RESUMEN
Secretions from glandular trichomes potentially protect plants against a variety of aggressors. In the tomato clade of the Solanum genus, glandular trichomes of wild species produce a rich source of chemical diversity at the leaf surface. Previously, 7-epi-zingiberene produced in several accessions of Solanum habrochaites was found to confer resistance to whiteflies (Bemisia tabaci) and other insect pests. Here, we report the identification and characterisation of 9-hydroxy-zingiberene (9HZ) and 9-hydroxy-10,11-epoxyzingiberene (9H10epoZ), two derivatives of 7-epi-zingiberene produced in glandular trichomes of S. habrochaites LA2167. Using a combination of transcriptomics and genetics, we identified a gene coding for a cytochrome P450 oxygenase, ShCYP71D184, that is highly expressed in trichomes and co-segregates with the presence of the zingiberene derivatives. Transient expression assays in Nicotiana benthamiana showed that ShCYP71D184 carries out two successive oxidations to generate 9HZ and 9H10epoZ. Bioactivity assays showed that 9-hydroxy-10,11-epoxyzingiberene in particular exhibits substantial toxicity against B. tabaci and various microorganisms including Phytophthora infestans and Botrytis cinerea. Our work shows that trichome secretions from wild tomato species can provide protection against a wide variety of organisms. In addition, the availability of the genes encoding the enzymes for the pathway of 7-epi-zingiberene derivatives makes it possible to introduce this trait in cultivated tomato by precision breeding.
Asunto(s)
Hemípteros/metabolismo , Sesquiterpenos Monocíclicos/metabolismo , NADPH-Ferrihemoproteína Reductasa/metabolismo , Solanum/metabolismo , Animales , Botrytis/efectos de los fármacos , Botrytis/patogenicidad , Hemípteros/genética , Hemípteros/microbiología , Sesquiterpenos Monocíclicos/toxicidad , NADPH-Ferrihemoproteína Reductasa/genética , Phytophthora infestans/efectos de los fármacos , Phytophthora infestans/patogenicidad , Solanum/genéticaRESUMEN
A library of synthetic promoters containing the binding site of a single designer transcription activator-like effector (dTALE) was constructed. The promoters contain a constant sequence, consisting of an 18-base long dTALE-binding site and a TATA box, flanked by degenerate sequences of 49 bases downstream and 19 bases upstream. Forty-three of these promoters were sequenced and tested in transient assays in Nicotiana benthamiana using a GUS reporter gene. The strength of expression of the promoters ranged from around 5% to almost 100% of the viral 35S promoter activity. We then demonstrated the utility of these promoters for metabolic engineering by transiently expressing three genes for the production of a plant diterpenoid in N. benthamiana. The simplicity of the promoter structure shows great promise for the development of genetic circuits, with wide potential applications in plant synthetic biology and metabolic engineering.
Asunto(s)
Plantas Modificadas Genéticamente/genética , Regulación de la Expresión Génica de las Plantas/genética , Regulación de la Expresión Génica de las Plantas/fisiología , Regiones Promotoras Genéticas/genética , Biología Sintética , Nicotiana/genética , Nicotiana/metabolismoRESUMEN
Functional gene clusters, containing two or more genes encoding different enzymes for the same pathway, are sometimes observed in plant genomes, most often when the genes specify the synthesis of specialized defensive metabolites. Here, we show that a cluster of genes in tomato (Solanum lycopersicum; Solanaceae) contains genes for terpene synthases (TPSs) that specify the synthesis of monoterpenes and diterpenes from cis-prenyl diphosphates, substrates that are synthesized by enzymes encoded by cis-prenyl transferase (CPT) genes also located within the same cluster. The monoterpene synthase genes in the cluster likely evolved from a diterpene synthase gene in the cluster by duplication and divergence. In the orthologous cluster in Solanum habrochaites, a new sesquiterpene synthase gene was created by a duplication event of a monoterpene synthase followed by a localized gene conversion event directed by a diterpene synthase gene. The TPS genes in the Solanum cluster encoding cis-prenyl diphosphate-utilizing enzymes are closely related to a tobacco (Nicotiana tabacum; Solanaceae) diterpene synthase encoding Z-abienol synthase (Nt-ABS). Nt-ABS uses the substrate copal-8-ol diphosphate, which is made from the all-trans geranylgeranyl diphosphate by copal-8-ol diphosphate synthase (Nt-CPS2). The Solanum gene cluster also contains an ortholog of Nt-CPS2, but it appears to encode a nonfunctional protein. Thus, the Solanum functional gene cluster evolved by duplication and divergence of TPS genes, together with alterations in substrate specificity to utilize cis-prenyl diphosphates and through the acquisition of CPT genes.
Asunto(s)
Familia de Multigenes , Proteínas de Plantas/genética , Solanum/genética , Terpenos/metabolismo , Transferasas Alquil y Aril/clasificación , Transferasas Alquil y Aril/genética , Transferasas Alquil y Aril/metabolismo , Secuencia de Bases , Vías Biosintéticas/genética , Mapeo Cromosómico , Cromosomas de las Plantas/genética , Diterpenos/química , Diterpenos/metabolismo , Evolución Molecular , Conversión Génica , Duplicación de Gen , Regulación de la Expresión Génica de las Plantas , Variación Genética , Solanum lycopersicum/genética , Solanum lycopersicum/metabolismo , Datos de Secuencia Molecular , Estructura Molecular , Monoterpenos/química , Monoterpenos/metabolismo , Filogenia , Proteínas de Plantas/clasificación , Proteínas de Plantas/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Solanum/clasificación , Solanum/metabolismo , Especificidad de la Especie , Especificidad por Sustrato , Terpenos/química , Transferasas/clasificación , Transferasas/genética , Transferasas/metabolismoRESUMEN
In many vertebrate tissues CD39-like ecto-nucleoside triphosphate diphosphohydrolases (NTPDases) act in concert with ecto-5'-nucleotidase (e5NT, CD73) to convert extracellular ATP to adenosine. Extracellular ATP is a cytotoxic, pro-inflammatory signalling molecule whereas its product adenosine constitutes a universal and potent immune suppressor. Interference with these ectonucleotidases by use of small molecule inhibitors or inhibitory antibodies appears to be an effective strategy to enhance anti-tumour immunity and suppress neoangiogenesis. Here we present the first crystal structures of an NTPDase catalytic ectodomain in complex with the Reactive Blue 2 (RB2)-derived inhibitor PSB-071. In both of the two crystal forms presented the inhibitor binds as a sandwich of two molecules at the nucleoside binding site. One of the molecules is well defined in its orientation. Specific hydrogen bonds are formed between the sulfonyl group and the nucleoside binding loop. The methylphenyl side chain functionality that improved NTPDase2-specificity is sandwiched between R245 and R394, the latter of which is exclusively found in NTPDase2. The second molecule exhibits great in-plane rotational freedom and could not be modelled in a specific orientation. In addition to this structural insight into NTPDase inhibition, the observation of the putative membrane interaction loop (MIL) in two different conformations related by a 10° rotation identifies the MIL as a dynamic section of NTPDases that is potentially involved in regulation of catalysis.
Asunto(s)
Adenosina Trifosfatasas/química , Adenosina Trifosfatasas/metabolismo , Adenosina Trifosfatasas/antagonistas & inhibidores , Adenosina Trifosfato/metabolismo , Antraquinonas/química , Triazinas/químicaRESUMEN
Nucleoside triphosphate diphosphohydrolases (NTPDases) are secreted or membrane-bound ectonucleotidases that hydrolyze the anhydride bonds of nucleoside triphosphates and nucleoside diphosphates. Mammalian cell-surface NTPDase enzymes are inhibited by various polyoxometallates. Here, the structures of NTPDase1 from the bacterium Legionella pneumophila (LpNTPDase1) in complex with the dodecatungstate POM-1, decavanadate and octamolybdate/heptamolybdate are described. The metal clusters are bound at different sites but always in a highly ordered fashion via electrostatic interactions and hydrogen bonds. For octamolybdate, covalent interactions after oxygen ligand exchange by a serine and histidine side chain are also observed. The potential inhibitory mechanism and the use of the metal clusters as phasing tools for new NTPDase structures are discussed. The binding mode of a tartrate ion at the catalytic centre suggests novel strategies for the structure-based design of NTPDase inhibitors, and the observation of the enzyme in an intermediate open state contributes to our understanding of NTPDase enzyme dynamics.
Asunto(s)
Antígenos CD/química , Apirasa/química , Legionella pneumophila/enzimología , Compuestos de Tungsteno/química , Antígenos CD/metabolismo , Apirasa/metabolismo , Modelos Moleculares , Fosfatos/química , Fosfatos/metabolismo , Estructura Terciaria de Proteína , Homología Estructural de Proteína , Compuestos de Tungsteno/metabolismoRESUMEN
In plants and mammals, non-homologous end-joining is the dominant pathway to repair DNA double-strand breaks, making it challenging to generate knock-in events. In this study, we identified two groups of exonucleases from the herpes virus and the bacteriophage T7 families that conferred an up to 38-fold increase in homology-directed repair frequencies when fused to Cas9/Cas12a in a tobacco mosaic virus-based transient assay in Nicotiana benthamiana. We achieved precise and scar-free insertion of several kilobases of DNA both in transient and stable transformation systems. In Arabidopsis thaliana, fusion of Cas9 to a herpes virus family exonuclease led to 10-fold higher frequencies of knock-ins in the first generation of transformants. In addition, we demonstrated stable and heritable knock-ins in wheat in 1% of the primary transformants. Taken together, our results open perspectives for the routine production of heritable knock-in and gene replacement events in plants.
Asunto(s)
Sistemas CRISPR-Cas , Técnicas de Sustitución del Gen , Nicotiana , Sistemas CRISPR-Cas/genética , Nicotiana/genética , Arabidopsis/genética , Arabidopsis/enzimología , Triticum/genética , Endonucleasas/metabolismo , Endonucleasas/genética , Plantas Modificadas GenéticamenteRESUMEN
This study aimed to investigate the function of toll-like receptors (TLRs) during oncolytic parvovirus H-1 (H-1PV)-induced human immune responses. First, the role of TLRs in the activation of the NFκB transcription factor was characterized; second, the immunologic effects of H-1PV-induced tumor cell lysates (TCL) on human antitumor immune responses were evaluated. A human ex vivo model was used to study immune responses with dendritic cells (DCs). Human embryonic kidney cells (HEK293) transfected to stably express TLRs were used as potential human DC equivalents to further investigate the role of specific TLRs during immune activation. TLR3 and TLR9 were activated by H-1PV infection, which correlated with NFκB translocation to the nucleus and a reduced cytoplasmic IκB expression. Using a TLR-signaling reporter plasmid (pNiFty-Luc), NFκB activity was increased following H-1PV infection. In addition, human DCs coincubated with H-1PV-induced TCL demonstrated increased TLR3 and TLR9 expression. These data suggest that H-1PV-induced TCL stimulate human DCs at least in part through TLR-dependent signaling pathways. Thus, DC maturation occurred through exposure to H-1PV-induced TCL through TLR-signaling leading to NFκB-dependent activation of the adaptive immune system as indicated by the increased expression of CD86, TLR3 and TLR9. Furthermore, the transcription of various cytokines indicates the activation of immune response, therefore the production of the proinflammatory cytokine TNF-α was determined. Here, H-1PV-induced TCL significantly enhanced the TNF-α level by DCs after coculture. H-1PV oncolytic virotherapy enhances immune priming by different effects on DCs and generates antitumor immunity. These findings potentially offer a new approach to tumor therapy.
Asunto(s)
Células Dendríticas/inmunología , Parvovirus H-1/inmunología , Melanoma/inmunología , Viroterapia Oncolítica , Virus Oncolíticos/inmunología , Infecciones por Parvoviridae/inmunología , Receptores Toll-Like/metabolismo , Núcleo Celular/metabolismo , Células Cultivadas , Citocinas/metabolismo , Citoplasma/metabolismo , Citotoxicidad Inmunológica , Células Dendríticas/patología , Células Dendríticas/virología , Ensayo de Inmunoadsorción Enzimática , Citometría de Flujo , Humanos , Sistema Inmunológico , Riñón/inmunología , Riñón/metabolismo , Riñón/patología , Melanoma/metabolismo , Melanoma/terapia , FN-kappa B/genética , FN-kappa B/metabolismo , Infecciones por Parvoviridae/patología , Infecciones por Parvoviridae/virología , Transducción de Señal , Receptores Toll-Like/inmunología , Células Tumorales Cultivadas , Factor de Necrosis Tumoral alfa/farmacologíaRESUMEN
Concerns about inadequate performance and complexity limit routine use of clinical risk scores in lower respiratory tract infections. Our aim was to study feasibility and effects of adding the biomarker proadrenomedullin (proADM) to the confusion, urea>7 mmol·L(-1), respiratory rate≥30 breaths·min(-1), blood pressure<90 mmHg (systolic) or ≤60 mmHg (diastolic), age≥65 years (CURB-65) score on triage decisions and length of stay. In a randomised controlled proof-of-concept intervention trial, triage and discharge decisions were made for adults with lower respiratory tract infection according to interprofessional assessment using medical and nursing risk scores either without (control group) or with (proADM group) knowledge of proADM values, measured on admission, and on days 3 and 6. An adjusted generalised linear model was calculated to investigate the effect of our intervention. On initial presentation the algorithms were overruled in 123 (39.3%) of the cases. Mean length of stay tended to be shorter in the proADM (n=154, 6.3 days) compared with the control group (n=159, 6.8 days; adjusted regression coefficient -0.19, 95% CI -0.41-0.04; p=0.1). This trend was robust in subgroup analyses and for overall length of stay within 90 days (7.2 versus 7.9 days; adjusted regression coefficient -0.18, 95% CI -0.40-0.05; p=0.13). There were no differences in adverse outcomes or readmission. Logistic obstacles and overruling are major challenges to implement biomarker-enhanced algorithms in clinical settings and need to be addressed to shorten length of stay.
Asunto(s)
Adrenomedulina/metabolismo , Biomarcadores/metabolismo , Precursores de Proteínas/metabolismo , Infecciones del Sistema Respiratorio/metabolismo , Infecciones del Sistema Respiratorio/fisiopatología , Adulto , Anciano , Algoritmos , Presión Sanguínea , Estudios de Factibilidad , Femenino , Hospitalización , Humanos , Tiempo de Internación , Modelos Lineales , Masculino , Persona de Mediana Edad , Medición de Riesgo , Triaje/métodosRESUMEN
Nucleoside triphosphate diphosphohydrolases (NTPDases) are a large class of nucleotidases that hydrolyze the (γ/ß)- and (ß/α)-anhydride bonds of nucleoside triphosphates and diphosphates, respectively. NTPDases are found throughout the eukaryotic domain. In addition, a very small number of members can be found in bacteria, most of which live as parasites of eukaryotic hosts. NTPDases of intracellular and extracellular parasites are emerging as important regulators for the survival of the parasite. To deepen the knowledge of the structure and function of this enzyme class, recombinant production of the NTPDase1 from the bacterium Legionella pneumophila has been established. The protein could be crystallized in six crystal forms, of which one has been described previously. The crystals diffracted to resolutions of between 1.4 and 2.5â Å. Experimental phases determined by a sulfur SAD experiment using an orthorhombic crystal form produced an interpretable electron-density map.
Asunto(s)
Antígenos CD/química , Apirasa/química , Proteínas Bacterianas/química , Legionella pneumophila/química , Secuencia de Aminoácidos , Antígenos CD/genética , Apirasa/genética , Proteínas Bacterianas/genética , Dominio Catalítico , Cristalografía por Rayos X , Escherichia coli/química , Escherichia coli/genética , Legionella pneumophila/enzimología , Datos de Secuencia Molecular , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genéticaAsunto(s)
Cuidados Posteriores/organización & administración , Enfermedad Crónica/enfermería , Admisión del Paciente , Alta del Paciente , Actividades Cotidianas/clasificación , Anciano de 80 o más Años , Conducta Cooperativa , Femenino , Humanos , Comunicación Interdisciplinaria , Masculino , Evaluación de Necesidades/organización & administración , Manejo de Atención al Paciente/organización & administración , Neumonía/enfermería , Suiza , Estudios de Tiempo y MovimientoRESUMEN
BACKGROUND: An intervention trial found a trend for shorter length of stay (LOS) in patients with community-acquired pneumonia (CAP) when the CURB65 score was combined with the prognostic biomarker proadrenomedullin (ProADM) (CURB65-A). However, the efficacy and safety of CURB65-A in real life situations remains unclear. METHODS: From September, 2011, until April, 2012, we performed a post-study prospective observational quality control survey at the cantonal Hospital of Aarau, Switzerland of consecutive adults with CAP. The primary endpoint was length of stay (LOS) during the index hospitalization and within 30 days. We compared the results with two well-defined historic cohorts of CAP patients hospitalized in the same hospital with the use of multivariate regression, namely 83 patients in the observation study without ProADM (OPTIMA I) and the 169 patients in the intervention study (OPTIMA II RCT). RESULTS: A total of 89 patients with confirmed CAP were included. As compared to patients with CURB65 only observed in the OPTIMA I study, adjusted regression analysis showed a significant shorter initial LOS (7.5 vs. 10.4 days; -2.32; 95% CI, -4.51 to -0.13; p = 0.04) when CURB65-A was used in clinical routine. No significant differences were found for LOS within 30 days. There were no significant differences in safety outcomes in regard to mortality and ICU admission between the cohorts. CONCLUSION: This post-study survey provides evidence that the use of ProADM in combination with CURB65 (CURB65-A) in "real life" situations reduces initial LOS compared to the CURB65 score alone without apparent negative effects on patient safety.
RESUMEN
In vertebrates, membrane-bound ecto-nucleoside triphosphate diphosphohydrolases (NTPDases) on the cell surface are responsible for signal conversion and termination in purinergic signaling by extracellular nucleotides. Here we present apo and complex structures of the rat NTPDase2 extracellular domain and Legionella pneumophila NTPDase1, including a high-resolution structure with a transition-state analog. Comparison of ATP and ADP binding modes shows how NTPDases engage the same catalytic site for hydrolysis of nucleoside triphosphates and diphosphates. We find that this dual specificity is achieved at the expense of base specificity. Structural and mutational studies indicate that a conserved active-site water is replaced by the phosphate product immediately after phosphoryl transfer. Partial base specificity for purines in LpNTPDase1 is based on a different intersubunit base binding site for pyrimidine bases. A comparison of the bacterial enzyme in six independent crystal forms shows that NTPDases can undergo a domain closure motion of at least 17°.
Asunto(s)
Adenosina Trifosfatasas/química , Antígenos CD/química , Apirasa/química , Proteínas Bacterianas/química , Legionella pneumophila/enzimología , Secuencia de Aminoácidos , Animales , Biocatálisis , Dominio Catalítico , Cristalografía por Rayos X , Enlace de Hidrógeno , Cinética , Magnesio/química , Modelos Moleculares , Datos de Secuencia Molecular , Nucleótidos/química , Unión Proteica , Estructura Secundaria de Proteína , Ratas , Especificidad por SustratoRESUMEN
BACKGROUND: Urinary tract infections (UTIs) are among the most common infectious diseases and drivers of antibiotic use and in-hospital days. A reduction of antibiotic use potentially lowers the risk of antibiotic resistance. An early and adequate risk assessment combining medical, biopsychosocial and functional risk scores has the potential to optimize site-of-care decisions and thus allocation of limited health-care resources. The aim of this factorial design study is twofold: first, for Intervention A, it investigates antibiotic exposure of patients treated with a protocol based on the type of UTI, procalcitonin (PCT) and pyuria. Second, for Intervention B, it investigates the usefulness of the prognostic biomarker proadrenomedullin (ProADM) integrated into an interdisciplinary assessment bundle for site-of-care decisions. METHODS AND DESIGN: This randomized controlled open-label trial has a factorial design (2 × 2). Randomization of patients will be based on a pre-specified computer-generated randomization list and independent for the two interventions. Adults with UTI presenting to the emergency department (ED) will be screened and enrolled after providing informed consent. For our first Intervention (A), we developed a protocol based on previous observational research to recommend initiation and duration of antibiotic use based on the clinical presentation of UTI, pyuria and PCT levels. For our second intervention (B), an algorithm was developed to support site-of care decisions based on the prognostic marker ProADM and distinct nursing factors on days 1 and 3. Both interventions will be compared with a control group conforming to the guidelines. The primary endpoints for the two interventions will be: (A) overall exposure to antibiotics and (B) length of physician-led hospitalization within a follow-up of 30 days. Endpoints are assessed at discharge from hospital, and 30 and 90 days after admission. We plan to screen 300 patients and enroll 250 for an anticipated estimated loss of follow-up of 20%. This will provide adequate power for the two interventions. DISCUSSION: This trial investigates two strategies for improved individualized medical care in patients with UTI. The minimally effective duration of antibiotic therapy is not known for UTIs, which is important for reducing the selection pressure for antibiotic resistance, costs and drug-related side effects. Triage decisions must be improved to reflect the true medical, biopsychosocial and functional risks in order to allocate patients to the most appropriate care setting and reduce hospital-acquired disability. TRIAL REGISTRATION NUMBER: ISRCTN13663741.
Asunto(s)
Adrenomedulina/sangre , Antibacterianos/uso terapéutico , Calcitonina/sangre , Precursores de Proteínas/sangre , Proyectos de Investigación , Infecciones Urinarias/tratamiento farmacológico , Algoritmos , Biomarcadores/sangre , Péptido Relacionado con Gen de Calcitonina , Protocolos Clínicos , Servicio de Urgencia en Hospital , Adhesión a Directriz , Humanos , Tiempo de Internación , Admisión del Paciente , Alta del Paciente , Guías de Práctica Clínica como Asunto , Medicina de Precisión , Valor Predictivo de las Pruebas , Suiza , Factores de Tiempo , Resultado del Tratamiento , Triaje , Infecciones Urinarias/sangre , Infecciones Urinarias/microbiología , Infecciones Urinarias/orinaRESUMEN
Nucleoside triphosphate diphosphohydrolases (NTPDases) are a physiologically important class of membrane-bound ectonucleotidases responsible for the regulation of extracellular levels of nucleotides. CD39 or NTPDase1 is the dominant NTPDase of the vasculature. By hydrolyzing proinflammatory ATP and platelet-activating ADP to AMP, it blocks platelet aggregation and supports blood flow. Thus, great interest exists in understanding the structure and dynamics of this prototype member of the eukaryotic NTPDase family. Here, we report the crystal structure of a variant of soluble NTPDase1 lacking a putative membrane interaction loop identified between the two lobes of the catalytic domain. ATPase and ADPase activities of this variant are determined via a newly established kinetic isothermal titration calorimetry assay and compared to that of the soluble NTPDase1 variant characterized previously. Complex structures with decavanadate and heptamolybdate show that both polyoxometallates bind electrostatically to a loop that is involved in binding of the nucleobase. In addition, a comparison of the domain orientations of the four independent proteins in the crystal asymmetric unit provides the first direct experimental evidence for a domain motion of NTPDases. An interdomain rotation angle of up to 7.4° affects the active site cleft between the two lobes of the protein. Comparison with a previously solved bacterial NTPDase structure indicates that the domains may undergo relative rotational movements of more than 20°. Our data support the idea that the influence of transmembrane helix dynamics on activity is achieved by coupling to a domain motion.
Asunto(s)
Antígenos CD/química , Antígenos CD/metabolismo , Apirasa/química , Apirasa/metabolismo , Adenosina Difosfato/metabolismo , Adenosina Monofosfato/metabolismo , Adenosina Trifosfato/metabolismo , Animales , Calorimetría/métodos , Cristalografía por Rayos X , Cinética , Modelos Moleculares , Conformación Proteica , Estructura Terciaria de Proteína , RatasRESUMEN
The prevention or deceleration of atherogenesis is one of the most significant anti-aging objectives since this is a matter of avoidance of myocardial infarction and stroke. To approach this prophylactic aim, phytochemical nutrition counteracting peroxidation of blood lipids based on their scavenger qualities for reactive oxygen species (ROS) can possibly serve. For example, oxidized LDL particles are highly atherogenic. Against this background, we investigated in a pilot study the effect of Ginkgo biloba (EGb 761: Rökan novo), the free oxygen radical scavenging properties of which are well-documented, on the atherosclerotic nanoplaque formation in cardiovascular high-risk patients. In eight patients who had undergone an aortocoronary bypass operation, the reduction of atherosclerotic nanoplaque formation amounted to 11.9 +/- 2.5% (p < 0.0078) and of nanoplaque size to 24.4 +/- 8.1% (p < 0.0234), respectively, after a 2-month therapy with Ginkgo biloba extract (EGb 761, 2 x 120 mg daily, Rökan novo, Spitzner Arzneimittel, Ettlingen, Germany). Additionally, superoxide dismutase (SOD) activity was upregulated by 15.7 +/- 7.0% (p < 0.0391), the quotient oxLDL/LDL lowered by 17.0 +/- 5.5% (p < 0.0234) and lipoprotein(a) concentration decreased by 23.4 +/- 7.9% (p < 0.0234) in the patients' blood after the 2-month medication regimen. The concentration of the vasodilating substances cAMP and cGMP was augmented by 37.5 +/- 9.1% (p < 0.0078) and 27.7 +/- 8.3% (p < 0.0156), respectively. A multimodal regression analysis reveals a basis for a mechanistic explanation of nanoplaque reduction under ginkgo treatment. The atherosclerosis inhibiting effect is due to an upregulation in the body's own radical scavenging enzymes and an attenuation of the risk factors oxLDL/LDL and Lp(a). Furthermore, the significant increase in the vasodilator cAMP and cGMP concentration powerfully supports the maintenance of an open bypass.