Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 282
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Mol Cell ; 81(11): 2349-2360.e6, 2021 06 03.
Artículo en Inglés | MEDLINE | ID: mdl-33852895

RESUMEN

Telomere length control is critical for cellular lifespan and tumor suppression. Telomerase is transiently activated in the inner cell mass of the developing blastocyst to reset telomere reserves. Its silencing upon differentiation leads to gradual telomere shortening in somatic cells. Here, we report that transcriptional regulation through cis-regulatory elements only partially accounts for telomerase activation in pluripotent cells. Instead, developmental control of telomerase is primarily driven by an alternative splicing event, centered around hTERT exon 2. Skipping of exon 2 triggers hTERT mRNA decay in differentiated cells, and conversely, its retention promotes telomerase accumulation in pluripotent cells. We identify SON as a regulator of exon 2 alternative splicing and report a patient carrying a SON mutation and suffering from insufficient telomerase and short telomeres. In summary, our study highlights a critical role for hTERT alternative splicing in the developmental regulation of telomerase and implicates defective splicing in telomere biology disorders.


Asunto(s)
Empalme Alternativo , Proteínas de Unión al ADN/genética , Elementos de Facilitación Genéticos , Antígenos de Histocompatibilidad Menor/genética , Telomerasa/genética , Homeostasis del Telómero , Telómero/metabolismo , Blastocisto/metabolismo , Blastocisto/patología , Diferenciación Celular , Preescolar , Proteínas de Unión al ADN/deficiencia , Femenino , Células Madre Embrionarias Humanas/metabolismo , Células Madre Embrionarias Humanas/patología , Humanos , Linaje , Células Madre Pluripotentes/metabolismo , Células Madre Pluripotentes/patología , Cultivo Primario de Células , Estabilidad del ARN , ARN Mensajero/genética , ARN Mensajero/metabolismo , Telomerasa/deficiencia , Telómero/patología
2.
Nature ; 606(7912): 172-179, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35545680

RESUMEN

Missense driver mutations in cancer are concentrated in a few hotspots1. Various mechanisms have been proposed to explain this skew, including biased mutational processes2, phenotypic differences3-6 and immunoediting of neoantigens7,8; however, to our knowledge, no existing model weighs the relative contribution of these features to tumour evolution. We propose a unified theoretical 'free fitness' framework that parsimoniously integrates multimodal genomic, epigenetic, transcriptomic and proteomic data into a biophysical model of the rate-limiting processes underlying the fitness advantage conferred on cancer cells by driver gene mutations. Focusing on TP53, the most mutated gene in cancer1, we present an inference of mutant p53 concentration and demonstrate that TP53 hotspot mutations optimally solve an evolutionary trade-off between oncogenic potential and neoantigen immunogenicity. Our model anticipates patient survival in The Cancer Genome Atlas and patients with lung cancer treated with immunotherapy as well as the age of tumour onset in germline carriers of TP53 variants. The predicted differential immunogenicity between hotspot mutations was validated experimentally in patients with cancer and in a unique large dataset of healthy individuals. Our data indicate that immune selective pressure on TP53 mutations has a smaller role in non-cancerous lesions than in tumours, suggesting that targeted immunotherapy may offer an early prophylactic opportunity for the former. Determining the relative contribution of immunogenicity and oncogenic function to the selective advantage of hotspot mutations thus has important implications for both precision immunotherapies and our understanding of tumour evolution.


Asunto(s)
Carcinogénesis , Evolución Molecular , Neoplasias Pulmonares , Mutación , Carcinogénesis/genética , Carcinogénesis/inmunología , Conjuntos de Datos como Asunto , Genes p53 , Aptitud Genética , Genómica , Voluntarios Sanos , Humanos , Inmunoterapia , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/terapia , Mutación/genética , Mutación Missense , Reproducibilidad de los Resultados
3.
Blood ; 141(17): 2100-2113, 2023 04 27.
Artículo en Inglés | MEDLINE | ID: mdl-36542832

RESUMEN

The choice to postpone treatment while awaiting genetic testing can result in significant delay in definitive therapies in patients with severe pancytopenia. Conversely, the misdiagnosis of inherited bone marrow failure (BMF) can expose patients to ineffectual and expensive therapies, toxic transplant conditioning regimens, and inappropriate use of an affected family member as a stem cell donor. To predict the likelihood of patients having acquired or inherited BMF, we developed a 2-step data-driven machine-learning model using 25 clinical and laboratory variables typically recorded at the initial clinical encounter. For model development, patients were labeled as having acquired or inherited BMF depending on their genomic data. Data sets were unbiasedly clustered, and an ensemble model was trained with cases from the largest cluster of a training cohort (n = 359) and validated with an independent cohort (n = 127). Cluster A, the largest group, was mostly immune or inherited aplastic anemia, whereas cluster B comprised underrepresented BMF phenotypes and was not included in the next step of data modeling because of a small sample size. The ensemble cluster A-specific model was accurate (89%) to predict BMF etiology, correctly predicting inherited and likely immune BMF in 79% and 92% of cases, respectively. Our model represents a practical guide for BMF diagnosis and highlights the importance of clinical and laboratory variables in the initial evaluation, particularly telomere length. Our tool can be potentially used by general hematologists and health care providers not specialized in BMF, and in under-resourced centers, to prioritize patients for genetic testing or for expeditious treatment.


Asunto(s)
Anemia Aplásica , Enfermedades de la Médula Ósea , Pancitopenia , Humanos , Enfermedades de la Médula Ósea/diagnóstico , Enfermedades de la Médula Ósea/genética , Enfermedades de la Médula Ósea/terapia , Diagnóstico Diferencial , Anemia Aplásica/diagnóstico , Anemia Aplásica/genética , Anemia Aplásica/terapia , Trastornos de Fallo de la Médula Ósea/diagnóstico , Pancitopenia/diagnóstico
4.
EMBO J ; 39(21): e103420, 2020 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-32935380

RESUMEN

Short telomeres are a principal defining feature of telomere biology disorders, such as dyskeratosis congenita (DC), for which there are no effective treatments. Here, we report that primary fibroblasts from DC patients and late generation telomerase knockout mice display lower nicotinamide adenine dinucleotide (NAD) levels, and an imbalance in the NAD metabolome that includes elevated CD38 NADase and reduced poly(ADP-ribose) polymerase and SIRT1 activities, respectively, affecting many associated biological pathways. Supplementation with the NAD precursor, nicotinamide riboside, and CD38 inhibition improved NAD homeostasis, thereby alleviating telomere damage, defective mitochondrial biosynthesis and clearance, cell growth retardation, and cellular senescence of DC fibroblasts. These findings reveal a direct, underlying role of NAD dysregulation when telomeres are short and underscore its relevance to the pathophysiology and interventions of human telomere-driven diseases.


Asunto(s)
Disqueratosis Congénita/genética , Disqueratosis Congénita/metabolismo , Fibroblastos/metabolismo , NAD/metabolismo , Telomerasa/genética , Telómero/metabolismo , ADP-Ribosil Ciclasa 1/genética , Animales , Encéfalo/patología , Línea Celular , Senescencia Celular , Disqueratosis Congénita/patología , Femenino , Homeostasis , Humanos , Glicoproteínas de Membrana/genética , Ratones , Ratones Noqueados , Mitocondrias/metabolismo , Niacinamida/análogos & derivados , Niacinamida/metabolismo , Fenotipo , Poli(ADP-Ribosa) Polimerasa-1/metabolismo , Compuestos de Piridinio/metabolismo , Telomerasa/metabolismo
5.
Clin Gastroenterol Hepatol ; 22(3): 662-665.e1, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37714395

RESUMEN

Li-Fraumeni syndrome (LFS), linked to heterozygous germline pathogenic/likely pathogenic variants in TP53, confers exceptionally high cancer risk, including core cancers (sarcoma, breast, adrenocortical, and brain cancer) among many other cancer types.1 Colorectal cancer (CRC) is most common after the core and hematologic cancers, accounting for ∼2.8% of diagnoses. Stomach and esophageal cancers constitute another 1.3% (TP53 Database; R20, July 2019: https://tp53.isb-cgc.org).2.


Asunto(s)
Neoplasias Gastrointestinales , Síndrome de Li-Fraumeni , Humanos , Síndrome de Li-Fraumeni/complicaciones , Síndrome de Li-Fraumeni/genética , Proteína p53 Supresora de Tumor/genética , Predisposición Genética a la Enfermedad , Mutación de Línea Germinal , Neoplasias Gastrointestinales/epidemiología , Neoplasias Gastrointestinales/etiología
6.
Hepatology ; 78(6): 1777-1787, 2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-37184208

RESUMEN

BACKGROUND AND AIMS: Dyskeratosis congenita (DC) and related telomere biology disorders (TBD) are characterized by very short telomeres and multisystem organ involvement including liver disease. Our study aimed to characterize baseline hepatic abnormalities in patients with DC/TBD and determine risk factors associated with liver disease progression. APPROACH AND RESULTS: A retrospective review was performed on a cohort of 58 patients (39 males) with DC/TBD who were prospectively evaluated at a single institute from 2002 to 2019. The median age at initial assessment was 18 (1.4-67.6) years, and median follow-up duration was 6 (1.4-8.2) years. Patients with autosomal or X-linked recessive inheritance and those with heterozygous TINF2 DC were significantly younger, predominantly male, and more likely to have DC-associated mucocutaneous triad features and severe bone marrow failure compared with autosomal dominant-non- TINF2 DC/TBD patients. Liver abnormality (defined at baseline assessment by laboratory and/or radiological findings) was present in 72.4% of patients with predominantly cholestatic pattern of liver enzyme elevation. Clinically significant liver disease and portal hypertension developed in 17.2% of patients during the 6-year follow-up; this progression was mainly seen in patients with recessive or TINF2 -associated DC. Significant risk factors associated with progression included the presence of pulmonary or vascular disease. CONCLUSIONS: Our experience shows a high prevalence of cholestatic pattern of liver abnormality with progression to portal hypertension in patients with DC/TBD. Presence of pulmonary and/or vascular disease in patients with recessive or TINF2 DC was an important predictor of liver disease progression, suggesting the need for increased vigilance and monitoring for complications in these patients.


Asunto(s)
Enfermedades del Sistema Digestivo , Disqueratosis Congénita , Hipertensión Portal , Telomerasa , Enfermedades Vasculares , Humanos , Masculino , Femenino , Disqueratosis Congénita/complicaciones , Disqueratosis Congénita/genética , Telómero/metabolismo , Hipertensión Portal/genética , Hipertensión Portal/complicaciones , Enfermedades Vasculares/complicaciones , Progresión de la Enfermedad , Biología , Mutación , Telomerasa/genética , Telomerasa/metabolismo
7.
Blood ; 139(12): 1807-1819, 2022 03 24.
Artículo en Inglés | MEDLINE | ID: mdl-34852175

RESUMEN

Dyskeratosis congenita related telomere biology disorders (DC/TBDs) are characterized by very short telomeres caused by germline pathogenic variants in telomere biology genes. Clinical presentations can affect all organs, and inheritance patterns include autosomal dominant (AD), autosomal recessive (AR), X-linked (XLR), or de novo. This study examined the associations between mode of inheritance with phenotypes and long-term clinical outcomes. Two hundred thirty-one individuals with DC/TBDs (144 male, 86.6% known genotype, median age at diagnosis 19.4 years [range 0 to 71.6]), enrolled in the National Cancer Institute's Inherited Bone Marrow Failure Syndrome Study, underwent detailed clinical assessments and longitudinal follow-up (median follow-up 5.2 years [range 0 to 36.7]). Patients were grouped by inheritance pattern, considering AD-nonTINF2, AR/XLR, and TINF2 variants separately. Severe bone marrow failure (BMF), severe liver disease, and gastrointestinal telangiectasias were more prevalent in AR/XLR or TINF2 disease, whereas pulmonary fibrosis developed predominantly in adults with AD disease. After adjusting for age at DC/TBD diagnosis, we observed the highest cancer risk in AR/XLR individuals. At last follow-up, 42% of patients were deceased with a median overall survival (OS) of 52.8 years (95% confidence interval [CI] 45.5-57.6), and the hematopoietic cell or solid organ transplant-free median survival was 45.3 years (95% CI 37.4-52.1). Significantly better OS was present in AD vs AR/XLR/TINF2 disease (P < .01), while patients with AR/XLR and TINF2 disease had similar survival probabilities. This long-term study of the clinical manifestations of DC/TBDs creates a foundation for incorporating the mode of inheritance into evidence-based clinical care guidelines and risk stratification in patients with DC/TBDs. This trial was registered at www.clinicaltrials.gov as #NCT00027274.


Asunto(s)
Disqueratosis Congénita , Telomerasa , Biología , Progresión de la Enfermedad , Disqueratosis Congénita/genética , Disqueratosis Congénita/terapia , Humanos , Masculino , Telomerasa/genética , Telomerasa/metabolismo , Telómero/genética , Telómero/metabolismo , Acortamiento del Telómero
8.
Blood ; 140(8): 909-921, 2022 08 25.
Artículo en Inglés | MEDLINE | ID: mdl-35776903

RESUMEN

Patients with severe aplastic anemia (SAA) can have an unrecognized inherited bone marrow failure syndrome (IBMFS) because of phenotypic heterogeneity. We curated germline genetic variants in 104 IBMFS-associated genes from exome sequencing performed on 732 patients who underwent hematopoietic cell transplant (HCT) between 1989 and 2015 for acquired SAA. Patients with pathogenic or likely pathogenic (P/LP) variants fitting known disease zygosity patterns were deemed unrecognized IBMFS. Carriers were defined as patients with a single P/LP variant in an autosomal recessive gene or females with an X-linked recessive P/LP variant. Cox proportional hazard models were used for survival analysis with follow-up until 2017. We identified 113 P/LP single-nucleotide variants or small insertions/deletions and 10 copy number variants across 42 genes in 121 patients. Ninety-one patients had 105 in silico predicted deleterious variants of uncertain significance (dVUS). Forty-eight patients (6.6%) had an unrecognized IBMFS (33% adults), and 73 (10%) were carriers. No survival difference between dVUS and acquired SAA was noted. Compared with acquired SAA (no P/LP variants), patients with unrecognized IBMFS, but not carriers, had worse survival after HCT (IBMFS hazard ratio [HR], 2.13; 95% confidence interval[CI], 1.40-3.24; P = .0004; carriers HR, 0.96; 95% CI, 0.62-1.50; P = .86). Results were similar in analyses restricted to patients receiving reduced-intensity conditioning (n = 448; HR IBMFS = 2.39; P = .01). The excess mortality risk in unrecognized IBMFS attributed to death from organ failure (HR = 4.88; P < .0001). Genetic testing should be part of the diagnostic evaluation for all patients with SAA to tailor therapeutic regimens. Carriers of a pathogenic variant in an IBMFS gene can follow HCT regimens for acquired SAA.


Asunto(s)
Anemia Aplásica , Trasplante de Células Madre Hematopoyéticas , Adulto , Anemia Aplásica/diagnóstico , Anemia Aplásica/genética , Anemia Aplásica/terapia , Síndromes Congénitos de Insuficiencia de la Médula Ósea , Femenino , Pruebas Genéticas , Trasplante de Células Madre Hematopoyéticas/efectos adversos , Humanos , Acondicionamiento Pretrasplante/métodos
9.
Biogerontology ; 25(2): 265-278, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38109000

RESUMEN

Telomeres are the nucleoprotein complex at chromosome ends essential in genomic stability. Baseline telomere length (TL) is determined by rare and common germline genetic variants but shortens with age and is susceptible to certain environmental exposures. Cellular senescence or apoptosis are normally triggered when telomeres reach a critically short length, but cancer cells overcome these protective mechanisms and continue to divide despite chromosomal instability. Rare germline variants in telomere maintenance genes cause exceedingly short telomeres for age (< 1st percentile) and the telomere biology disorders, which are associated with elevated risks of bone marrow failure, myelodysplastic syndrome, acute myeloid leukemia, and squamous cell carcinoma of the head/neck and anogenital regions. Long telomeres due to rare germline variants in the same or different telomere maintenance genes are associated with elevated risks of other cancers, such as chronic lymphocytic leukemia or sarcoma. Early epidemiology studies of TL in the general population lacked reproducibility but new methods, including creation of a TL polygenic score using common variants, have found longer telomeres associated with excess risks of renal cell carcinoma, glioma, lung cancer, and others. It has become clear that when it comes to TL and cancer etiology, not too short, not too long, but "just right" telomeres are important in minimizing cancer risk.


Asunto(s)
Neoplasias , Telomerasa , Humanos , Reproducibilidad de los Resultados , Telómero/genética , Acortamiento del Telómero , Senescencia Celular , Inestabilidad Genómica , Telomerasa/genética , Neoplasias/genética , Neoplasias/patología
10.
Am J Hum Genet ; 106(2): 264-271, 2020 02 06.
Artículo en Inglés | MEDLINE | ID: mdl-32004448

RESUMEN

Severe aplastic anemia (SAA) is a rare disorder characterized by hypoplastic bone marrow and progressive pancytopenia. The etiology of acquired SAA is not understood but is likely related to abnormal immune responses and environmental exposures. We conducted a genome-wide association study of individuals with SAA genetically matched to healthy controls in discovery (359 cases, 1,396 controls) and validation sets (175 cases, 1,059 controls). Combined analyses identified linked SNPs in distinct blocks within the major histocompatibility complex on 6p21. The top SNP encodes p.Met76Val in the P4 binding pocket of the HLA class II gene HLA-DPB1 (rs1042151A>G, odds ratio [OR] 1.75, 95% confidence interval [CI] 1.50-2.03, p = 1.94 × 10-13) and was associated with HLA-DP cell surface expression in healthy individuals (p = 2.04 × 10-6). Phylogenetic analyses indicate that Val76 is not monophyletic and likely occurs in conjunction with different HLA-DP binding groove conformations. Imputation of HLA-DPB1 alleles revealed increased risk of SAA associated with Val76-encoding alleles DPB1∗03:01, (OR 1.66, p = 1.52 × 10-7), DPB1∗10:01 (OR 2.12, p = 0.0003), and DPB1∗01:01 (OR 1.60, p = 0.0008). A second SNP near HLA-B, rs28367832G>A, reached genome-wide significance (OR 1.49, 95% CI 1.22-1.78, p = 7.27 × 10-9) in combined analyses; the association remained significant after excluding cases with clonal copy-neutral loss-of-heterozygosity affecting class I HLA genes (8.6% of cases and 0% of controls). SNPs in the HLA class II gene HLA-DPB1 and possibly class I (HLA-B) are associated with SAA. The replacement of Met76 to Val76 in certain HLA-DPB1 alleles might influence risk of SAA through mechanisms involving DP peptide binding specificity, expression, and/or other factors affecting DP function.


Asunto(s)
Anemia Aplásica/etiología , Marcadores Genéticos , Predisposición Genética a la Enfermedad , Cadenas beta de HLA-DP/genética , Polimorfismo de Nucleótido Simple , Adolescente , Adulto , Anciano , Anemia Aplásica/patología , Estudios de Casos y Controles , Niño , Preescolar , Femenino , Estudio de Asociación del Genoma Completo , Genotipo , Humanos , Lactante , Masculino , Persona de Mediana Edad , Filogenia , Factores de Riesgo , Índice de Severidad de la Enfermedad , Adulto Joven
11.
Br J Haematol ; 203(5): 820-828, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37354000

RESUMEN

Individuals with telomere biology disorders (TBDs) have very short telomeres, high risk of bone marrow failure (BMF), and reduced survival. Using data from TBD patients, a mean leukocyte Southern blot telomere length (TL) of 5 kilobases (kb) was estimated as the 'telomere brink' at which human survival is markedly reduced. However, the shortest telomere, not the mean TL, signals replicative senescence. We used the Telomere Shortest Length Assay (TeSLA) to tally TL of all 46 chromosomes in blood-derived DNA and examined its relationship with TBDs. Patients (n = 18) had much shorter mean TL (TeSmTL) (2.54 ± 0.41 kb vs. 4.48 ± 0.52 kb, p < 0.0001) and more telomeres <3 kb than controls (n = 22) (70.43 ± 8.76% vs. 33.05 ± 6.93%, p < 0.0001). The proportion of ultrashort telomeres (<1.6 kb) was also higher in patients than controls (39.29 ± 10.69% vs. 10.40 ± 4.09%, p < 0.0001). TeS <1.6 kb was associated with severe (n = 11) compared with non-severe (n = 7) BMF (p = 0.027). Patients with multi-organ manifestations (n = 10) had more telomeres <1.6 kb than those with one affected organ system (n = 8) (p = 0.029). Findings suggest that TBD clinical manifestations are associated with a disproportionately higher number of haematopoietic cell telomeres reaching a telomere brink, whose length at the single telomere level is yet to be determined.


Asunto(s)
Trastornos de Fallo de la Médula Ósea , Disqueratosis Congénita , Pancitopenia , Humanos , Biología , Disqueratosis Congénita/genética , Telómero/genética , Acortamiento del Telómero
12.
Genome Res ; 30(8): 1170-1180, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32817165

RESUMEN

De novo mutations (DNMs) are increasingly recognized as rare disease causal factors. Identifying DNM carriers will allow researchers to study the likely distinct molecular mechanisms of DNMs. We developed Famdenovo to predict DNM status (DNM or familial mutation [FM]) of deleterious autosomal dominant germline mutations for any syndrome. We introduce Famdenovo.TP53 for Li-Fraumeni syndrome (LFS) and analyze 324 LFS family pedigrees from four US cohorts: a validation set of 186 pedigrees and a discovery set of 138 pedigrees. The concordance index for Famdenovo.TP53 prediction was 0.95 (95% CI: [0.92, 0.98]). Forty individuals (95% CI: [30, 50]) were predicted as DNM carriers, increasing the total number from 42 to 82. We compared clinical and biological features of FM versus DNM carriers: (1) cancer and mutation spectra along with parental ages were similarly distributed; (2) ascertainment criteria like early-onset breast cancer (age 20-35 yr) provides a condition for an unbiased estimate of the DNM rate: 48% (23 DNMs vs. 25 FMs); and (3) hotspot mutation R248W was not observed in DNMs, although it was as prevalent as hotspot mutation R248Q in FMs. Furthermore, we introduce Famdenovo.BRCA for hereditary breast and ovarian cancer syndrome and apply it to a small set of family data from the Cancer Genetics Network. In summary, we introduce a novel statistical approach to systematically evaluate deleterious DNMs in inherited cancer syndromes. Our approach may serve as a foundation for future studies evaluating how new deleterious mutations can be established in the germline, such as those in TP53.


Asunto(s)
Neoplasias de la Mama/genética , Predisposición Genética a la Enfermedad/genética , Mutación de Línea Germinal/genética , Síndrome de Li-Fraumeni/genética , Neoplasias Ováricas/genética , Adulto , Proteína BRCA1/genética , Proteína BRCA2/genética , Neoplasias de la Mama/diagnóstico , Familia , Femenino , Humanos , Linaje , Proteína p53 Supresora de Tumor/genética , Adulto Joven
14.
PLoS Genet ; 16(10): e1009078, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-33090998

RESUMEN

Telomeres are DNA-protein structures at the ends of chromosomes essential in maintaining chromosomal stability. Observational studies have identified associations between telomeres and elevated cancer risk, including hematologic malignancies; but biologic mechanisms relating telomere length to cancer etiology remain unclear. Our study sought to better understand the relationship between telomere length and cancer risk by evaluating genetically-predicted telomere length (gTL) in relation to the presence of clonal somatic copy number alterations (SCNAs) in peripheral blood leukocytes. Genotyping array data were acquired from 431,507 participants in the UK Biobank and used to detect SCNAs from intensity information and infer telomere length using a polygenic risk score (PRS) of variants previously associated with leukocyte telomere length. In total, 15,236 (3.5%) of individuals had a detectable clonal SCNA on an autosomal chromosome. Overall, higher gTL value was positively associated with the presence of an autosomal SCNA (OR = 1.07, 95% CI = 1.05-1.09, P = 1.61×10-15). There was high consistency in effect estimates across strata of chromosomal event location (e.g., telomeric ends, interstitial or whole chromosome event; Phet = 0.37) and strata of copy number state (e.g., gain, loss, or neutral events; Phet = 0.05). Higher gTL value was associated with a greater cellular fraction of clones carrying autosomal SCNAs (ß = 0.004, 95% CI = 0.002-0.007, P = 6.61×10-4). Our population-based examination of gTL and SCNAs suggests inherited components of telomere length do not preferentially impact autosomal SCNA event location or copy number status, but rather likely influence cellular replicative potential.


Asunto(s)
Evolución Clonal/genética , Neoplasias/sangre , Homeostasis del Telómero/genética , Telómero/genética , Adulto , Anciano , División Celular/genética , Variaciones en el Número de Copia de ADN/genética , Femenino , Genética de Población , Humanos , Leucocitos/metabolismo , Leucocitos/patología , Masculino , Persona de Mediana Edad , Neoplasias/epidemiología , Neoplasias/genética , Reino Unido/epidemiología
15.
Neuropsychol Rehabil ; 33(2): 193-225, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-34775908

RESUMEN

Word retraining techniques can improve picture naming of treated items in people with semantic dementia (SD). The utility of this, however, has been questioned given the propensity for under- and overgeneralization errors in naming in SD. Few studies have investigated the occurrence of such errors. This study examined whether, following tailored word retraining: (1) misuse of words increases, (2) the type of naming errors changes, and/or (3) clarity of communication is reduced. Performance on trained and untrained word naming from nine participants with SD who completed a word retraining programme were analysed. Responses from baseline and post-intervention assessments were coded for misuse (i.e., trained word produced for another target item), error type, and communication clarity. All participants showed significant improvement for trained vocabulary. There was no significant increase in misuse of words, with such errors occurring rarely. At a group level, there was an increased tendency toward omission errors for untrained items, and a reduction in semantically related responses. However, this did not impact on clarity scores with no consistent change across participants. In sum, we found no negative impacts following tailored word retraining, providing further evidence of the benefit of these programmes for individuals with SD.


Asunto(s)
Demencia Frontotemporal , Vocabulario , Humanos , Comunicación , Semántica
16.
Neuropsychol Rehabil ; 33(9): 1488-1511, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35984770

RESUMEN

Word retraining programs have been shown to improve naming ability post-stroke and in progressive aphasias. Here, we investigated benefits for a 22-year-old Danish man (DJ), whose difficulties followed brain damage from heavy alcohol misuse. Using a multiple baseline-across-behaviours design (target behaviour: retrieval of word list items), DJ completed a 4-week "Look, Listen, Repeat" program on a computer. Ninety personally relevant target words were selected to create three matched lists. List 1 was trained for 10 sessions over 2 weeks, followed by 9 sessions for List 2 over 2 weeks, while the third list remained untrained. Naming performance was evaluated at baseline, during the intervention, and at 1 and 4 months post-training. Naming improved following each intervention block (p < .001), with only one data point overlapping between the baseline and treatment phases for trained items. Untrained words remained unchanged (p = 1.00), with 50% of data points non-overlapping across baseline to treatment phases. Performance was maintained over time, and appeared to generalize, with DJ naming more trained objects in their natural setting (85%) than untrained items (64%). While more evidence is needed, brief (20-minute), intensive (5-day/week) word retraining programs may assist word retrieval for people with brain damage associated with alcohol misuse.


Asunto(s)
Alcoholismo , Afasia , Lesiones Encefálicas , Accidente Cerebrovascular , Masculino , Humanos , Adulto Joven , Adulto , Proyectos de Investigación , Alcoholismo/complicaciones , Afasia/complicaciones , Accidente Cerebrovascular/complicaciones , Lesiones Encefálicas/complicaciones , Encéfalo
17.
Hum Mutat ; 43(12): 1856-1859, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36116037

RESUMEN

Next-generation sequencing (NGS) is a valuable tool, but has limitations in sequencing through repetitive runs of single nucleotides (homopolymers). Pathogenic germline variants in WRAP53 encoding telomere Cajal body protein 1 (TCAB1) are a known cause of dyskeratosis congenita. We identified a significant NGS error in WRAP53, c.1562dup, p.Ala522Glyfs*8 (rs755116516 G>-/GG/GGG) that did not validate by Sanger sequencing. This error occurs because rs755116516 G>-/GG/GGG (Chr17:7,606,714) is polymorphic, and variants at this site challenge the ability of NGS to accurately call the correct number of nucleotides in a homopolymer run. This was further complicated by the fact that chr17:7,606,721 (rs769202794) is multiallelic G>A, C, T, and that chr17:7,606,722 is also multiallelic (rs7640C>A/G/T and rs373064567C>delC). In addition to the expert interpretation of potentially clinically actionable variants, it recommended that all variants in regions of the genome with homopolymers be validated by Sanger sequencing before clinical action.


Asunto(s)
Cromosomas Humanos Par 17 , Disqueratosis Congénita , Chaperonas Moleculares , Telomerasa , Humanos , Cromosomas Humanos Par 17/genética , Disqueratosis Congénita/genética , Variación Genética , Mutación de Línea Germinal/genética , Secuenciación de Nucleótidos de Alto Rendimiento , Análisis de Secuencia de ADN , Chaperonas Moleculares/genética , Telomerasa/genética
18.
Breast Cancer Res Treat ; 191(1): 159-167, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34652547

RESUMEN

PURPOSE: Women with Li-Fraumeni Syndrome (LFS) often consider risk-reducing mastectomy (RRM) due to extremely high risk of breast cancer at early ages. Data on uptake of RRM in LFS are scarce, and are inferred from experience in women with pathogenic variants (PVs) in BRCA1/2, despite differences in cancer risks. This study evaluated RRM uptake in a cohort of women with LFS. METHODS: Women (n = 205) with LFS enrolled in NCI's LFS study reported lifetime cancer diagnoses and mastectomies and completed questionnaires regarding reproductive history, cancer worry and risk perceptions. A subset of women participating in an annual cancer screening study received counseling regarding RRM. RESULTS: 65% (n = 71) of women diagnosed with presumed unilateral breast cancer (n = 109) underwent contralateral RRM over their lifetime. Nearly half (49%, n = 25) of the women who did not complete contralateral RRM within one year of their breast cancer diagnosis (n = 51) developed contralateral breast cancer (median interval = 6 years). Only 18.5% (n = 15) of women without breast cancer history (n = 81) underwent bilateral RRM. Median age at bilateral RRM of 39 years was sub-optimal for breast cancer risk reduction. Contralateral RRM was associated with early genetic diagnosis, participation in the screening study, and fewer prior cancers. Bilateral RRM uptake was associated with having had children, having breastfed, and high cancer worry. CONCLUSION: Uptake of contralateral RRM is high in women with LFS. The frequency of contralateral breast cancer necessitates active discussion of benefits of contralateral RRM and counseling regarding bilateral RRM should be tailored to the early age at risk of breast cancer onset in LFS. There is a need for research into the survival and long-term benefits of RRM in LFS.


Asunto(s)
Neoplasias de la Mama , Síndrome de Li-Fraumeni , Neoplasias de Mama Unilaterales , Neoplasias de la Mama/epidemiología , Neoplasias de la Mama/genética , Neoplasias de la Mama/cirugía , Niño , Detección Precoz del Cáncer , Femenino , Mutación de Línea Germinal , Humanos , Síndrome de Li-Fraumeni/epidemiología , Síndrome de Li-Fraumeni/genética , Mastectomía
19.
Epilepsia ; 63(5): 1115-1129, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35253220

RESUMEN

OBJECTIVE: Transient epileptic amnesia (TEA) is a form of adult-onset epilepsy where presenting features are well described, but little is known regarding prognosis. This study aimed to elucidate the long-term prognosis of TEA regarding seizure control, memory, medical comorbidities, and life expectancy. METHODS: Up-to-date clinical information was collected for 47 people diagnosed with TEA who had joined the The Impairment of Memory in Epilepsy (TIME) study 10 years earlier. At entry to the study, information about comorbid conditions was systematically collected. Details regarding subsequent diagnoses, seizure activity, changes to treatment, or reports of cognitive impairment were obtained through the family doctor. The variables of interest were compared with UK population data. RESULTS: Mortality in the cohort was 21 of 47 (45%), with an average age at death of 82.5 years. Seizures remained well controlled for the majority but medications required adjustments in dose and type for some (28%). A small number (three cases) remained seizure-free without medication. History of cardiovascular disorders was frequent (78.7%), typically involving hypertension (55.3%). Autoimmune disorders (25.5%), cancer (23.4%), and depression (21.3%) were also commonly reported. Although persisting memory problems were often noted, dementia was diagnosed in seven cases (14.9%). Life expectancy and comorbidities in TEA did not differ from available population norms. SIGNIFICANCE: Results suggest that life expectancy is not reduced in TEA. Although TEA does not appear to be a self-limiting form of epilepsy, seizures are typically well controlled via medication. Because adjustments to medication may be required, even after long periods of stability, ongoing medical monitoring is recommended. Comorbid vascular disorders are frequent but appear similar to general population estimates. Monitoring mood may be important, given that people with chronic conditions are often vulnerable to depression. Because of persisting memory difficulties, the development of effective memory interventions for people with TEA is warranted.


Asunto(s)
Amnesia , Epilepsia , Adulto , Amnesia/epidemiología , Estudios de Cohortes , Epilepsia/complicaciones , Epilepsia/diagnóstico , Epilepsia/epidemiología , Estudios de Seguimiento , Humanos , Convulsiones/complicaciones
20.
Pediatr Res ; 92(6): 1671-1680, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-35322185

RESUMEN

BACKGROUND AND OBJECTIVES: Shwachman Diamond syndrome (SDS) is an inherited bone marrow failure syndrome (IBMFS) associated with pancreatic insufficiency, neutropenia, and skeletal dysplasia. Biallelic pathogenic variants (PV) in SBDS account for >90% of SDS. We hypothesized that the SDS phenotype varies based on genotype and conducted a genotype-phenotype correlation study to better understand these complexities. METHODS: We reviewed records of all patients with SDS or SDS-like syndromes in the National Cancer Institute's (NCI) IBMFS study. Additional published SDS cohorts were reviewed and compared with the NCI cohort. RESULTS: PVs in SBDS were present in 32/47 (68.1%) participants. Biallelic inheritance of SBDS c.258 + 2T > C and c.183_184TA > CT was the most common genotype in our study (25/32, 78.1%) and published cohorts. Most patients had the SDS hallmark features of neutropenia (45/45, 100%), pancreatic insufficiency (41/43, 95.3%), and/or bony abnormalities (29/36, 80.6%). Developmental delay was common (20/34, 58.8%). Increased risk of hematologic malignancies at young ages and the rarity of solid malignancies was observed in both the NCI cohort and published studies. CONCLUSIONS: SDS is a complex childhood illness with a narrow genotypic spectrum. Patients may first present to primary care, gastroenterology, orthopedic, and/or hematology clinics. Coordinated multidisciplinary care is important for diagnosis and patient management. CLINICAL TRIAL REGISTRATION: ClinicalTrials.gov Identifier: NCT00027274. IMPACT: The clinical and genetic spectrum of Shwachman Diamond Syndrome was comprehensively evaluated, and the findings illustrate the importance of a multidisciplinary approach for these complex patients. Our work reveals: 1. a narrow genotypic spectrum in SDS; 2. a low risk of solid tumors in patients with SDS; 3. patients with SDS have clinical manifestations in multiple organ systems.


Asunto(s)
Enfermedades de la Médula Ósea , Insuficiencia Pancreática Exocrina , Lipomatosis , Neutropenia , Humanos , Síndrome de Shwachman-Diamond/complicaciones , Enfermedades de la Médula Ósea/genética , Síndromes Congénitos de Insuficiencia de la Médula Ósea/complicaciones , Lipomatosis/diagnóstico , Insuficiencia Pancreática Exocrina/diagnóstico , Insuficiencia Pancreática Exocrina/genética , Neutropenia/genética , Genotipo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA