Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
J Chem Inf Model ; 61(6): 2937-2956, 2021 06 28.
Artículo en Inglés | MEDLINE | ID: mdl-34101460

RESUMEN

Three-dimensional (3D) maps of the hydropathic environments of protein amino acid residues are information-rich descriptors of preferred conformations, interaction types and energetics, and solvent accessibility. The interactions made by each residue are the primary factor for rotamer selection and the secondary, tertiary, and even quaternary protein structure. Our evolving basis set of environmental data for each residue type can be used to understand the protein structure. This work focuses on the aromatic residues phenylalanine, tyrosine, and tryptophan and their structural roles. We calculated and analyzed side chain-to-environment 3D maps for over 70,000 residues of these three types that reveal, with respect to hydrophobic and polar interactions, the environment around each. After binning with backbone ϕ/ψ and side chain χ1, we clustered each bin by 3D similarities between map-map pairs. For each of the three residue types, four bins were examined in detail: one in the ß-pleat, two in the right-hand α-helix, and one in the left-hand α-helix regions of the Ramachandran plot. For high degrees of side chain burial, encapsulation of the side chain by hydrophobic interactions is ubiquitous. The more solvent-exposed side chains are more likely to be involved in polar interactions with their environments. Evidence for π-π interactions was observed in about half of the residues surveyed [phenylalanine (PHE): 53.3%, tyrosine (TYR): 34.1%, and tryptophan (TRP): 55.7%], but on an energy basis, this contributed to only ∼4% of the total. Evidence for π-cation interactions was observed in 14.1% of PHE, 8.3% of TYR, and 26.8% of TRP residues, but on an energy basis, this contributed to only ∼1%. This recognition of even these subtle interactions in the 3D hydropathic environment maps is key support for our interaction homology paradigm of protein structure elucidation and possibly prediction.


Asunto(s)
Fenilalanina , Tirosina , Cationes , Proteínas , Triptófano
2.
Nucleic Acids Res ; 43(6): 3100-13, 2015 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-25753662

RESUMEN

The MBD2-NuRD (Nucleosome Remodeling and Deacetylase) complex is an epigenetic reader of DNA methylation that regulates genes involved in normal development and neoplastic diseases. To delineate the architecture and functional interactions of the MBD2-NuRD complex, we previously solved the structures of MBD2 bound to methylated DNA and a coiled-coil interaction between MBD2 and p66α that recruits the CHD4 nucleosome remodeling protein to the complex. The work presented here identifies novel structural and functional features of a previously uncharacterized domain of MBD2 (MBD2IDR). Biophysical analyses show that the MBD2IDR is an intrinsically disordered region (IDR). However, despite this inherent disorder, MBD2IDR increases the overall binding affinity of MBD2 for methylated DNA. MBD2IDR also recruits the histone deacetylase core components (RbAp48, HDAC2 and MTA2) of NuRD through a critical contact region requiring two contiguous amino acid residues, Arg(286) and Leu(287). Mutating these residues abrogates interaction of MBD2 with the histone deacetylase core and impairs the ability of MBD2 to repress the methylated tumor suppressor gene PRSS8 in MDA-MB-435 breast cancer cells. These findings expand our knowledge of the multi-dimensional interactions of the MBD2-NuRD complex that govern its function.


Asunto(s)
Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/metabolismo , Complejo Desacetilasa y Remodelación del Nucleosoma Mi-2/química , Complejo Desacetilasa y Remodelación del Nucleosoma Mi-2/metabolismo , Secuencia de Aminoácidos , Animales , Línea Celular , Metilación de ADN , Proteínas de Unión al ADN/genética , Epigénesis Genética , Técnicas de Silenciamiento del Gen , Células HEK293 , Humanos , Proteínas Intrínsecamente Desordenadas/química , Proteínas Intrínsecamente Desordenadas/genética , Proteínas Intrínsecamente Desordenadas/metabolismo , Cinética , Complejo Desacetilasa y Remodelación del Nucleosoma Mi-2/genética , Ratones , Modelos Moleculares , Datos de Secuencia Molecular , Mutagénesis Sitio-Dirigida , Dominios y Motivos de Interacción de Proteínas , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Homología de Secuencia de Aminoácido
3.
Nucleic Acids Res ; 42(17): 11218-32, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25183517

RESUMEN

Unlike other members of the methyl-cytosine binding domain (MBD) family, MBD4 serves as a potent DNA glycosylase in DNA mismatch repair specifically targeting mCpG/TpG mismatches arising from spontaneous deamination of methyl-cytosine. The protein contains an N-terminal MBD (MBD4MBD) and a C-terminal glycosylase domain (MBD4GD) separated by a long linker. This arrangement suggests that the MBD4MBD either directly augments enzymatic catalysis by the MBD4GD or targets the protein to regions enriched for mCpG/TpG mismatches. Here we present structural and dynamic studies of MBD4MBD bound to dsDNA. We show that MBD4MBD binds with a modest preference for mCpG as compared to mismatch, unmethylated and hydroxymethylated DNA. We find that while MBD4MBD exhibits slow exchange between molecules of DNA (intermolecular exchange), the domain exhibits fast exchange between two sites in the same molecule of dsDNA (intramolecular exchange). Introducing a single-strand defect between binding sites does not greatly reduce the intramolecular exchange rate, consistent with a local hopping mechanism for moving along the DNA. These results support a model in which the MBD4MBD4 targets the intact protein to (m)CpG islands and promotes scanning by rapidly exchanging between successive mCpG sites which facilitates repair of nearby mCpG/TpG mismatches by the glycosylase domain.


Asunto(s)
Disparidad de Par Base , Islas de CpG , Metilación de ADN , ADN/química , Endodesoxirribonucleasas/química , Sitios de Unión , ADN/metabolismo , Endodesoxirribonucleasas/metabolismo , Modelos Moleculares , Estructura Terciaria de Proteína , Cloruro de Sodio/química
4.
J Biol Chem ; 289(3): 1294-302, 2014 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-24307175

RESUMEN

Although highly homologous to other methylcytosine-binding domain (MBD) proteins, MBD3 does not selectively bind methylated DNA, and thus the functional role of MBD3 remains in question. To explore the structural basis of its binding properties and potential function, we characterized the solution structure and binding distribution of the MBD3 MBD on hydroxymethylated, methylated, and unmethylated DNA. The overall fold of this domain is very similar to other MBDs, yet a key loop involved in DNA binding is more disordered than previously observed. Specific recognition of methylated DNA constrains the structure of this loop and results in large chemical shift changes in NMR spectra. Based on these spectral changes, we show that MBD3 preferentially localizes to methylated and, to a lesser degree, unmethylated cytosine-guanosine dinucleotides (CpGs), yet does not distinguish between hydroxymethylated and unmethylated sites. Measuring residual dipolar couplings for the different bound states clearly shows that the MBD3 structure does not change between methylation-specific and nonspecific binding modes. Furthermore, residual dipolar couplings measured for MBD3 bound to methylated DNA can be described by a linear combination of those for the methylation and nonspecific binding modes, confirming the preferential localization to methylated sites. The highly homologous MBD2 protein shows similar but much stronger localization to methylated as well as unmethylated CpGs. Together, these data establish the structural basis for the relative distribution of MBD2 and MBD3 on genomic DNA and their observed occupancy at active and inactive CpG-rich promoters.


Asunto(s)
Proteínas Aviares/química , Islas de CpG/fisiología , Proteínas de Unión al ADN/química , ADN/química , Animales , Proteínas Aviares/genética , Proteínas Aviares/metabolismo , Pollos , ADN/genética , ADN/metabolismo , Metilación de ADN/fisiología , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Unión Proteica/fisiología , Estructura Terciaria de Proteína
5.
Proc Natl Acad Sci U S A ; 108(18): 7487-92, 2011 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-21490301

RESUMEN

Nucleosome remodeling complexes comprise several large families of chromatin modifiers that integrate multiple epigenetic control signals to play key roles in cell type-specific transcription regulation. We previously isolated a methyl-binding domain protein 2 (MBD2)-containing nucleosome remodeling and deacetylation (NuRD) complex from primary erythroid cells and showed that MBD2 contributes to DNA methylation-dependent embryonic and fetal ß-type globin gene silencing during development in vivo. Here we present structural and biophysical details of the coiled-coil interaction between MBD2 and p66α, a critical component of the MBD2-NuRD complex. We show that enforced expression of the isolated p66α coiled-coil domain relieves MBD2-mediated globin gene silencing and that the expressed peptide interacts only with a subset of components of the MBD2-NuRD complex that does not include native p66α or Mi-2. These results demonstrate the central importance of the coiled-coil interaction and suggest that MBD2-dependent DNA methylation-driven gene silencing can be disrupted by selectively targeting this coiled-coil complex.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Epigénesis Genética/genética , Complejo Desacetilasa y Remodelación del Nucleosoma Mi-2/metabolismo , Modelos Moleculares , Proteínas Represoras/metabolismo , Western Blotting , Metilación de ADN/genética , Cartilla de ADN/genética , Silenciador del Gen , Humanos , Inmunoprecipitación , Interferencia de ARN
6.
Nucleic Acids Res ; 39(15): 6741-52, 2011 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-21531701

RESUMEN

The epigenetic code of DNA methylation is interpreted chiefly by methyl cytosine binding domain (MBD) proteins which in turn recruit multiprotein co-repressor complexes. We previously isolated one such complex, MBD2-NuRD, from primary erythroid cells and have shown it contributes to embryonic/fetal ß-type globin gene silencing during development. This complex has been implicated in silencing tumor suppressor genes in a variety of human tumor cell types. Here we present structural details of chicken MBD2 bound to a methylated DNA sequence from the ρ-globin promoter to which it binds in vivo and mediates developmental transcriptional silencing in normal erythroid cells. While previous studies have failed to show sequence specificity for MBD2 outside of the symmetric mCpG, we find that this domain binds in a single orientation on the ρ-globin target DNA sequence. Further, we show that the orientation and affinity depends on guanine immediately following the mCpG dinucleotide. Dynamic analyses show that DNA binding stabilizes the central ß-sheet, while the N- and C-terminal regions of the protein maintain mobility. Taken together, these data lead to a model in which DNA binding stabilizes the MBD2 structure and that binding orientation and affinity is influenced by the DNA sequence surrounding the central mCpG.


Asunto(s)
Proteínas Aviares/química , Metilación de ADN , Proteínas de Unión al ADN/química , ADN/química , Animales , Secuencia de Bases , Pollos , Modelos Moleculares , Resonancia Magnética Nuclear Biomolecular , Unión Proteica , Estructura Terciaria de Proteína
7.
Biochemistry ; 51(1): 466-74, 2012 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-22142337

RESUMEN

The KsgA methyltransferase is universally conserved and plays a key role in regulating ribosome biogenesis. KsgA has a complex reaction mechanism, transferring a total of four methyl groups onto two separate adenosine residues, A1518 and A1519, in the small subunit rRNA. This means that the active site pocket must accept both adenosine and N(6)-methyladenosine as substrates to catalyze formation of the final product N(6),N(6)-dimethyladenosine. KsgA is related to DNA adenosine methyltransferases, which transfer only a single methyl group to their target adenosine residue. We demonstrate that part of the discrimination between mono- and dimethyltransferase activity lies in a single residue in the active site, L114; this residue is part of a conserved motif, known as motif IV, which is common to a large group of S-adenosyl-L-methionine-dependent methyltransferases. Mutation of the leucine to a proline mimics the sequence found in DNA methyltransferases. The L114P mutant of KsgA shows diminished overall activity, and its ability to methylate the N(6)-methyladenosine intermediate to produce N(6),N(6)-dimethyladenosine is impaired; this is in contrast to a second active site mutation, N113A, which diminishes activity to a level comparable to L114P without affecting the methylation of N(6)-methyladenosine. We discuss the implications of this work for understanding the mechanism of KsgA's multiple catalytic steps.


Asunto(s)
Escherichia coli K12/enzimología , Proteínas de Escherichia coli/química , Metiltransferasas/química , Adenosina/química , Adenosina/genética , Adenosina/metabolismo , Secuencia de Aminoácidos , Dominio Catalítico/genética , Cristalografía por Rayos X , Metilación de ADN , Escherichia coli K12/genética , Proteínas de Escherichia coli/genética , Humanos , Metiltransferasas/deficiencia , Metiltransferasas/genética , Datos de Secuencia Molecular , Mutagénesis Sitio-Dirigida , Unión Proteica/genética , Subunidades Ribosómicas Pequeñas Bacterianas/enzimología , Subunidades Ribosómicas Pequeñas Bacterianas/genética , Especificidad por Sustrato/genética
8.
Biochemistry ; 50(32): 6973-82, 2011 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-21736375

RESUMEN

The serine protease thrombin plays multiple roles in many important physiological processes, especially coagulation, where it functions as both a pro- and anticoagulant. The polyanionic glycosaminoglycan heparin modulates thrombin's activity through binding at exosite II. Sucrose octasulfate (SOS) is often used as a surrogate for heparin, but it is not known whether it is an effective heparin mimic in its interaction with thrombin. We have characterized the interaction of SOS with thrombin in solution and determined a crystal structure of their complex. SOS binds thrombin with a K(d) of ~1.4 µM, comparable to that of the much larger polymeric heparin measured under the same conditions. Nonionic (hydrogen bonding) interactions make a larger contribution to thrombin binding of SOS than to heparin. SOS binding to exosite II inhibits thrombin's catalytic activity with high potency but with low efficacy. Analytical ultracentrifugation shows that bovine and human thrombins are monomers in solution in the presence of SOS, in contrast to their complexes with heparin, which are dimers. In the X-ray crystal structure, two molecules of SOS are bound nonequivalently to exosite II portions of a thrombin dimer, in contrast to the 1:2 stoichiometry of the heparin-thrombin complex, which has a different monomer association mode in the dimer. SOS and heparin binding to exosite II of thrombin differ on both chemical and structural levels and, perhaps most significantly, in thrombin inhibition. These differences may offer paths to the design of more potent exosite II binding, allosteric small molecules as modulators of thrombin function.


Asunto(s)
Sacarosa/análogos & derivados , Trombina/química , Animales , Secuencia de Carbohidratos , Bovinos , Cristalografía por Rayos X , Heparina de Bajo-Peso-Molecular/química , Humanos , Modelos Moleculares , Datos de Secuencia Molecular , Unión Proteica , Espectrometría de Fluorescencia , Sacarosa/química , Termodinámica , Ultracentrifugación
9.
Biochemistry ; 49(12): 2697-704, 2010 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-20163168

RESUMEN

The KsgA/Dim1 family of proteins is intimately involved in ribosome biogenesis in all organisms. These enzymes share the common function of dimethylating two adenosine residues near the 3'-OH end of the small subunit rRNA; orthologs in the three kingdoms, along with eukaryotic organelles, have evolved additional functions in rRNA processing, ribosome assembly, and, surprisingly, transcription in mitochondria. The methyltransferase reaction is intriguingly elaborate. The enzymes can bind to naked small subunit rRNA but cannot methylate their target bases until a subset of ribosomal proteins have bound and the nascent subunit has reached a certain level of maturity. Once this threshold is reached, the enzyme must stabilize two adenosines into the active site at separate times and two methyl groups must be transferred to each adenosine, with concomitant exchanges of the product S-adenosyl-l-homocysteine and the methyl donor substrate S-adenosyl-l-methionine. A detailed molecular understanding of this mechanism is currently lacking. Structural analysis of the interactions between the enzyme and substrate will aid in this understanding. Here we present the structure of KsgA from Methanocaldococcus jannaschii in complex with several ligands, including the first structure of S-adenosyl-l-methionine bound to a KsgA/Dim1 enzyme in a catalytically productive way. We also discuss the inability thus far to determine a structure of a target adenosine bound in its active site.


Asunto(s)
Adenosina/química , Ácidos Grasos/farmacología , Metiltransferasas/química , Conformación Proteica , ARN Ribosómico/química , Secuencia de Bases , Sitios de Unión/genética , Dominio Catalítico , Cristalografía por Rayos X , Diseño de Fármacos , Inhibidores Enzimáticos , Metionina/análogos & derivados , Metionina/química , Metionina/metabolismo , Metiltransferasas/antagonistas & inhibidores , Metiltransferasas/metabolismo , Modelos Moleculares , Datos de Secuencia Molecular , ARN Ribosómico/metabolismo , ARN Ribosómico 16S , S-Adenosilmetionina/metabolismo , Relación Estructura-Actividad , Especificidad por Sustrato
10.
Chem Biol ; 15(4): 402-12, 2008 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-18420147

RESUMEN

Mycobacterium tuberculosis FabH initiates type II fatty acid synthase-catalyzed formation of the long chain (C(16)-C(22)) acyl-coenzyme A (CoA) precursors of mycolic acids, which are major constituents of the bacterial cell envelope. Crystal structures of M. tuberculosis FabH (mtFabH) show the substrate binding site to be a buried, extended L-shaped channel with only a single solvent access portal. Entrance of an acyl-CoA substrate through the solvent portal would require energetically unfavorable reptational threading of the substrate to its reactive position. Using a class of FabH inhibitors, we have tested an alternative hypothesis that FabH exists in an "open" form during substrate binding and product release, and a "closed" form in which catalysis and intermediate steps occur. This hypothesis is supported by mass spectrometric analysis of the product profile and crystal structures of complexes of mtFabH with these inhibitors.


Asunto(s)
3-Oxoacil-(Proteína Transportadora de Acil) Sintasa/química , 3-Oxoacil-(Proteína Transportadora de Acil) Sintasa/metabolismo , Mycobacterium tuberculosis/enzimología , 3-Oxoacil-(Proteína Transportadora de Acil) Sintasa/genética , Acilcoenzima A/antagonistas & inhibidores , Acilcoenzima A/metabolismo , Sitios de Unión , Dominio Catalítico , Cristalografía por Rayos X , Cisteína/metabolismo , Inhibidores Enzimáticos/metabolismo , Inhibidores Enzimáticos/farmacología , Interacciones Hidrofóbicas e Hidrofílicas , Ligandos , Modelos Moleculares , Mutación , Ácidos Micólicos/metabolismo , Unión Proteica , Solventes/química , Espectrometría de Masa por Ionización de Electrospray
11.
J Comput Aided Mol Des ; 23(9): 621-32, 2009 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-19554265

RESUMEN

A public web server performing computational titration at the active site in a protein-ligand complex has been implemented. This calculation is based on the Hydropathic interaction noncovalent force field. From 3D coordinate data for the protein, ligand and bridging waters (if available), the server predicts the best combination of protonation states for each ionizable residue and/or ligand functional group as well as the Gibbs free energy of binding for the ionization-optimized protein-ligand complex. The 3D structure for the modified molecules is available as output. In addition, a graph depicting how this energy changes with acidity, i.e., as a function of added protons, can be obtained. This data may prove to be of use in preparing models for virtual screening and molecular docking. A few illustrative examples are presented. In beta secretase (2va7) computational titration flipped the amide groups of Gln12 and Asn37 and protonated a ligand amine yielding an improvement of 6.37 kcal mol(-1) in the protein-ligand binding score. Protonation of Glu139 in mutant HIV-1 reverse transcriptase (2opq) allows a water bridge between the protein and inhibitor that increases the protein-ligand interaction score by 0.16 kcal mol(-1). In human sialidase NEU2 complexed with an isobutyl ether mimetic inhibitor (2f11) computational titration suggested that protonating Glu218, deprotonating Arg237, flipping the amide bond on Tyr334, and optimizing the positions of several other polar protons would increase the protein-ligand interaction score by 0.71 kcal mol(-1).


Asunto(s)
Algoritmos , Biología Computacional/métodos , Internet , Modelos Químicos , Estructura Molecular , Unión Proteica , Protones , Termodinámica , Aminoácidos/química , Secretasas de la Proteína Precursora del Amiloide/química , Secretasas de la Proteína Precursora del Amiloide/metabolismo , Gráficos por Computador , Cristalografía por Rayos X , Transcriptasa Inversa del VIH/química , Transcriptasa Inversa del VIH/metabolismo , Humanos , Concentración de Iones de Hidrógeno , Interacciones Hidrofóbicas e Hidrofílicas , Ligandos , Neuraminidasa/antagonistas & inhibidores , Neuraminidasa/química , Neuraminidasa/metabolismo , Solventes/química , Volumetría
12.
Acta Crystallogr D Struct Biol ; 75(Pt 4): 437-450, 2019 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-30988260

RESUMEN

Although the HcpR regulator plays a vital step in initiation of the nitrosative stress response in many Gram-negative anaerobic bacteria, the molecular mechanisms that it uses to mediate gas sensing are not well understood. Here, a 2.6 Šresolution crystal structure of the N-terminal sensing domain of the anaerobic periodontopathogen Porphyromonas gingivalis HcpR is presented. The protein has classical features of the regulators belonging to the FNR-CRP family and contains a hydrophobic pocket in its N-terminal sensing domain. It is shown that heme bound to HcpR exhibits heme iron as a hexacoordinate system in the absence of nitric oxide (NO) and that upon nitrosylation it transitions to a pentacoordinate system. Finally, small-angle X-ray scattering experiments on full-length HcpR reveal that the C-terminal DNA-binding domain of HcpR has a high degree of interdomain flexibility.


Asunto(s)
Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Hemo/metabolismo , Óxido Nítrico/metabolismo , Estrés Nitrosativo , Porphyromonas gingivalis/metabolismo , Secuencia de Aminoácidos , Animales , Dominio Catalítico , Cristalografía por Rayos X/métodos , Modelos Moleculares , Estructura Molecular , Porphyromonas gingivalis/fisiología , Conformación Proteica , Homología de Secuencia
13.
Structure ; 14(2): 331-43, 2006 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-16472752

RESUMEN

X29, a 25 kDa Nudix hydrolase from Xenopus laevis that cleaves 5' caps from U8 snoRNA, crystallizes as a homodimeric apoenzyme. Manganese binds crystals of apo-X29 to form holo-X29 only in the presence of nucleot(s)ide. Structural changes in X29 on nucleo-t(s)ide-assisted Mn(+2) uptake account for the observed cooperativity of metal binding. Structures of X29 with GTP or m7GpppA show a different mode of ligand binding from that of other cap binding proteins and suggest a possible three- or four-metal Nudix reaction mechanism. The X29 dimer has no known RNA binding motif, but its striking surface dipolarity and unique structural features create a plausible RNA binding channel on the positive face of the protein. Because U8 snoRNP is essential for accumulation of mature 5.8S and 28S rRNA in vertebrate ribosome biogenesis, and cap structures are required for U8 stability in vivo, X29 could profoundly influence this fundamental cellular pathway.


Asunto(s)
Manganeso/química , Modelos Moleculares , Pirofosfatasas/química , Caperuzas de ARN/química , ARN Nuclear Pequeño/química , ARN Nucleolar Pequeño/química , Proteínas de Xenopus/química , Secuencia de Aminoácidos , Apoenzimas/química , Sitios de Unión , Cristalografía por Rayos X , Dimerización , Guanosina Trifosfato/química , Datos de Secuencia Molecular , Pirofosfatasas/metabolismo , Análogos de Caperuza de ARN/química , Análogos de Caperuza de ARN/metabolismo , Proteínas de Unión a Caperuzas de ARN/química , ARN Nuclear Pequeño/metabolismo , Alineación de Secuencia , Especificidad por Sustrato , Proteínas de Xenopus/metabolismo , Hidrolasas Nudix
14.
Chem Biol ; 13(5): 539-48, 2006 May.
Artículo en Inglés | MEDLINE | ID: mdl-16720275

RESUMEN

Noncovalent interactions are ubiquitous in ternary systems involving metal ions, DNA/RNA, and proteins and represent a structural motif for design of selective inhibitors of biological function. This contribution shows that small molecules containing platinated purine nucleobases mimic the natural DNA(RNA)-tryptophan recognition interaction of zinc finger peptides, specifically the C-terminal finger of HIV NCp7 protein. Interaction with platinum results in Zn ejection from the peptide accompanied by loss of tertiary structure. Targeting the NCp7-DNA interaction for drug design represents a conceptual advance over electrophiles designed for chemical attack on the zinc finger alone. These results demonstrate examples of a new platinum structural class targeting specific biological processes, distinct from the bifunctional DNA-DNA binding of cytotoxic agents like cisplatin. The results confirm the validity of a chemical biological approach for metallodrug design for selective ternary DNA(RNA)-protein interactions.


Asunto(s)
ADN/metabolismo , Dedos de Zinc , Secuencia de Aminoácidos , Proteínas de la Cápside/metabolismo , Diseño de Fármacos , Productos del Gen gag/metabolismo , Resonancia Magnética Nuclear Biomolecular , Platino (Metal)/metabolismo , Unión Proteica , Espectrometría de Fluorescencia , Espectrometría de Masa por Ionización de Electrospray , Proteínas Virales/metabolismo , Productos del Gen gag del Virus de la Inmunodeficiencia Humana
15.
Chem Biodivers ; 4(11): 2578-92, 2007 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-18027372

RESUMEN

The similarity in structure of potassium (K(+)) channels from different families has been revealed by only recently available crystallographic 3D structural data. The hydropathic analysis presented in this work illuminates whether homologous residues perform the same functions in channels that use different gating mechanisms. We calculated and compared the hydropathic profiles of two K(+) channels, KcsA and Kv1.2 (the latter a member of the Shaker family), at their pore-forming domain. Quantitative information describing important interactions stabilizing the protein beyond obvious secondary-structure elements was extracted from the analysis and applied as a template for subsequent molecular-dynamics (MD) analyses. For example, two key groups of interactions, defining the turns that connect the transmembrane helices and responsible for the orientation of the pore helix, were identified. Our results also indicate that Asp(80) and Asp(379) play a similar role in stabilizing the P-loop of KcsA and Kv1.2, respectively, but to significantly different extents.


Asunto(s)
Proteínas Bacterianas/química , Interacciones Hidrofóbicas e Hidrofílicas , Canales de Potasio/química , Canales de Potasio de la Superfamilia Shaker/química , Secuencia de Aminoácidos , Sustitución de Aminoácidos/genética , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Humanos , Canal de Potasio Kv.1.2/química , Canal de Potasio Kv.1.2/metabolismo , Modelos Biológicos , Datos de Secuencia Molecular , Canales de Potasio/genética , Canales de Potasio/metabolismo , Unión Proteica , Homología de Secuencia de Aminoácido , Canales de Potasio de la Superfamilia Shaker/genética , Canales de Potasio de la Superfamilia Shaker/metabolismo , Termodinámica
16.
J Mol Biol ; 346(5): 1313-21, 2005 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-15713483

RESUMEN

Beta-ketoacyl-acyl carrier protein synthase III (FabH) catalyzes a two step reaction that initiates the pathway of fatty acid biosynthesis in plants and bacteria. In Mycobacterium tuberculosis, FabH catalyzes extension of lauroyl, myristoyl and palmitoyl groups from which cell wall mycolic acids of the bacterium are formed. The first step of the reaction is an acyl group transfer from acyl-coenzyme A to the active-site cysteine of the enzyme; the second step is acyl chain extension by two carbon atoms through Claisen condensation with malonyl-acyl carrier protein. We have previously determined the crystal structure of a type II, dissociated M.tuberculosis FabH, which catalyzes extension of lauroyl, myristoyl and palmitoyl groups. Here we describe the first long-chain Michaelis substrate complex of a FabH, that of lauroyl-coenzyme A with a catalytically disabled Cys-->Ala mutant of M.tuberculosis FabH. An elongated channel extending from the mutated active-site cysteine defines the acyl group binding locus that confers unique acyl substrate specificity on M.tuberculosis FabH. CoA lies in a second channel, bound primarily through interactions of its nucleotide group at the enzyme surface. The apparent weak association of CoA in this complex may play a role in the binding and dissociation of long chain acyl-CoA substrates and products and poses questions pertinent to the mechanism of this enzyme.


Asunto(s)
3-Oxoacil-(Proteína Transportadora de Acil) Sintasa/química , Acilcoenzima A/metabolismo , Mycobacterium tuberculosis/enzimología , Ácidos Micólicos/metabolismo , 3-Oxoacil-(Proteína Transportadora de Acil) Sintasa/metabolismo , Sitios de Unión , Catálisis , Cristalografía por Rayos X , Cisteína/química , Cisteína/genética , Modelos Moleculares , Mutación , Conformación Proteica , Especificidad por Sustrato
17.
Nucleic Acids Res ; 31(15): 4410-6, 2003 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-12888500

RESUMEN

Molecular models of six anthracycline antibiotics and their complexes with 32 distinct DNA octamer sequences were created and analyzed using HINT (Hydropathic INTeractions) to describe binding. The averaged binding scores were then used to calculate the free energies of binding for comparison with experimentally determined values. In parsing our results based on specific functional groups of doxorubicin, our calculations predict a free energy contribution of -3.6 +/- 1.1 kcal x mol(-1) (experimental -2.5 +/- 0.5 kcal x mol(-1)) from the groove binding daunosamine sugar. The net energetic contribution of removing the hydroxyl at position C9 is -0.7 +/- 0.7 kcal x mol(-1) (-1.1 +/- 0.5 kcal x mol(-1)). The energetic contribution of the 3' amino group in the daunosamine sugar (when replaced with a hydroxyl group) is -3.7 +/- 1.1 kcal x mol(-1) (-0.7 +/- 0.5 kcal x mol(-1)). We propose that this large discrepancy may be due to uncertainty in the exact protonation state of the amine. The energetic contribution of the hydroxyl group at C14 is +0.4 +/- 0.6 kcal x mol(-1) (-0.9 +/- 0.5 kcal x mol(-1)), largely due to unfavorable hydrophobic interactions between the hydroxyl oxygen and the methylene groups of the phosphate backbone of the DNA. Also, there appears to be considerable conformational uncertainty in this region. This computational procedure calibrates our methodology for future analyses where experimental data are unavailable.


Asunto(s)
Antibióticos Antineoplásicos/química , Antibióticos Antineoplásicos/metabolismo , ADN/metabolismo , Emparejamiento Base , Secuencia de Bases , Sitios de Unión , ADN/química , Doxorrubicina/análogos & derivados , Doxorrubicina/química , Doxorrubicina/metabolismo , Modelos Moleculares
18.
J Mol Biol ; 339(2): 337-53, 2004 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-15136037

RESUMEN

The bacterial enzyme KsgA catalyzes the transfer of a total of four methyl groups from S-adenosyl-l-methionine (S-AdoMet) to two adjacent adenosine bases in 16S rRNA. This enzyme and the resulting modified adenosine bases appear to be conserved in all species of eubacteria, eukaryotes, and archaebacteria, and in eukaryotic organelles. Bacterial resistance to the aminoglycoside antibiotic kasugamycin involves inactivation of KsgA and resulting loss of the dimethylations, with modest consequences to the overall fitness of the organism. In contrast, the yeast ortholog, Dim1, is essential. In yeast, and presumably in other eukaryotes, the enzyme performs a vital role in pre-rRNA processing in addition to its methylating activity. Another ortholog has been discovered recently, h-mtTFB in human mitochondria, which has a second function; this enzyme is a nuclear-encoded mitochondrial transcription factor. The KsgA enzymes are homologous to another family of RNA methyltransferases, the Erm enzymes, which methylate a single adenosine base in 23S rRNA and confer resistance to the MLS-B group of antibiotics. Despite their sequence similarity, the two enzyme families have strikingly different levels of regulation that remain to be elucidated. We have crystallized KsgA from Escherichia coli and solved its structure to a resolution of 2.1A. The structure bears a strong similarity to the crystal structure of ErmC' from Bacillus stearothermophilus and a lesser similarity to sc-mtTFB, the Saccharomyces cerevisiae version of h-mtTFB. Comparison of the three crystal structures and further study of the KsgA protein will provide insight into this interesting group of enzymes.


Asunto(s)
Escherichia coli/enzimología , Metiltransferasas/química , Secuencia de Aminoácidos , Cristalografía por Rayos X , Metiltransferasas/metabolismo , Modelos Moleculares , Datos de Secuencia Molecular , Conformación Proteica , Homología de Secuencia de Aminoácido , Especificidad por Sustrato
19.
Comput Biol Chem ; 47: 126-41, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24076743

RESUMEN

The importance of protein-protein interactions (PPIs) is becoming increasingly appreciated, as these interactions lie at the core of virtually every biological process. Small molecule modulators that target PPIs are under exploration as new therapies. One of the greatest obstacles faced in crystallographically determining the 3D structures of proteins is coaxing the proteins to form "artificial" PPIs that lead to uniform crystals suitable for X-ray diffraction. This work compares interactions formed naturally, i.e., "biological", with those artificially formed under crystallization conditions or "non-biological". In particular, a detailed analysis of water molecules at the interfaces of high-resolution (≤2.30 Å) X-ray crystal structures of protein-protein complexes, where 140 are biological protein-protein complex structures and 112 include non-biological protein-protein interfaces, was carried out using modeling tools based on the HINT forcefield. Surprisingly few and relatively subtle differences were observed between the two types of interfaces: (i) non-biological interfaces are more polar than biological interfaces, yet there is better organized hydrogen bonding at the latter; (ii) biological associations rely more on water-mediated interactions with backbone atoms compared to non-biological associations; (iii) aromatic/planar residues play a larger role in biological associations with respect to water, and (iv) Lys has a particularly large role at non-biological interfaces. A support vector machines (SVMs) classifier using descriptors from this study was devised that was able to correctly classify 84% of the two interface types.


Asunto(s)
Proteínas/química , Agua/química , Cristalización , Modelos Moleculares , Unión Proteica , Proteínas/metabolismo , Agua/metabolismo
20.
Biomed Res Int ; 2013: 458571, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23956983

RESUMEN

Serine hydroxymethyltransferase catalyzes the reversible interconversion of L-serine and glycine with transfer of one-carbon groups to and from tetrahydrofolate. Active site residue Thr254 is known to be involved in the transaldimination reaction, a crucial step in the catalytic mechanism of all pyridoxal 5'-phosphate- (PLP-) dependent enzymes, which determines binding of substrates and release of products. In order to better understand the role of Thr254, we have expressed, characterized, and determined the crystal structures of rabbit cytosolic serine hydroxymethyltransferase T254A and T254C mutant forms, in the absence and presence of substrates. These mutants accumulate a kinetically stable gem-diamine intermediate, and their crystal structures show differences in the active site with respect to wild type. The kinetic and crystallographic data acquired with mutant enzymes permit us to infer that conversion of gem-diamine to external aldimine is significantly slowed because intermediates are trapped into an anomalous position by a misorientation of the PLP ring, and a new energy barrier hampers the transaldimination reaction. This barrier likely arises from the loss of the stabilizing hydrogen bond between the hydroxymethyl group of Thr254 and the ε -amino group of active site Lys257, which stabilizes the external aldimine intermediate in wild type SHMTs.


Asunto(s)
Catálisis , Dominio Catalítico/genética , Glicina Hidroximetiltransferasa/química , Relación Estructura-Actividad , Secuencia de Aminoácidos , Animales , Sitios de Unión , Cristalografía por Rayos X , Expresión Génica , Glicina Hidroximetiltransferasa/metabolismo , Enlace de Hidrógeno , Cinética , Mutagénesis Sitio-Dirigida , Mutación , Fosfato de Piridoxal/química , Fosfato de Piridoxal/metabolismo , Conejos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA