Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
J Virol ; 95(8)2021 03 25.
Artículo en Inglés | MEDLINE | ID: mdl-33504603

RESUMEN

Herpes simplex virus (HSV) entry and cell-cell fusion require glycoproteins gD, gH/gL, and gB. HSV entry begins with gD binding its receptor (nectin-1), which then activates gH/gL to enable the conversion of pre-fusion gB to its active form to promote membrane fusion. Virus-neutralizing monoclonal antibodies (Mabs) interfere with one or more of these steps and localization of their epitopes identifies functional sites on each protein. Utilizing this approach, we have identified the gH/gL binding face on gD and the corresponding gD binding site on gH/gL. Here, we used combinations of these Mabs to define the orientation of gD and gH/gL relative to each other. We reasoned that if two Mabs, one directed at gD and the other at gH/gL, block fusion more effectively than when either were used alone (additive), then their epitopes would be spatially distanced and binding of one would not directly interfere with binding of the other during fusion. However, if the two Mabs blocked fusion with equal or lesser efficacy that when either were used alone (indifferent), we propose that their epitopes would be in close proximity in the complex. Using a live cell fusion assay, we found that some Mab pairings blocked the fusion with different mechanisms while other had a similar mechanisms of action. Grouping the different combinations of antibodies into indifferent and additive groups, we present a model for the orientation of gD vis-à-vis gH/gL in the complex.Importance: Virus entry and cell-cell fusion mediated by HSV require four essential glycoproteins, gD, gH/gL, gB and a gD receptor. Virus-neutralizing antibodies directed against any of these proteins bind to residues within key functional sites and interfere with essential steps in the fusion pathway. Thus, the epitopes of these Mabs overlap and point to critical, functional sites on their target proteins. Here, we combined gD and gH/gL antibodies to determine whether they work in an additive or non-additive (indifferent) fashion to block specific events in glycoprotein-driven cell-cell fusion. Identifying combinations of antibodies that have additive effects will help in the rational design of an effective therapeutic "polyclonal antibody" to treat HSV disease. In addition, identification of the exact contact regions between gD and gH/gL can inform the design of small molecules that would interfere with the gD-gH/gL complex formation, thus preventing the virus from entering the host cell.

2.
J Virol ; 94(20)2020 09 29.
Artículo en Inglés | MEDLINE | ID: mdl-32759318

RESUMEN

A cascade of protein-protein interactions between four herpes simplex virus (HSV) glycoproteins (gD, gH/gL, and gB) drive fusion between the HSV envelope and host membrane, thereby allowing for virus entry and infection. Specifically, binding of gD to one of its receptors induces a conformational change that allows gD to bind to the regulatory complex gH/gL, which then activates the fusogen gB, resulting in membrane fusion. Using surface plasmon resonance and a panel of anti-gD monoclonal antibodies (MAbs) that sterically blocked the interaction, we previously showed that gH/gL binds directly to gD at sites distinct from the gD receptor binding site. Here, using an analogous strategy, we first evaluated the ability of a panel of uncharacterized anti-gH/gL MAbs to block binding to gD and/or inhibit fusion. We found that the epitopes of four gD-gH/gL-blocking MAbs were located within flexible regions of the gH N terminus and the gL C terminus, while the fifth was placed around gL residue 77. Taken together, our data localized the gD binding region on gH/gL to a group of gH and gL residues at the membrane distal region of the heterodimer. Surprisingly, a second set of MAbs did not block gD-gH/gL binding but instead stabilized the complex by altering the kinetic binding. However, despite this prolonged gD-gH/gL interaction, "stabilizing" MAbs also inhibited cell-cell fusion, suggesting a unique mechanism by which the fusion process is halted. Our findings support targeting the gD-gH/gL interaction to prevent fusion in both therapeutic and vaccine strategies against HSV.IMPORTANCE Key to developing a human HSV vaccine is an understanding of the virion glycoproteins involved in entry. HSV employs multiple glycoproteins for attachment, receptor interaction, and membrane fusion. Determining how these proteins function was resolved, in part, by structural biology coupled with immunological and biologic evidence. After binding, virion gD interacts with a receptor to activate the regulator gH/gL complex, triggering gB to drive fusion. Multiple questions remain, one being the physical location of each glycoprotein interaction site. Using protective antibodies with known epitopes, we documented the long-sought interaction between gD and gH/gL, detailing the region on gD important to create the gD-gH/gL triplex. Now, we have identified the corresponding gD contact sites on gH/gL. Concurrently we discovered a novel mechanism whereby gH/gL antibodies stabilize the complex and inhibit fusion progression. Our model for the gD-gH/gL triplex provides a new framework for studying fusion, which identifies targets for vaccine development.


Asunto(s)
Herpesvirus Humano 1/metabolismo , Proteínas del Envoltorio Viral/metabolismo , Animales , Anticuerpos Monoclonales/química , Anticuerpos Antivirales/química , Fusión de Membrana , Células Sf9 , Spodoptera , Proteínas del Envoltorio Viral/antagonistas & inhibidores , Proteínas del Envoltorio Viral/genética
3.
J Virol ; 93(15)2019 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-31092568

RESUMEN

Herpes simplex virus (HSV) requires fusion between the viral envelope and host membrane. Four glycoproteins, gD, gH/gL, and gB, are essential for this process. To initiate fusion, gD binds its receptor and undergoes a conformational change that hypothetically leads to activation of gH/gL, which in turn triggers the fusion protein gB to undergo rearrangements leading to membrane fusion. Our model predicts that gD must interact with both its receptor and gH/gL to promote fusion. In support of this, we have shown that gD is structurally divided into two "faces": one for the binding receptor and the other for its presumed interaction with gH/gL. However, until now, we have been unable to demonstrate a direct interaction between gD and gH/gL. Here, we used surface plasmon resonance to show that the ectodomain of gH/gL binds directly to the ectodomain of gD when (i) gD is captured by certain anti-gD monoclonal antibodies (MAbs) that are bound to a biosensor chip, (ii) gD is bound to either one of its receptors on a chip, and (iii) gD is covalently bound to the chip surface. To localize the gH/gL binding site on gD, we used multiple anti-gD MAbs from six antigenic communities and determined which ones interfered with this interaction. MAbs from three separate communities block gD-gH/gL binding, and their epitopes encircle a geographical area on gD that we propose comprises the gH/gL binding domain. Together, our results show that gH/gL interacts directly with gD, supporting a role for this step in HSV entry.IMPORTANCE HSV entry is a multistep process that requires the actions of four glycoproteins, gD, gH/gL, and gB. Our current model predicts that gD must interact with both its receptor and gH/gL to promote viral entry. Although we know a great deal about how gD binds its receptors, until now we have been unable to demonstrate a direct interaction between gD and gH/gL. Here, we used a highly sensitive surface plasmon resonance technique to clearly demonstrate that gD and gH/gL interact. Furthermore, using multiple MAbs with defined epitopes, we have delineated a domain on gD that is independent of that used for receptor binding and which likely represents the gH/gL interaction domain. Targeting this interaction to prevent fusion may enhance both therapeutic and vaccine strategies.


Asunto(s)
Herpesvirus Humano 1/fisiología , Mapas de Interacción de Proteínas , Proteínas del Envoltorio Viral/metabolismo , Internalización del Virus , Sitios de Unión , Unión Proteica , Resonancia por Plasmón de Superficie
4.
J Virol ; 92(24)2018 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-30282715

RESUMEN

HSV virus-cell and cell-cell fusion requires multiple interactions between four essential virion envelope glycoproteins, gD, gB, gH, and gL, and between gD and a cellular receptor, nectin-1 or herpesvirus entry mediator (HVEM). Current models suggest that binding of gD to receptors induces a conformational change that leads to activation of gH/gL and consequent triggering of the prefusion form of gB to promote membrane fusion. Since protein-protein interactions guide each step of fusion, identifying the sites of interaction may lead to the identification of potential therapeutic targets that block this process. We have previously identified two "faces" on gD: one for receptor binding and the other for its presumed interaction with gH/gL. We previously separated the gD monoclonal antibodies (MAbs) into five competition communities. MAbs from two communities (MC2 and MC5) neutralize virus infection and block cell-cell fusion but do not block receptor binding, suggesting that they block binding of gD to gH/gL. Using a combination of classical epitope mapping of gD mutants with fusion and entry assays, we identified two residues (R67 and P54) on the presumed gH/gL interaction face of gD that allowed for fusion and viral entry but were no longer sensitive to inhibition by MC2 or MC5, yet both were blocked by other MAbs. As neutralizing antibodies interfere with essential steps in the fusion pathway, our studies strongly suggest that these key residues block the interaction of gD with gH/gL.IMPORTANCE Virus entry and cell-cell fusion mediated by HSV require gD, gH/gL, gB, and a gD receptor. Neutralizing antibodies directed against any of these proteins bind to residues within key functional sites and interfere with an essential step in the fusion pathway. Thus, the epitopes of these MAbs identify critical, functional sites on their target proteins. Unlike many anti-gD MAbs, which block binding of gD to a cellular receptor, two, MC2 and MC5, block a separate, downstream step in the fusion pathway which is presumed to be the activation of the modulator of fusion, gH/gL. By combining epitope mapping of a panel of gD mutants with fusion and virus entry assays, we have identified residues that are critical in the binding and function of these two MAbs. This new information helps to define the site of the presumptive interaction of gD with gH/gL, of which we have limited knowledge.


Asunto(s)
Anticuerpos Neutralizantes/farmacología , Simplexvirus/fisiología , Proteínas del Envoltorio Viral/química , Proteínas del Envoltorio Viral/metabolismo , Animales , Anticuerpos Monoclonales/farmacología , Anticuerpos Antivirales/farmacología , Sitios de Unión/efectos de los fármacos , Línea Celular , Chlorocebus aethiops , Mapeo Epitopo , Ratones , Modelos Moleculares , Unión Proteica , Conformación Proteica , Células Vero , Proteínas del Envoltorio Viral/genética , Internalización del Virus/efectos de los fármacos
5.
J Virol ; 90(23): 10535-10544, 2016 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-27630245

RESUMEN

Receptor-dependent herpes simplex virus (HSV)-induced cell-cell fusion requires glycoproteins gD, gH/gL, and gB. Our current model posits that during fusion, receptor-activated conformational changes in gD activate gH/gL, which subsequently triggers the transformation of the prefusion form of gB into a fusogenic state. To examine the role of each glycoprotein in receptor-dependent cell-cell fusion, we took advantage of our discovery that fusion by wild-type herpes simplex virus 2 (HSV-2) glycoproteins occurs twice as fast as that achieved by HSV-1 glycoproteins. By sequentially swapping each glycoprotein between the two serotypes, we established that fusion speed was governed by gH/gL, with gH being the main contributor. While the mutant forms of gB fuse at distinct rates that are dictated by their molecular structure, these restrictions can be overcome by gH/gL of HSV-2 (gH2/gL2), thereby enhancing their activity. We also found that deregulated forms of gD of HSV-1 (gD1) and gH2/gL2 can alter the fusogenic potential of gB, promoting cell fusion in the absence of a cellular receptor, and that deregulated forms of gB can drive the fusion machinery to even higher levels. Low pH enhanced fusion by affecting the structure of both gB and gH/gL mutants. Together, our data highlight the complexity of the fusion machinery, the impact of the activation state of each glycoprotein on the fusion process, and the critical role of gH/gL in regulating HSV-induced fusion. IMPORTANCE Cell-cell fusion mediated by HSV glycoproteins requires gD, gH/gL, gB, and a gD receptor. Here, we show that fusion by wild-type HSV-2 glycoproteins occurs twice as fast as that achieved by HSV-1 glycoproteins. By sequentially swapping each glycoprotein between the two serotypes, we found that the fusion process was controlled by gH/gL. Restrictions imposed on the gB structure by mutations could be overcome by gH2/gL2, enhancing the activity of the mutants. Under low-pH conditions or when using deregulated forms of gD1 and gH2/gL2, the fusogenic potential of gB could only be increased in the absence of receptor, underlining the exquisite regulation that occurs in the presence of receptor. Our data highlight the complexity of the fusion machinery, the impact of the activation state of each glycoprotein on the fusion process, and the critical role of gH/gL in regulating HSV-induced fusion.

6.
PLoS Pathog ; 10(9): e1004373, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25233449

RESUMEN

Entry of herpes simplex virus (HSV) into a target cell requires complex interactions and conformational changes by viral glycoproteins gD, gH/gL, and gB. During viral entry, gB transitions from a prefusion to a postfusion conformation, driving fusion of the viral envelope with the host cell membrane. While the structure of postfusion gB is known, the prefusion conformation of gB remains elusive. As the prefusion conformation of gB is a critical target for neutralizing antibodies, we set out to describe its structure by making genetic insertions of fluorescent proteins (FP) throughout the gB ectodomain. We created gB constructs with FP insertions in each of the three globular domains of gB. Among 21 FP insertion constructs, we found 8 that allowed gB to remain membrane fusion competent. Due to the size of an FP, regions in gB that tolerate FP insertion must be solvent exposed. Two FP insertion mutants were cell-surface expressed but non-functional, while FP insertions located in the crown were not surface expressed. This is the first report of placing a fluorescent protein insertion within a structural domain of a functional viral fusion protein, and our results are consistent with a model of prefusion HSV gB constructed from the prefusion VSV G crystal structure. Additionally, we found that functional FP insertions from two different structural domains could be combined to create a functional form of gB labeled with both CFP and YFP. FRET was measured with this construct, and we found that when co-expressed with gH/gL, the FRET signal from gB was significantly different from the construct containing CFP alone, as well as gB found in syncytia, indicating that this construct and others of similar design are likely to be powerful tools to monitor the conformation of gB in any model system accessible to light microscopy.


Asunto(s)
Proteínas Bacterianas/metabolismo , Herpes Simple/metabolismo , Proteínas Luminiscentes/metabolismo , Fusión de Membrana , Conformación Proteica , Proteínas del Envoltorio Viral/química , Proteínas Virales de Fusión/metabolismo , Proteínas Bacterianas/genética , Herpes Simple/virología , Humanos , Proteínas Luminiscentes/genética , Modelos Moleculares , Mutagénesis Insercional , Mutación/genética , Simplexvirus/fisiología , Proteínas del Envoltorio Viral/genética , Proteínas del Envoltorio Viral/metabolismo , Proteínas Virales de Fusión/genética , Internalización del Virus
7.
Methods ; 90: 68-75, 2015 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-26022509

RESUMEN

Herpes simplex virus (HSV) entry and cell-cell fusion require the envelope proteins gD, gH/gL and gB. We propose that receptor-activated conformational changes to gD activate gH/gL, which then triggers gB (the fusogen) into an active form. To study this dynamic process, we have adapted a dual split protein assay originally developed to study the kinetics of human immunodeficiency virus (HIV) mediated fusion. This assay uses a chimera of split forms of renilla luciferase (RL) and green fluorescent protein (GFP). Effector cells are co-transfected with the glycoproteins and one of the split reporters. Receptor-bearing target cells are transfected with the second reporter. Co-culture results in fusion and restoration of RL, which can convert a membrane permeable substrate into a luminescent product, thereby enabling one to monitor initiation and extent of fusion in live cells in real time. Restoration of GFP can also be studied by fluorescence microscopy. Two sets of split reporters have been developed: the original one allows one to measure fusion kinetics over hours whereas the more recent version was designed to enhance the sensitivity of RL activity allowing one to monitor both initiation and rates of fusion in minutes. Here, we provide a detailed, step-by-step protocol for the optimization of the assay (which we call the SLA for split luciferase assay) using the HSV system. We also show several examples of the power of this assay to examine both the initiation and kinetics of cell-cell fusion by wild type forms of gD, gB, gH/gL of both serotypes of HSV as well as the effect of mutations and antibodies that alter the kinetics of fusion. The SLA can be applied to other viral systems that carry out membrane fusion.


Asunto(s)
Fusión Celular , Microscopía Fluorescente/métodos , Proteínas Virales de Fusión/química , Células Cultivadas , Genes Reporteros , Interacciones Huésped-Patógeno , Cinética , Luciferasas/análisis , Modelos Biológicos , Mutación , Simplexvirus/fisiología , Proteínas Virales de Fusión/análisis , Proteínas Virales de Fusión/genética
8.
J Virol ; 87(23): 12656-66, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24049165

RESUMEN

Viral entry by herpes simplex virus (HSV) is executed and tightly regulated by four glycoproteins. While several viral glycoproteins can mediate viral adhesion to host cells, only binding of gD to cellular receptor can activate core fusion proteins gB and gH/gL to execute membrane fusion and viral entry. Atomic structures of gD bound to receptor indicate that the C terminus of the gD ectodomain must be displaced before receptor can bind to gD, but it is unclear which conformational changes in gD activate membrane fusion. We rationally designed mutations in gD to displace the C terminus and observe if fusion could be activated without receptor binding. Using a cell-based fusion assay, we found that gD V231W induced cell-cell fusion in the absence of receptor. Using recombinant gD V231W protein, we observed binding to conformationally sensitive antibodies or HSV receptor and concluded that there were changes proximal to the receptor binding interface, while the tertiary structure of gD V231W was similar to that of wild-type gD. We used a biosensor to analyze the kinetics of receptor binding and the extent to which the C terminus blocks binding to receptor. We found that the C terminus of gD V231W was enriched in the open or displaced conformation, indicating a mechanism for its function. We conclude that gD V231W triggers fusion through displacement of its C terminus and that this motion is indicative of how gD links receptor binding to exposure of interfaces on gD that activate fusion via gH/gL and gB.


Asunto(s)
Herpes Simple/virología , Herpesvirus Humano 1/metabolismo , Proteínas del Envoltorio Viral/química , Proteínas del Envoltorio Viral/metabolismo , Secuencias de Aminoácidos , Fusión Celular , Línea Celular , Herpes Simple/metabolismo , Herpesvirus Humano 1/química , Herpesvirus Humano 1/genética , Humanos , Fusión de Membrana , Mutación Missense , Unión Proteica , Receptores Virales/metabolismo , Proteínas del Envoltorio Viral/genética
9.
J Virol ; 87(21): 11332-45, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-23946457

RESUMEN

Herpes simplex virus (HSV) entry and cell-cell fusion require glycoproteins gD, gH/gL, and gB. We propose that receptor-activated changes to gD cause it to activate gH/gL, which then triggers gB into an active form. We employed a dual split-protein (DSP) assay to monitor the kinetics of HSV glycoprotein-induced cell-cell fusion. This assay measures content mixing between two cells, i.e., fusion, within the same cell population in real time (minutes to hours). Titration experiments suggest that both gD and gH/gL act in a catalytic fashion to trigger gB. In fact, fusion rates are governed by the amount of gB on the cell surface. We then used the DSP assay to focus on mutants in two functional regions (FRs) of gB, FR1 and FR3. FR1 contains the fusion loops (FL1 and FL2), and FR3 encompasses the crown at the trimer top. All FL mutants initiated fusion very slowly, if at all. However, the fusion rates caused by some FL2 mutants increased over time, so that total fusion by 8 h looked much like that of the WT. Two distinct kinetic patterns, "slow and fast," emerged for mutants in the crown of gB (FR3), again showing differences in initiation and ongoing fusion. Of note are the fusion kinetics of the gB syn mutant (LL871/872AA). Although this mutant was originally included as an ongoing high-rate-of-fusion control, its initiation of fusion is so rapid that it appears to be on a "hair trigger." Thus, the DSP assay affords a unique way to examine the dynamics of HSV glycoprotein-induced cell fusion.


Asunto(s)
Proteínas del Envoltorio Viral/genética , Proteínas del Envoltorio Viral/metabolismo , Animales , Fusión Celular , Línea Celular Tumoral , Análisis Mutacional de ADN , Ratones , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo
10.
J Virol ; 86(10): 5437-51, 2012 May.
Artículo en Inglés | MEDLINE | ID: mdl-22398293

RESUMEN

Vaccinia virus (VACV) L1 is a myristoylated envelope protein which is required for cell entry and the fusion of infected cells. L1 associates with members of the entry-fusion complex (EFC), but its specific role in entry has not been delineated. We recently demonstrated (Foo CH, et al., Virology 385:368-382, 2009) that soluble L1 binds to cells and blocks entry, suggesting that L1 serves as the receptor-binding protein for entry. Our goal is to identify the structural domains of L1 which are essential for its functions in VACV entry. We hypothesized that the myristate and the conserved residues at the N terminus of L1 are critical for entry. To test our hypothesis, we generated mutants in the N terminus of L1 and used a complementation assay to evaluate their ability to rescue infectivity. We also assessed the myristoylation efficiency of the mutants and their ability to interact with the EFC. We found that the N terminus of L1 constitutes a region that is critical for the infectivity of VACV and for myristoylation. At the same time, the nonmyristoylated mutants were incorporated into mature virions, suggesting that the myristate is not required for the association of L1 with the viral membrane. Although some of the mutants exhibited altered structural conformations, two mutants with impaired infectivity were similar in conformation to wild-type L1. Importantly, these two mutants, with changes at A4 and A5, undergo myristoylation. Overall, our results imply dual differential roles for myristate and the amino acids at the N terminus of L1. We propose a myristoyl switch model to describe how L1 functions.


Asunto(s)
Ácido Mirístico/metabolismo , Virus Vaccinia/fisiología , Vaccinia/virología , Proteínas del Envoltorio Viral/química , Proteínas del Envoltorio Viral/metabolismo , Internalización del Virus , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Línea Celular , Humanos , Datos de Secuencia Molecular , Alineación de Secuencia , Virus Vaccinia/química , Virus Vaccinia/genética , Proteínas del Envoltorio Viral/genética
11.
Viruses ; 15(4)2023 03 30.
Artículo en Inglés | MEDLINE | ID: mdl-37112875

RESUMEN

Herpes simplex virus (HSV) requires four essential virion glycoproteins-gD, gH, gL, and gB-for virus entry and cell fusion. To initiate fusion, the receptor binding protein gD interacts with one of two major cell receptors, HVEM or nectin-1. Once gD binds to a receptor, fusion is carried out by the gH/gL heterodimer and gB. A comparison of free and receptor-bound gD crystal structures revealed that receptor binding domains are located within residues in the N-terminus and core of gD. Problematically, the C-terminus lies across and occludes these binding sites. Consequentially, the C-terminus must relocate to allow for both receptor binding and the subsequent gD interaction with the regulatory complex gH/gL. We previously constructed a disulfide bonded (K190C/A277C) protein that locked the C-terminus to the gD core. Importantly, this mutant protein bound receptor but failed to trigger fusion, effectively separating receptor binding and gH/gL interaction. Here, we show that "unlocking" gD by reducing the disulfide bond restored not only gH/gL interaction but fusion activity as well, confirming the importance of C-terminal movement in triggering the fusion cascade. We characterize these changes, showing that the C-terminus region exposed by unlocking is: (1) a gH/gL binding site; (2) contains epitopes for a group (competition community) of monoclonal antibodies (Mabs) that block gH/gL binding to gD and cell-cell fusion. Here, we generated 14 mutations within the gD C-terminus to identify residues important for the interaction with gH/gL and the key conformational changes involved in fusion. As one example, we found that gD L268N was antigenically correct in that it bound most Mabs but was impaired in fusion, exhibited compromised binding of MC14 (a Mab that blocks both gD-gH/gL interaction and fusion), and failed to bind truncated gH/gL, all events that are associated with the inhibition of C-terminus movement. We conclude that, within the C-terminus, residue 268 is essential for gH/gL binding and induction of conformational changes and serves as a flexible inflection point in the critical movement of the gD C-terminus.


Asunto(s)
Simplexvirus , Proteínas del Envoltorio Viral , Simplexvirus/genética , Proteínas del Envoltorio Viral/metabolismo , Unión Proteica , Glicoproteínas/metabolismo , Disulfuros , Internalización del Virus
12.
J Virol ; 84(23): 12292-9, 2010 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-20861251

RESUMEN

Herpesviruses minimally require the envelope proteins gB and gH/gL for virus entry and cell-cell fusion; herpes simplex virus (HSV) additionally requires the receptor-binding protein gD. Although gB is a class III fusion protein, gH/gL does not resemble any documented viral fusion protein at a structural level. Based on those data, we proposed that gH/gL does not function as a cofusogen with gB but instead regulates the fusogenic activity of gB. Here, we present data to support that hypothesis. First, receptor-positive B78H1-C10 cells expressing gH/gL fused with receptor-negative B78H1 cells expressing gB and gD (fusion in trans). Second, fusion occurred when gH/gL-expressing C10 cells preexposed to soluble gD were subsequently cocultured with gB-expressing B78 cells. In contrast, prior exposure of gB-expressing C10 cells to soluble gD did not promote subsequent fusion with gH/gL-expressing B78 cells. These data suggest that fusion involves activation of gH/gL by receptor-bound gD. Most importantly, soluble gH/gL triggered a low level of fusion of C10 cells expressing gD and gB; a much higher level was achieved when gB-expressing C10 cells were exposed to a combination of soluble gH/gL and gD. These data clearly show that gB acts as the HSV fusogen following activation by gD and gH/gL. We suggest the following steps leading to fusion: (i) conformational changes to gD upon receptor binding, (ii) alteration of gH/gL by receptor-activated gD, and (iii) upregulation of the fusogenic potential of gB following its interaction with activated gH/gL. The third step may be common to other herpesviruses.


Asunto(s)
Fusión de Membrana/fisiología , Glicoproteínas de Membrana/metabolismo , Simplexvirus/metabolismo , Proteínas del Envoltorio Viral/metabolismo , Animales , Fusión Celular , Línea Celular , Técnica del Anticuerpo Fluorescente , Células Gigantes/citología , Ratones , Plásmidos/genética
13.
Mol Ther Methods Clin Dev ; 16: 145-154, 2020 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-32042851

RESUMEN

Effective oncolytic virotherapy may require systemic delivery, tumor targeting, and resistance to virus-neutralizing (VN) antibodies. Since herpes simplex virus (HSV) glycoprotein D (gD) is the viral attachment/entry protein and predominant VN target, we examined the impact of gD retargeting alone and in combination with alterations in dominant VN epitopes on virus susceptibility to VN antibodies. We compared the binding of a panel of anti-gD monoclonal antibodies (mAbs) that mimic antibody specificities in human HSV-immune sera to the purified ectodomains of wild-type and retargeted gD, revealing the retention of two prominent epitopes. Substitution of a key residue in each epitope, separately and together, revealed that both substitutions (1) blocked retargeted gD recognition by mAbs to the respective epitopes, and, in combination, caused a global reduction in mAb binding; (2) protected against fusion inhibition by VN mAbs reactive with each epitope in virus-free cell-cell fusion assays; and (3) increased the resistance of retargeted HSV-1 to these VN mAbs. Although the combined modifications of retargeted gD allowed bona fide retargeting, incorporation into virions was partially compromised. Our results indicate that stacking of epitope mutations can additively block retargeted gD recognition by VN antibodies but also that improvements in gD incorporation into virus particles may be required.

14.
mBio ; 8(4)2017 08 22.
Artículo en Inglés | MEDLINE | ID: mdl-28830949

RESUMEN

All enveloped viruses, including herpesviruses, must fuse their envelope with the host membrane to deliver their genomes into target cells, making this essential step subject to interference by antibodies and drugs. Viral fusion is mediated by a viral surface protein that transits from an initial prefusion conformation to a final postfusion conformation. Strikingly, the prefusion conformation of the herpesvirus fusion protein, gB, is poorly understood. Herpes simplex virus (HSV), a model system for herpesviruses, causes diseases ranging from mild skin lesions to serious encephalitis and neonatal infections. Using cryo-electron tomography and subtomogram averaging, we have characterized the structure of the prefusion conformation and fusion intermediates of HSV-1 gB. To this end, we have set up a system that generates microvesicles displaying full-length gB on their envelope. We confirmed proper folding of gB by nondenaturing electrophoresis-Western blotting with a panel of monoclonal antibodies (MAbs) covering all gB domains. To elucidate the arrangement of gB domains, we labeled them by using (i) mutagenesis to insert fluorescent proteins at specific positions, (ii) coexpression of gB with Fabs for a neutralizing MAb with known binding sites, and (iii) incubation of gB with an antibody directed against the fusion loops. Our results show that gB starts in a compact prefusion conformation with the fusion loops pointing toward the viral membrane and suggest, for the first time, a model for gB's conformational rearrangements during fusion. These experiments further illustrate how neutralizing antibodies can interfere with the essential gB structural transitions that mediate viral entry and therefore infectivity.IMPORTANCE The herpesvirus family includes herpes simplex virus (HSV) and other human viruses that cause lifelong infections and a variety of diseases, like skin lesions, encephalitis, and cancers. As enveloped viruses, herpesviruses must fuse their envelope with the host membrane to start an infection. This process is mediated by a viral surface protein that transitions from an initial conformation (prefusion) to a final, more stable, conformation (postfusion). However, the prefusion conformation of the herpesvirus fusion protein (gB) is poorly understood. To elucidate the structure of the prefusion conformation of HSV type 1 gB, we have employed cryo-electron microscopy to study gB molecules expressed on the surface of vesicles. Using different approaches to label gB's domains allowed us to model the structures of the prefusion and intermediate conformations of gB. Overall, our findings enhance our understanding of HSV fusion and lay the groundwork for the development of new ways to prevent and block HSV infection.


Asunto(s)
Herpesvirus Humano 1/química , Herpesvirus Humano 1/fisiología , Conformación Proteica , Proteínas del Envoltorio Viral/química , Proteínas del Envoltorio Viral/metabolismo , Proteínas Virales de Fusión/química , Proteínas Virales de Fusión/metabolismo , Animales , Anticuerpos Monoclonales/inmunología , Chlorocebus aethiops , Microscopía por Crioelectrón , Herpes Simple/inmunología , Herpes Simple/prevención & control , Herpes Simple/virología , Fusión de Membrana , Modelos Moleculares , Mutagénesis , Células Vero , Internalización del Virus
15.
mBio ; 4(2)2013 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-23443004

RESUMEN

UNLABELLED: Herpesvirus entry requires the viral glycoprotein triad of gB and gH/gL to carry out fusion between the virion envelope and a cellular membrane in order to release the nucleocapsid into the target cell. Herpes simplex virus (HSV) also requires glycoprotein gD to initiate the fusion cascade by binding a cell receptor such as nectin 1 or herpesvirus entry mediator (HVEM). While the structure of gB is that of a class III fusion protein, gH/gL has no features that resemble other viral fusion proteins. Instead, it is suggested that gH/gL acts as a regulator of gB. The crystal structure of HSV-2 gH/gL was obtained with a functional protein that had a deletion of 28 residues at the gH N terminus (gHΔ48/gL). Unexplainably, monoclonal antibodies (MAbs) with virus-neutralizing activity map to these residues. To reconcile these two disparate observations, we studied the ability of gHΔ48/gL to regulate fusion. Here, we show that the protein induces low (constitutive) levels of fusion by gB in the absence of gD and/or receptor. However, when gD and receptor are present, this mutant functions as well as does wild-type (wt) gH/gL for fusion. We propose that gHΔ48/gL has an intermediate structure on the pathway leading to full regulatory activation. We suggest that a key step in the pathway of fusion is the conversion of gH/gL to an activated state by receptor-bound gD; this activated gH/gL resembles gHΔ48/gL. IMPORTANCE: Herpes simplex viruses (HSVs) cause many human diseases, from mild cold sores to lethal neonatal herpes. As an enveloped virus, HSV must fuse its membrane with a host membrane in order for replication to take place. The virus uses four glycoproteins for this process, gD, gB, and gH/gL, and either of two cell receptors, herpesvirus entry mediator (HVEM) and nectin 1. Although the virus can enter the cell by direct fusion at the plasma membrane or via endocytosis, the same four glycoproteins are involved. The absence of any of these proteins abolishes the entry process. Here, we show that a mutant form of gH/gL, gHΔ48/gL, can induce fusion of gB-expressing cells in the absence of gD and a gD receptor. Our study supports the concept that gB is the HSV fusogen and its activity is regulated by gH/gL.


Asunto(s)
Simplexvirus/fisiología , Proteínas del Envoltorio Viral/metabolismo , Internalización del Virus , Animales , Anticuerpos Monoclonales/inmunología , Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/inmunología , Línea Celular , Ratones , Modelos Biológicos , Modelos Moleculares , Conformación Proteica , Eliminación de Secuencia , Simplexvirus/genética , Proteínas del Envoltorio Viral/química , Proteínas del Envoltorio Viral/genética , Proteínas del Envoltorio Viral/inmunología , Liberación del Virus
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA