Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
1.
PLoS Biol ; 20(9): e3001780, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-36067153

RESUMEN

Tardigrades are able to tolerate almost complete dehydration by entering a reversible ametabolic state called anhydrobiosis and resume their animation upon rehydration. Dehydrated tardigrades are exceptionally stable and withstand various physical extremes. Although trehalose and late embryogenesis abundant (LEA) proteins have been extensively studied as potent protectants against dehydration in other anhydrobiotic organisms, tardigrades produce high amounts of tardigrade-unique protective proteins. Cytoplasmic-abundant heat-soluble (CAHS) proteins are uniquely invented in the lineage of eutardigrades, a major class of the phylum Tardigrada and are essential for their anhydrobiotic survival. However, the precise mechanisms of their action in this protective role are not fully understood. In the present study, we first postulated the presence of tolerance proteins that form protective condensates via phase separation in a stress-dependent manner and searched for tardigrade proteins that reversibly form condensates upon dehydration-like stress. Through a comprehensive search using a desolvating agent, trifluoroethanol (TFE), we identified 336 proteins, collectively dubbed "TFE-Dependent ReversiblY condensing Proteins (T-DRYPs)." Unexpectedly, we rediscovered CAHS proteins as highly enriched in T-DRYPs, 3 of which were major components of T-DRYPs. We revealed that these CAHS proteins reversibly polymerize into many cytoskeleton-like filaments depending on hyperosmotic stress in cultured cells and undergo reversible gel-transition in vitro. Furthermore, CAHS proteins increased cell stiffness in a hyperosmotic stress-dependent manner and counteract the cell shrinkage caused by osmotic pressure, and even improved the survival against hyperosmotic stress. The conserved putative helical C-terminal region is necessary and sufficient for filament formation by CAHS proteins, and mutations disrupting the secondary structure of this region impaired both the filament formation and the gel transition. On the basis of these results, we propose that CAHS proteins are novel cytoskeleton-like proteins that form filamentous networks and undergo gel-transition in a stress-dependent manner to provide on-demand physical stabilization of cell integrity against deformative forces during dehydration and could contribute to the exceptional physical stability in a dehydrated state.


Asunto(s)
Tardigrada , Animales , Humanos , Deshidratación , Estructura Secundaria de Proteína , Proteínas/metabolismo , Tardigrada/genética
2.
Proc Natl Acad Sci U S A ; 118(50)2021 12 14.
Artículo en Inglés | MEDLINE | ID: mdl-34876521

RESUMEN

In fast-moving cells such as amoeba and immune cells, dendritic actin filaments are spatiotemporally regulated to shape large-scale plasma membrane protrusions. Despite their importance in migration, as well as in particle and liquid ingestion, how their dynamics are affected by micrometer-scale features of the contact surface is still poorly understood. Here, through quantitative image analysis of Dictyostelium on microfabricated surfaces, we show that there is a distinct mode of topographical guidance directed by the macropinocytic membrane cup. Unlike other topographical guidance known to date that depends on nanometer-scale curvature sensing protein or stress fibers, the macropinocytic membrane cup is driven by the Ras/PI3K/F-actin signaling patch and its dependency on the micrometer-scale topographical features, namely PI3K/F-actin-independent accumulation of Ras-GTP at the convex curved surface, PI3K-dependent patch propagation along the convex edge, and its actomyosin-dependent constriction at the concave edge. Mathematical model simulations demonstrate that the topographically dependent initiation, in combination with the mutually defining patch patterning and the membrane deformation, gives rise to the topographical guidance. Our results suggest that the macropinocytic cup is a self-enclosing structure that can support liquid ingestion by default; however, in the presence of structured surfaces, it is directed to faithfully trace bent and bifurcating ridges for particle ingestion and cell guidance.


Asunto(s)
Simulación por Computador , Dictyostelium/fisiología , Modelos Biológicos , Pinocitosis/fisiología , Membrana Celular/fisiología , Quimiotaxis , Movimiento , Fosfatidilinositol 3-Quinasas , Transducción de Señal
3.
Dev Dyn ; 252(11): 1363-1374, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37341471

RESUMEN

BACKGROUND: Ascidians significantly change their body structure through metamorphosis, but the spatio-temporal cell dynamics in the early metamorphosis stage has not been clarified. A natural Ciona embryo is surrounded by maternally derived non-self-test cells before metamorphosis. However, after metamorphosis, the juvenile is surrounded by self-tunic cells derived from mesenchymal cell lineages. Both test cells and tunic cells are thought to be changed their distributions during metamorphosis, but the precise timing is unknown. RESULTS: Using a metamorphosis induction by mechanical stimulation, we investigated the dynamics of mesenchymal cells during metamorphosis in a precise time course. After the stimulation, two-round Ca2+ transients were observed. Migrating mesenchymal cells came out through the epidermis within 10 min after the second phase. We named this event "cell extravasation." The cell extravasation occurred at the same time as the backward movement of posterior trunk epidermal cells. Timelapse imaging of transgenic-line larva revealed that non-self-test cells and self-tunic cells temporarily coexist outside the body until the test cells are eliminated. At the juvenile stage, only extravasated self-tunic cells remained outside the body. CONCLUSIONS: We found that mesenchymal cells extravasated following two-round Ca2+ transients, and distributions of test cells and tunic cells changed in the outer body after tail regression.


Asunto(s)
Ciona intestinalis , Ciona , Urocordados , Animales , Ciona intestinalis/fisiología , Epidermis , Células Epidérmicas , Metamorfosis Biológica/fisiología , Larva/fisiología
4.
PLoS Comput Biol ; 17(8): e1009237, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34383753

RESUMEN

Navigation of fast migrating cells such as amoeba Dictyostelium and immune cells are tightly associated with their morphologies that range from steady polarized forms that support high directionality to those more complex and variable when making frequent turns. Model simulations are essential for quantitative understanding of these features and their origins, however systematic comparisons with real data are underdeveloped. Here, by employing deep-learning-based feature extraction combined with phase-field modeling framework, we show that a low dimensional feature space for 2D migrating cell morphologies obtained from the shape stereotype of keratocytes, Dictyostelium and neutrophils can be fully mapped by an interlinked signaling network of cell-polarization and protrusion dynamics. Our analysis links the data-driven shape analysis to the underlying causalities by identifying key parameters critical for migratory morphologies both normal and aberrant under genetic and pharmacological perturbations. The results underscore the importance of deciphering self-organizing states and their interplay when characterizing morphological phenotypes.


Asunto(s)
Movimiento Celular/fisiología , Aprendizaje Profundo , Modelos Biológicos , Animales , Polaridad Celular/fisiología , Forma de la Célula/fisiología , Extensiones de la Superficie Celular/fisiología , Células Cultivadas , Cíclidos , Biología Computacional , Simulación por Computador , Dictyostelium/citología , Dictyostelium/fisiología , Fibroblastos/citología , Fibroblastos/fisiología , Células HL-60 , Humanos
5.
Proc Natl Acad Sci U S A ; 116(10): 4291-4296, 2019 03 05.
Artículo en Inglés | MEDLINE | ID: mdl-30782791

RESUMEN

Despite their central role in multicellular organization, navigation rules that dictate cell rearrangement remain largely undefined. Contact between neighboring cells and diffusive attractant molecules are two of the major determinants of tissue-level patterning; however, in most cases, molecular and developmental complexity hinders one from decoding the exact governing rules of individual cell movement. A primordial example of tissue patterning by cell rearrangement is found in the social amoeba Dictyostelium discoideum where the organizing center or the "tip" self-organizes as a result of sorting of differentiating prestalk and prespore cells. By employing microfluidics and microsphere-based manipulation of navigational cues at the single-cell level, here we uncovered a previously overlooked mode of Dictyostelium cell migration that is strictly directed by cell-cell contact. The cell-cell contact signal is mediated by E-set Ig-like domain-containing heterophilic adhesion molecules TgrB1/TgrC1 that act in trans to induce plasma membrane recruitment of the SCAR complex and formation of dendritic actin networks, and the resulting cell protrusion competes with those induced by chemoattractant cAMP. Furthermore, we demonstrate that both prestalk and prespore cells can protrude toward the contact signal as well as to chemotax toward cAMP; however, when given both signals, prestalk cells orient toward the chemoattractant, whereas prespore cells choose the contact signal. These data suggest a model of cell sorting by competing juxtacrine and diffusive cues, each with potential to drive its own mode of collective cell migration.


Asunto(s)
Movimiento Celular/fisiología , Quimiotaxis/fisiología , Locomoción/fisiología , Actinas , Agregación Celular , Diferenciación Celular , AMP Cíclico/metabolismo , Dictyostelium/fisiología , Difusión , Microfluídica , Proteínas Protozoarias/fisiología , Transducción de Señal
6.
Proc Biol Sci ; 288(1945): 20203207, 2021 02 24.
Artículo en Inglés | MEDLINE | ID: mdl-33593191

RESUMEN

Marine invertebrate larvae are known to begin metamorphosis in response to environmentally derived cues. However, little is known about the relationships between the perception of such cues and internal signalling for metamorphosis. To elucidate the mechanism underlying the initiation of metamorphosis in the ascidian, Ciona intestinalis type A (Ciona robusta), we artificially induced ascidian metamorphosis and investigated Ca2+ dynamics from pre- to post-metamorphosis. Ca2+ transients were observed and consisted of two temporally distinct phases with different durations before tail regression which is the early event of metamorphosis. In the first phase, Phase I, the Ca2+ transient in the papillae (adhesive organ of the anterior trunk) was coupled with the Ca2+ transient in dorsally localized cells and endoderm cells just after mechanical stimulation. The Ca2+ transients in Phase I were also observed when applying only short stimulation. In the second phase, Phase II, the Ca2+ transient in papillae was observed again and lasted for approximately 5-11 min just after the Ca2+ transient in Phase I continued for a few minutes. The impaired papillae by Foxg-knockdown failed to induce the second Ca2+ transient in Phase II and tail regression. In Phase II, a wave-like Ca2+ propagation was also observed across the entire epidermis. Our results indicate that the papillae sense a mechanical cue and two-round Ca2+ transients in papillae transmits the internal metamorphic signals to different tissues, which subsequently induces tail regression. Our study will help elucidate the internal mechanism of metamorphosis in marine invertebrate larvae in response to environmental cues.


Asunto(s)
Ciona intestinalis , Animales , Epidermis , Larva , Metamorfosis Biológica , Transducción de Señal
7.
BMC Biol ; 18(1): 75, 2020 06 29.
Artículo en Inglés | MEDLINE | ID: mdl-32600317

RESUMEN

BACKGROUND: Lymphocytes circulate between peripheral lymphoid tissues via blood and lymphatic systems, and chemokine-induced migration is important in trafficking lymphocytes to distant sites. The small GTPase Rap1 is important in mediating lymphocyte motility, and Rap1-GEFs are involved in chemokine-mediated Rap1 activation. Here, we describe the roles and mechanisms of Rap1-GEFs in lymphocyte trafficking. RESULTS: In this study, we show that RA-GEF-1 and 2 (also known as Rapgef2 and 6) are key guanine nucleotide exchange factors (GEF) for Rap1 in lymphocyte trafficking. Mice harboring T cell-specific knockouts of Rapgef2/6 demonstrate defective homing and egress of T cells. Sphingosine-1-phosphate (S1P) as well as chemokines activates Rap1 in a RA-GEF-1/2-dependent manner, and their deficiency in T cells impairs Mst1 phosphorylation, cell polarization, and chemotaxis toward S1P gradient. On the other hand, B cell-specific knockouts of Rapgef2/6 impair chemokine-dependent retention of B cells in the bone marrow and passively facilitate egress. Phospholipase D2-dependent production of phosphatidic acid by these chemotactic factors determines spatial distribution of Rap1-GTP subsequent to membrane localization of RA-GEFs and induces the development of front membrane. On the other hand, basal de-phosphorylation of RA-GEFs is necessary for chemotactic factor-dependent increase in GEF activity for Rap1. CONCLUSIONS: We demonstrate here that subcellular distribution and activation of RA-GEFs are key factors for a directional movement of lymphocytes and that phosphatidic acid is critical for membrane translocation of RA-GEFs with chemokine stimulation.


Asunto(s)
Movimiento Celular , Factores de Intercambio de Guanina Nucleótido/metabolismo , Linfocitos/fisiología , Ácidos Fosfatidicos/metabolismo , Animales , Línea Celular , Femenino , Humanos , Masculino , Ratones , Fosforilación
8.
Proc Natl Acad Sci U S A ; 114(21): E4149-E4157, 2017 05 23.
Artículo en Inglés | MEDLINE | ID: mdl-28495969

RESUMEN

Cell-cell signaling is subject to variability in the extracellular volume, cell number, and dilution that potentially increase uncertainty in the absolute concentrations of the extracellular signaling molecules. To direct cell aggregation, the social amoebae Dictyostelium discoideum collectively give rise to oscillations and waves of cyclic adenosine 3',5'-monophosphate (cAMP) under a wide range of cell density. To date, the systems-level mechanism underlying the robustness is unclear. By using quantitative live-cell imaging, here we show that the magnitude of the cAMP relay response of individual cells is determined by fold change in the extracellular cAMP concentrations. The range of cell density and exogenous cAMP concentrations that support oscillations at the population level agrees well with conditions that support a large fold-change-dependent response at the single-cell level. Mathematical analysis suggests that invariance of the oscillations to density transformation is a natural outcome of combining secrete-and-sense systems with a fold-change detection mechanism.


Asunto(s)
AMP Cíclico/metabolismo , Dictyostelium/fisiología , Comunicación Paracrina
9.
Dev Biol ; 416(2): 286-99, 2016 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-27373689

RESUMEN

Dictyostelium morphogenesis requires the tip, which acts as an organizer and conducts orchestrated cell movement and cell differentiation. At the slug stage the tip region contains prestalk A (pstA) cells, which are usually recognized by their expression of reporter constructs that utilize a fragment of the promoter of the ecmA gene. Here, using the promoter region of the o-methyl transferase 12 gene (omt12) to drive reporter expression, we demonstrate the presence, also within the pstA region, of a novel prestalk cell subtype: the pstV(A) cells. Surprisingly, a sub-population of the vegetative cells express a pstV(A): GFP marker and, sort out to the tip, both when developing alone and when co-developed with an excess of unmarked cells. The development of such a purified GFP-marked population is greatly accelerated: by precocious cell aggregation and tip formation with accompanying precocious elevation of developmental gene transcription. We therefore suggest that the tip contains at least two prestalk cell subtypes: the developmentally-specified pstA cells and the lineage-primed pstV(A) cells. It is presumably the pstV(A) cells that play the dominant role in morphogenesis during the earlier stages of development. The basis for the lineage priming is, however, unclear because we can find no correlation between pstV(A) differentiation and nutrient status during growth or cell cycle position at the time of starvation, the two known determinants of probable cell fate.


Asunto(s)
Dictyostelium/citología , Agregación Celular , Linaje de la Célula , Movimiento Celular , Dictyostelium/crecimiento & desarrollo , Citometría de Flujo , Genes Protozoarios , Genes Reporteros , Proteínas Fluorescentes Verdes/análisis , Proteínas Fluorescentes Verdes/genética , Microscopía Confocal , Microscopía Fluorescente , Morfogénesis , Regiones Promotoras Genéticas , Proteína O-Metiltransferasa/genética , Proteínas Protozoarias/genética
10.
Genes Cells ; 21(12): 1276-1289, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-27723196

RESUMEN

Antisense RNA has emerged as a crucial regulator of opposite-strand protein-coding genes in the long noncoding RNA (lncRNA) category, but little is known about their dynamics and decay process in the context of a stress response. Antisense transcripts from the fission yeast fbp1 locus (fbp1-as) are expressed in glucose-rich conditions and anticorrelated with transcription of metabolic stress-induced lncRNA (mlonRNA) and mRNA on the sense strand during glucose starvation. Here, we investigate the localization and decay of antisense RNAs at fbp1 and other loci, and propose a model to explain the rapid switch between antisense and sense mlonRNA/mRNA transcription triggered by glucose starvation. We show that fbp1-as shares many features with mRNAs, such as a 5'-cap and poly(A)-tail, and that its decay partially depends upon Rrp6, a cofactor of the nuclear exosome complex involved in 3'-5' degradation of RNA. Fluorescence in situ hybridization and polysome fractionation show that the majority of remaining fbp1-as localizes to the cytoplasm and binds to polyribosomes in glucose-rich conditions. Furthermore, fbp1-as and antisense RNA at other stress-responsive loci are promptly degraded via the cotranslational nonsense-mediated decay (NMD) pathway. These results suggest NMD may potentiate the swift disappearance of antisense RNAs in response to cellular stress.


Asunto(s)
Regulación Fúngica de la Expresión Génica , Glucosa/metabolismo , ARN sin Sentido/metabolismo , ARN de Hongos/metabolismo , ARN Largo no Codificante/metabolismo , Schizosaccharomyces/genética , Citoplasma/metabolismo , Genes Fúngicos , Estabilidad del ARN , Ribosomas/metabolismo , Schizosaccharomyces/metabolismo , Estrés Fisiológico
11.
Proc Natl Acad Sci U S A ; 110(13): 5016-21, 2013 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-23479620

RESUMEN

In both randomly moving Dictyostelium and mammalian cells, phosphatidylinositol (3,4,5)-trisphosphate and F-actin are known to propagate as waves at the membrane and act to push out the protruding edge. To date, however, the relationship between the wave geometry and the patterns of amoeboid shape change remains elusive. Here, by using phase map analysis, we show that morphology dynamics of randomly moving Dictyostelium discoideum cells can be characterized by the number, topology, and position of spatial phase singularities, i.e., points that represent organizing centers of rotating waves. A single isolated singularity near the cellular edge induced a rotational protrusion, whereas a pair of singularities supported a symmetric extension. These singularities appeared by strong phase resetting due to de novo nucleation at the back of preexisting waves. Analysis of a theoretical model indicated excitability of the system that is governed by positive feedback from phosphatidylinositol (3,4,5)-trisphosphate to PI3-kinase activation, and we showed experimentally that this requires F-actin. Furthermore, by incorporating membrane deformation into the model, we demonstrated that geometries of competing waves explain most of the observed semiperiodic changes in amoeboid morphology.


Asunto(s)
Membrana Celular/metabolismo , Dictyostelium/citología , Dictyostelium/fisiología , Modelos Biológicos , Animales , Activación Enzimática/fisiología , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Protozoarias/metabolismo
12.
J Cell Sci ; 126(Pt 20): 4614-26, 2013 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-23902692

RESUMEN

Migratory cells, including mammalian leukocytes and Dictyostelium, use G-protein-coupled receptor (GPCR) signaling to regulate MAPK/ERK, PI3K, TORC2/AKT, adenylyl cyclase and actin polymerization, which collectively direct chemotaxis. Upon ligand binding, mammalian GPCRs are phosphorylated at cytoplasmic residues, uncoupling G-protein pathways, but activating other pathways. However, connections between GPCR phosphorylation and chemotaxis are unclear. In developing Dictyostelium, secreted cAMP serves as a chemoattractant, with extracellular cAMP propagated as oscillating waves to ensure directional migratory signals. cAMP oscillations derive from transient excitatory responses of adenylyl cyclase, which then rapidly adapts. We have studied chemotactic signaling in Dictyostelium that express non-phosphorylatable cAMP receptors and show through chemotaxis modeling, single-cell FRET imaging, pure and chimeric population wavelet quantification, biochemical analyses and TIRF microscopy, that receptor phosphorylation is required to regulate adenylyl cyclase adaptation, long-range oscillatory cAMP wave production and cytoskeletal actin response. Phosphorylation defects thus promote hyperactive actin polymerization at the cell periphery, misdirected pseudopodia and the loss of directional chemotaxis. Our data indicate that chemoattractant receptor phosphorylation is required to co-regulate essential pathways for migratory cell polarization and chemotaxis. Our results significantly extend the understanding of the function of GPCR phosphorylation, providing strong evidence that this evolutionarily conserved mechanism is required in a signal attenuation pathway that is necessary to maintain persistent directional movement of Dictyostelium, neutrophils and other migratory cells.


Asunto(s)
Actinas/metabolismo , Quimiotaxis/fisiología , Dictyostelium/metabolismo , Proteínas Protozoarias/metabolismo , Receptores de AMP Cíclico/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Células Cultivadas , Dictyostelium/citología , Diana Mecanicista del Complejo 2 de la Rapamicina , Microscopía Confocal , Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Complejos Multiproteicos/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Fosforilación , Transducción de Señal , Serina-Treonina Quinasas TOR/metabolismo
13.
PLoS Comput Biol ; 9(6): e1003110, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23825937

RESUMEN

Populations of cells often switch states as a group to cope with environmental changes such as nutrient availability and cell density. Although the gene circuits that underlie the switches are well understood at the level of single cells, the ways in which such circuits work in concert among many cells to support group-level switches are not fully explored. Experimental studies of microbial quorum sensing show that group-level changes in cellular states occur in either a graded or an all-or-none fashion. Here, we show through numerical simulations and mathematical analysis that these behaviors generally originate from two distinct forms of bistability. The choice of bistability is uniquely determined by a dimensionless parameter that compares the synthesis and the transport of the inducing molecules. The role of the parameter is universal, such that it not only applies to the autoinducing circuits typically found in bacteria but also to the more complex gene circuits involved in transmembrane receptor signaling. Furthermore, in gene circuits with negative feedback, the same dimensionless parameter determines the coherence of group-level transitions from quiescence to a rhythmic state. The set of biochemical parameters in bacterial quorum-sensing circuits appear to be tuned so that the cells can use either type of transition. The design principle identified here serves as the basis for the analysis and control of cellular collective decision making.


Asunto(s)
Biología Celular , Toma de Decisiones , Modelos Teóricos
14.
Methods Mol Biol ; 2814: 149-161, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38954204

RESUMEN

Over the last decade, the use of microfabricated substrates has proven pivotal for studying the effect of substrate topography on cell deformation and migration. Microfabrication techniques allow one to construct a transparent substrate with topographic features with high designability and reproducibility and thus well suited to experiments that microscopically address how spatial and directional bias are brought about in the cytoskeletal machineries and hence cell motility. While much of the progress in this avenue of study has so far been made in adhesive cells of epithelial and mesenchymal nature, whether related phenomena exist in less adhesive fast migrating cells is relatively unknown. In this chapter, we describe a method that makes use of micrometer-scale ridges to study fast-migrating Dictyostelium cells where it was recently shown that membrane evagination associated with macropinocytic cup formation plays a pivotal role in the topography sensing. The method requires only basic photolithography, and thus the step-by-step protocol should be a good entry point for cell biologists looking to incorporate similar microfabrication approaches.


Asunto(s)
Movimiento Celular , Dictyostelium , Microtecnología , Dictyostelium/citología , Dictyostelium/fisiología , Microtecnología/métodos , Adhesión Celular
15.
Sci Rep ; 14(1): 7677, 2024 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-38561423

RESUMEN

The social amoeba Dictyostelium discoideum switches between solitary growth and social fruitification depending on nutrient availability. Under starvation, cells aggregate and form fruiting bodies consisting of spores and altruistic stalk cells. Once cells socially committed, they complete fruitification, even if a new source of nutrients becomes available. This social commitment is puzzling because it hinders individual cells from resuming solitary growth quickly. One idea posits that traits that facilitate premature de-commitment are hindered from being selected. We studied outcomes of the premature de-commitment through forced refeeding. Our results show that when refed cells interacted with non-refed cells, some of them became solitary, whereas a fraction was redirected to the altruistic stalk, regardless of their original fate. The refed cells exhibited reduced cohesiveness and were sorted out during morphogenesis. Our findings provide an insight into a division of labor of the social amoeba, in which less cohesive individuals become altruists.


Asunto(s)
Amoeba , Dictyostelium , Humanos , Diferenciación Celular , Morfogénesis , Movimiento Celular
16.
Biophys J ; 104(5): 1191-202, 2013 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-23473502

RESUMEN

The oscillation of chemoattractant cyclic AMP (cAMP) in Dictyostelium discoideum is a collective phenomenon that occurs when the basal level of extracellular cAMP exceeds a threshold and invokes cooperative mutual excitation of cAMP synthesis and secretion. For pulses to be relayed from cell to cell repetitively, secreted cAMP must be cleared and brought down to the subthreshold level. One of the main determinants of the oscillatory behavior is thus how much extracellular cAMP is degraded by extracellular phosphodiesterase (PDE). To date, the exact nature of PDE gene regulation remains elusive. Here, we performed live imaging analysis of mRNA transcripts for pdsA--the gene encoding extracellular PDE. Our analysis revealed that pdsA is upregulated during the rising phase of cAMP oscillations. Furthermore, by analyzing isolated cells, we show that expression of pdsA is strictly dependent on the presence of extracellular cAMP. pdsA is induced only at ∼1 nM extracellular cAMP, which is almost identical to the threshold concentration for the cAMP relay response. The observed precise regulation of PDE expression together with degradation of extracellular cAMP by PDE form a dual positive and negative feedback circuit, and model analysis shows that this sets the cAMP level near the threshold concentration for the cAMP relay response for a wide range of adenylyl cyclase activity. The overlap of the thresholds could allow oscillations of chemoattractant cAMP to self-organize at various starving conditions, making its development robust to fluctuations in its environment.


Asunto(s)
Dictyostelium/enzimología , Modelos Biológicos , Hidrolasas Diéster Fosfóricas/metabolismo , Proteínas Protozoarias/metabolismo , Transcripción Genética , AMP Cíclico/metabolismo , Retroalimentación , Hidrolasas Diéster Fosfóricas/genética , Proteínas Protozoarias/genética , ARN Mensajero/metabolismo , ARN Protozoario/metabolismo , Regulación hacia Arriba
17.
Front Cell Dev Biol ; 11: 1274127, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38020930

RESUMEN

Amoeboid cell movement and migration are wide-spread across various cell types and species. Microscopy-based analysis of the model systems Dictyostelium and neutrophils over the years have uncovered generality in their overall cell movement pattern. Under no directional cues, the centroid movement can be quantitatively characterized by their persistence to move in a straight line and the frequency of re-orientation. Mathematically, the cells essentially behave as a persistent random walker with memory of two characteristic time-scale. Such quantitative characterization is important from a cellular-level ethology point of view as it has direct connotation to their exploratory and foraging strategies. Interestingly, outside the amoebozoa and metazoa, there are largely uncharacterized species in the excavate taxon Heterolobosea including amoeboflagellate Naegleria. While classical works have shown that these cells indeed show typical amoeboid locomotion on an attached surface, their quantitative features are so far unexplored. Here, we analyzed the cell movement of Naegleria gruberi by employing long-time phase contrast imaging that automatically tracks individual cells. We show that the cells move as a persistent random walker with two time-scales that are close to those known in Dictyostelium and neutrophils. Similarities were also found in the shape dynamics which are characterized by the appearance, splitting and annihilation of the curvature waves along the cell edge. Our analysis based on the Fourier descriptor and a neural network classifier point to importance of morphology features unique to Naegleria including complex protrusions and the transient bipolar dumbbell morphologies.

18.
Dev Growth Differ ; 53(4): 503-17, 2011 May.
Artículo en Inglés | MEDLINE | ID: mdl-21585355

RESUMEN

From hormonal secretion to gene expression, multicellular dynamics are rich in oscillatory regulation. When organized in space and time, periodic cell-cell signaling can give rise to long-range coordination of gene expression and cell movement in tissues. Lack of synchrony of the oscillations on the other hand can serve as a source of initial divergence of cell fate in stem cells. How properties of individual cells can account for collective rhythmic behaviors at the tissue level remains elusive in most cases. Recently, studies in chemical reactions, synthetic gene circuits, yeast and social amoeba Dictyostelium have greatly enhanced our view of collective oscillations in cell populations. From these relatively simple systems, a unified view of how excitable and oscillatory regulations could be tuned and coupled to give rise to tissue-level oscillations is emerging. The review focuses on recent progress in cyclic adenosine monophosphate oscillations in Dictyostelium and highlights similarities and differences with other systems. We will see that the autonomy of single-cell level oscillations and different ways in which cells are coupled influence how group-level information can be encoded in collective oscillations.


Asunto(s)
Dictyostelium/citología , Células , AMP Cíclico/metabolismo , Dictyostelium/metabolismo
19.
Nature ; 433(7023): 323-6, 2005 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-15662425

RESUMEN

Nutrient-deprived Dictyostelium amoebae aggregate to form a multicellular structure by chemotaxis, moving towards propagating waves of cyclic AMP that are relayed from cell to cell. Organizing centres are not formed by founder cells, but are dynamic entities consisting of cores of outwardly rotating spiral waves that self-organize in a homogeneous cell population. Spiral waves are ubiquitously observed in chemical reactions as well as in biological systems. Although feedback control of spiral waves in spatially extended chemical reactions has been demonstrated in recent years, the mechanism by which control is achieved in living systems is unknown. Here we show that mutants of the cyclic AMP/protein kinase A pathway show periodic signalling, but fail to organize coherent long-range wave territories, owing to the appearance of numerous spiral cores. A theoretical model suggests that autoregulation of cell excitability mediated by protein kinase A acts to optimize the number of signalling centres.


Asunto(s)
Dictyostelium/citología , Dictyostelium/crecimiento & desarrollo , Animales , Quimiotaxis , AMP Cíclico/metabolismo , Proteínas Quinasas Dependientes de AMP Cíclico/genética , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Dictyostelium/genética , Dictyostelium/metabolismo , Retroalimentación Fisiológica , Modelos Biológicos , Mutación/genética , Transducción de Señal , Factores de Tiempo
20.
iScience ; 24(10): 103087, 2021 Oct 22.
Artículo en Inglés | MEDLINE | ID: mdl-34755081

RESUMEN

Macropinocytosis refers to the non-specific uptake of extracellular fluid, which plays ubiquitous roles in cell growth, immune surveillance, and virus entry. Despite its widespread occurrence, it remains unclear how its initial cup-shaped plasma membrane extensions form without any external solid support, as opposed to the process of particle uptake during phagocytosis. Here, by developing a computational framework that describes the coupling between the bistable reaction-diffusion processes of active signaling patches and membrane deformation, we demonstrated that the protrusive force localized to the edge of the patches can give rise to a self-enclosing cup structure, without further assumptions of local bending or contraction. Efficient uptake requires a balance among the patch size, magnitude of protrusive force, and cortical tension. Furthermore, our model exhibits cyclic cup formation, coexistence of multiple cups, and cup-splitting, indicating that these complex morphologies self-organize via a common mutually-dependent process of reaction-diffusion and membrane deformation.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA