Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Fish Shellfish Immunol ; 59: 456-468, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-27818338

RESUMEN

Cathelicidins, a major family of vertebrate antimicrobial peptides (AMPs), have a recognized role in the first line of defense against infections. They have been identified in several salmonid species, where the putative mature peptides are unusually long and rich in serine and glycine residues, often arranged in short multiple repeats (RLGGGS/RPGGGS) intercalated by hydrophobic motifs. Fragments of 24-40 residues, spanning specific motifs and conserved sequences in grayling or brown, rainbow and brook trout, were chemically synthesized and examined for antimicrobial activity against relevant Gram-positive and Gram-negative salmonid pathogens, as well as laboratory reference strains. They were not active in complete medium, but showed varying potency and activity spectra in diluted media. Bacterial membrane permeabilization also occurred only under these conditions and was indicated by rapid propidium iodide uptake in peptide-treated bacteria. However, circular dichroism analyses indicated that they did not significantly adopt ordered conformations in membrane-like environments. The peptides were not hemolytic or cytotoxic to trout cells, including freshly purified head kidney leukocytes (HKL) and the fibroblastic RTG-2 cell line. Notably, when exposed to them, HKL showed increased metabolic activity, while a growth-promoting effect was observed on RTG-2 cells, suggesting a functional interaction of salmonid cathelicidins with host cells similar to that shown by mammalian ones. The three most active peptides produced a dose-dependent increase in phagocytic uptake by HKL simultaneously stimulated with bacterial particles. The peptide STF(1-37), selected for further analyses, also enhanced phagocytic uptake in the presence of autologous serum, and increased intracellular killing of live E. coli. Furthermore, when tested on HKL in combination with the immunostimulant ß-glucan, it synergistically potentiated both phagocytic uptake and the respiratory burst response, activities that play a key role in fish immunity. Collectively, these data point to a role of salmonid cathelicidins as modulators of fish microbicidal mechanisms beyond a salt-sensitive antimicrobial activity, and encourage further studies also in view of potential applications in aquaculture.


Asunto(s)
Catelicidinas/genética , Catelicidinas/farmacología , Salmonidae/inmunología , Secuencia de Aminoácidos , Animales , Antiinfecciosos/química , Antiinfecciosos/aislamiento & purificación , Antiinfecciosos/farmacología , Catelicidinas/química , Catelicidinas/aislamiento & purificación , Proteínas de Peces/química , Proteínas de Peces/genética , Proteínas de Peces/farmacología , Dominios Proteicos , Salmonidae/genética , Salmonidae/microbiología , Alineación de Secuencia/veterinaria
2.
J Pept Sci ; 18(2): 105-13, 2012 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-22083804

RESUMEN

The yeast-like algae of the genus Prototheca are ubiquitous saprophytes causing infections in immunocompromised patients and granulomatous mastitis in cattle. Few available therapies and the rapid spread of resistant strains worldwide support the need for novel drugs against protothecosis. Host defence antimicrobial peptides inactivate a wide array of pathogens and are a rich source of leads, with the advantage of being largely unaffected by microbial resistance mechanisms. Three structurally diverse bovine peptides [BMAP-28, Bac5 and lingual antimicrobial peptide (LAP)] have thus been tested for their capacity to inactivate Prototheca spp. In minimum inhibitory concentration (MIC) assays, they were all effective in the micromolar range against clinical mastitis isolates as well as a Prototheca wickerhamii reference strain. BMAP-28 sterilized Prototheca cultures within 30-60 min at its MIC, induced cell permeabilization with near 100% release of cellular adenosine triphosphate and resulted in extensive surface blebbing and release of intracellular material as observed by scanning electron microscopy. Bac5 and LAP inactivated Prototheca following 3-6 h incubation at fourfold their MIC and did not result in detectable surface damage despite 70-90% killing, suggesting they act via non-lytic mechanisms. In circular dichroism studies, the conformation of BMAP-28, but not that of Bac5 or LAP, was affected by interaction with liposomes mimicking algal membranes. Our results indicate that BMAP-28, Bac5 and LAP kill Prototheca with distinct potencies, killing kinetics, and modes of action and may be appropriate for protothecal mastitis treatment. In addition, the ability of Bac5 and LAP to act via non-lytic mechanisms may be exploited for the development of target-selective drugs.


Asunto(s)
Antibacterianos/farmacología , Péptidos Catiónicos Antimicrobianos/farmacología , Proteínas en los Gránulos del Eosinófilo/farmacología , Proteínas/farmacología , Prototheca/efectos de los fármacos , beta-Defensinas/farmacología , Secuencia de Aminoácidos , Animales , Antibacterianos/síntesis química , Péptidos Catiónicos Antimicrobianos/síntesis química , Péptidos Catiónicos Antimicrobianos/química , Bovinos , Membrana Celular/efectos de los fármacos , Enterobacteriaceae/efectos de los fármacos , Proteínas en los Gránulos del Eosinófilo/síntesis química , Proteínas en los Gránulos del Eosinófilo/química , Femenino , Mastitis Bovina/microbiología , Pruebas de Sensibilidad Microbiana , Datos de Secuencia Molecular , Permeabilidad , Estructura Secundaria de Proteína , Proteínas/síntesis química , Proteínas/química , Prototheca/aislamiento & purificación , Prototheca/ultraestructura , Staphylococcus/efectos de los fármacos , Streptococcus/efectos de los fármacos , beta-Defensinas/síntesis química , beta-Defensinas/química
3.
Peptides ; 71: 211-21, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26238597

RESUMEN

Vulvovaginal candidiasis (VVC) is a frequent gynecological condition caused by Candida albicans and a few non-albicans Candida spp. It has a significant impact on the quality of life of the affected women also due to a considerable incidence of recurrent infections that are difficult to treat. The formation of fungal biofilm may contribute to the problematic management of recurrent VVC due to the intrinsic resistance of sessile cells to the currently available antifungals. Thus, alternative approaches for the prevention and control of biofilm-related infections are urgently needed. In this regard, the cationic antimicrobial peptides (AMPs) of the innate immunity are potential candidates for the development of novel antimicrobials as many of them display activity against biofilm formed by various microbial species. In the present study, we investigated the in vitro antifungal activities of the cathelicidin peptides LL-37 and BMAP-28 against pathogenic Candida spp. also including C. albicans, isolated from vaginal infections, and against C. albicans SC5314 as a reference strain. The antimicrobial activity was evaluated against planktonic and biofilm-grown Candida cells by using microdilution susceptibility and XTT [2,3-bis(2-methoxy-4-nitro-5-sulfo-phenyl)-2H-tetrazolium-5-carboxanilide] reduction assays and, in the case of established biofilms, also by CFU enumeration and fluorescence microscopy. BMAP-28 was effective against planktonically grown yeasts in standard medium (MIC range, 2-32µM), and against isolates of C. albicans and Candida krusei in synthetic vaginal simulated fluid (MIC range 8-32µM, depending on the pH of the medium). Established 48-h old biofilms formed by C. albicans SC5314 and C. albicans and C. krusei isolates were 70-90% inhibited within 24h incubation with 16µM BMAP-28. As shown by propidium dye uptake and CFU enumeration, BMAP-28 at 32µM killed sessile C. albicans SC5314 by membrane permeabilization with a faster killing kinetics compared to 32µM miconazole (80-85% reduced biofilm viability in 90min vs 48h). In addition, BMAP-28 at 16µM prevented Candida biofilm formation on polystyrene and medical grade silicone surfaces by causing a >90% reduction in the viability of planktonic cells in 30min. LL-37 was overall less effective than BMAP-28 against planktonic Candida spp. (MIC range 4-≥64µM), and was ineffective against established Candida biofilms. However, LL-37 at 64µM prevented Candida biofilm development by inhibiting cell adhesion to polystyrene and silicone surfaces. Finally, Candida adhesion was strongly inhibited when silicone was pre-coated with a layer of BMAP-28 or LL-37, encouraging further studies for the development of peptide-based antimicrobial coatings.


Asunto(s)
Antifúngicos , Péptidos Catiónicos Antimicrobianos , Biopelículas/efectos de los fármacos , Candida albicans/fisiología , Candidiasis Vulvovaginal/tratamiento farmacológico , Antifúngicos/química , Antifúngicos/farmacología , Péptidos Catiónicos Antimicrobianos/química , Péptidos Catiónicos Antimicrobianos/farmacología , Candida albicans/aislamiento & purificación , Candidiasis Vulvovaginal/metabolismo , Femenino , Humanos , Catelicidinas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA