coated tubes were well tolerated in intubated pigs. CONCLUSIONS: Thin films containing CSA-131 provide protection against microbial colonization of endotracheal tubes. This protection prevents fungal and bacterial biofilm formation on the tubes and reduces endotoxin associated with tubes. This coating is well suited for decreasing the adverse effects of intubation associated with infection and inflammation.


Asunto(s)
Antiinfecciosos/farmacología , Biopelículas/efectos de los fármacos , Materiales Biocompatibles Revestidos/farmacología , Intubación Intratraqueal/instrumentación , Neumonía Asociada al Ventilador/prevención & control , Respiración Artificial/instrumentación , Esteroides/farmacología , Antiinfecciosos/química , Bacterias/crecimiento & desarrollo , Candida albicans/efectos de los fármacos , Candida albicans/crecimiento & desarrollo , Materiales Biocompatibles Revestidos/química , Humanos , Hidrogeles/farmacología , Klebsiella pneumoniae/efectos de los fármacos , Klebsiella pneumoniae/crecimiento & desarrollo , Pseudomonas aeruginosa/efectos de los fármacos , Pseudomonas aeruginosa/crecimiento & desarrollo , Esteroides/química
19.
J Antimicrob Chemother ; 73(6): 1537-1545, 2018 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-29635279

RESUMEN

Background: Candida auris has emerged as a serious threat to human health. Of particular concern are the resistance profiles of many clinical isolates, with some being resistant to multiple classes of antifungals. Objectives: Measure susceptibilities of C. auris isolates, in planktonic and biofilm forms, to ceragenins (CSAs). Determine the effectiveness of selected ceragenins in gel and cream formulations in eradicating fungal infections in tissue explants. Materials and methods: A collection of 100 C. auris isolates available at CDC was screened for susceptibility to a lead ceragenin. A smaller collection was used to characterize antifungal activities of other ceragenins against organisms in planktonic and biofilm forms. Effects of ceragenins on fungal cells and biofilms were observed via microscopy. An ex vivo model of mucosal fungal infection was used to evaluate formulated forms of lead ceragenins. Results: Lead ceragenins displayed activities comparable to those of known antifungal agents against C. auris isolates with MICs of 0.5-8 mg/L and minimum fungicidal concentrations (MFCs) of 2-64 mg/L. No cross-resistance with other antifungals was observed. Fungal cell morphology was altered in response to ceragenin treatment. Ceragenins exhibited activity against sessile organisms in biofilms. Gel and cream formulations including 2% CSA-44 or CSA-131 resulted in reductions of over 4 logs against established fungal infections in ex vivo mucosal tissues. Conclusions: Ceragenins demonstrated activity against C. auris, suggesting that these compounds warrant further study to determine whether they can be used for topical applications to skin and mucosal tissues for treatment of infections with C. auris and other fungi.


Asunto(s)
Antifúngicos/farmacología , Biopelículas/efectos de los fármacos , Candida/efectos de los fármacos , Farmacorresistencia Fúngica , Esteroides/farmacología , Animales , Candidiasis/tratamiento farmacológico , Candidiasis/microbiología , Técnicas de Cultivo de Célula , Descubrimiento de Drogas , Femenino , Geles/farmacología , Humanos , Pruebas de Sensibilidad Microbiana , Microscopía Confocal , Crema para la Piel/farmacología , Esteroides/química , Porcinos , Vagina/citología , Vagina/efectos de los fármacos , Vagina/microbiología
20.
J Immunol ; 197(10): 3959-3969, 2016 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-27798168

RESUMEN

Invariant NKT (iNKT) cells develop and differentiate in the thymus, segregating into iNKT1/2/17 subsets akin to Th1/2/17 classical CD4+ T cells; however, iNKT TCRs recognize Ags in a fundamentally different way. How the biophysical parameters of iNKT TCRs influence signal strength in vivo and how such signals affect the development and differentiation of these cells are unknown. In this study, we manipulated TCRs in vivo to generate clonotypic iNKT cells using TCR retrogenic chimeras. We report that the biophysical properties of CD1d-lipid-TCR interactions differentially impacted the development and effector differentiation of iNKT cells. Whereas selection efficiency strongly correlated with TCR avidity, TCR signaling, cell-cell conjugate formation, and iNKT effector differentiation correlated with the half-life of CD1d-lipid-TCR interactions. TCR binding properties, however, did not modulate Ag-induced iNKT cytokine production. Our work establishes that discrete TCR interaction kinetics influence iNKT cell development and central priming.


Asunto(s)
Células T Asesinas Naturales/inmunología , Receptores de Antígenos de Linfocitos T/metabolismo , Animales , Antígenos/inmunología , Antígenos CD1d/inmunología , Antígenos CD1d/metabolismo , Diferenciación Celular , Citocinas/biosíntesis , Citocinas/inmunología , Semivida , Cinética , Lípidos/inmunología , Activación de Linfocitos , Ratones , Células T Asesinas Naturales/fisiología , Unión Proteica , Receptores de Antígenos de Linfocitos T/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA