Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 117
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Small ; 19(19): e2206244, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36799182

RESUMEN

Magnetosomes are magnetic nanoparticles biosynthesized by magnetotactic bacteria. Due to a genetically strictly controlled biomineralization process, the ensuing magnetosomes have been envisioned as agents for biomedical and clinical applications. In the present work, different stability parameters of magnetosomes isolated from Magnetospirillum gryphiswaldense upon storage in suspension (HEPES buffer, 4 °C, nitrogen atmosphere) for one year in the absence of antibiotics are examined. The magnetic potency, measured by the saturation magnetization of the particle suspension, drops to one-third of its starting value within this year-about ten times slower than at ambient air and room temperature. The particle size distribution, the integrity of the surrounding magnetosome membrane, the colloidal stability, and the biocompatibility turn out to be not severely affected by long-term storage.


Asunto(s)
Magnetosomas , Nanopartículas
2.
Proc Natl Acad Sci U S A ; 117(50): 32086-32097, 2020 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-33257551

RESUMEN

Magnetotactic bacteria maneuver within the geomagnetic field by means of intracellular magnetic organelles, magnetosomes, which are aligned into a chain and positioned at midcell by a dedicated magnetosome-specific cytoskeleton, the "magnetoskeleton." However, how magnetosome chain organization and resulting magnetotaxis is linked to cell shape has remained elusive. Here, we describe the cytoskeletal determinant CcfM (curvature-inducing coiled-coil filament interacting with the magnetoskeleton), which links the magnetoskeleton to cell morphology regulation in Magnetospirillum gryphiswaldense Membrane-anchored CcfM localizes in a filamentous pattern along regions of inner positive-cell curvature by its coiled-coil motifs, and independent of the magnetoskeleton. CcfM overexpression causes additional circumferential localization patterns, associated with a dramatic increase in cell curvature, and magnetosome chain mislocalization or complete chain disruption. In contrast, deletion of ccfM results in decreased cell curvature, impaired cell division, and predominant formation of shorter, doubled chains of magnetosomes. Pleiotropic effects of CcfM on magnetosome chain organization and cell morphology are supported by the finding that CcfM interacts with the magnetoskeleton-related MamY and the actin-like MamK via distinct motifs, and with the cell shape-related cytoskeleton via MreB. We further demonstrate that CcfM promotes motility and magnetic alignment in structured environments, and thus likely confers a selective advantage in natural habitats of magnetotactic bacteria, such as aquatic sediments. Overall, we unravel the function of a prokaryotic cytoskeletal constituent that is widespread in magnetic and nonmagnetic spirilla-shaped Alphaproteobacteria.


Asunto(s)
Proteínas Bacterianas/metabolismo , Proteínas del Citoesqueleto/metabolismo , Citoesqueleto/metabolismo , Magnetosomas/metabolismo , Magnetospirillum/citología , Proteínas Bacterianas/genética , Proteínas Bacterianas/ultraestructura , División Celular , Microscopía por Crioelectrón , Proteínas del Citoesqueleto/genética , Proteínas del Citoesqueleto/ultraestructura , Citoesqueleto/genética , Citoesqueleto/ultraestructura , Tomografía con Microscopio Electrónico , Magnetosomas/ultraestructura , Magnetospirillum/metabolismo , Magnetospirillum/ultraestructura , Microscopía Electrónica de Transmisión
3.
Molecules ; 28(13)2023 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-37446557

RESUMEN

For the potential in vitro/in vivo applications of magnetic iron oxide nanoparticles, their stability in different physiological fluids has to be ensured. This important prerequisite includes the preservation of the particles' stability during the envisaged application and, consequently, their invariance with respect to the transfer from storage conditions to cell culture media or even bodily fluids. Here, we investigate the colloidal stabilities of commercial nanoparticles with different coatings as a model system for biogenic iron oxide nanoparticles (magnetosomes) isolated from magnetotactic bacteria. We demonstrate that the stability can be evaluated and quantified by determining the intensity-weighted average of the particle sizes (Z-value) obtained from dynamic light scattering experiments as a simple quality criterion, which can also be used as an indicator for protein corona formation.


Asunto(s)
Magnetosomas , Nanopartículas , Magnetosomas/metabolismo , Nanopartículas Magnéticas de Óxido de Hierro
4.
BMC Genomics ; 23(1): 699, 2022 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-36217140

RESUMEN

BACKGROUND: One of the most complex prokaryotic organelles are magnetosomes, which are formed by magnetotactic bacteria as sensors for navigation in the Earth's magnetic field. In the alphaproteobacterium Magnetospirillum gryphiswaldense magnetosomes consist of chains of magnetite crystals (Fe3O4) that under microoxic to anoxic conditions are biomineralized within membrane vesicles. To form such an intricate structure, the transcription of > 30 specific structural genes clustered within the genomic magnetosome island (MAI) has to be coordinated with the expression of an as-yet unknown number of auxiliary genes encoding several generic metabolic functions. However, their global regulation and transcriptional organization in response to anoxic conditions most favorable for magnetite biomineralization are still unclear. RESULTS: Here, we compared transcriptional profiles of anaerobically grown magnetosome forming cells with those in which magnetosome biosynthesis has been suppressed by aerobic condition. Using whole transcriptome shotgun sequencing, we found that transcription of about 300 of the > 4300 genes was significantly enhanced during magnetosome formation. About 40 of the top upregulated genes are directly or indirectly linked to aerobic and anaerobic respiration (denitrification) or unknown functions. The mam and mms gene clusters, specifically controlling magnetosome biosynthesis, were highly transcribed, but constitutively expressed irrespective of the growth condition. By Cappable-sequencing, we show that the transcriptional complexity of both the MAI and the entire genome decreased under anaerobic conditions optimal for magnetosome formation. In addition, predominant promoter structures were highly similar to sigma factor σ70 dependent promoters in other Alphaproteobacteria. CONCLUSIONS: Our transcriptome-wide analysis revealed that magnetite biomineralization relies on a complex interplay between generic metabolic processes such as aerobic and anaerobic respiration, cellular redox control, and the biosynthesis of specific magnetosome structures. In addition, we provide insights into global regulatory features that have remained uncharacterized in the widely studied model organism M. gryphiswaldense, including a comprehensive dataset of newly annotated transcription start sites and genome-wide operon detection as a community resource (GEO Series accession number GSE197098).


Asunto(s)
Magnetosomas , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Biomineralización/genética , Óxido Ferrosoférrico/análisis , Óxido Ferrosoférrico/metabolismo , Magnetosomas/genética , Magnetosomas/metabolismo , Magnetospirillum , Factor sigma/genética , Transcriptoma
5.
BMC Microbiol ; 21(1): 65, 2021 02 25.
Artículo en Inglés | MEDLINE | ID: mdl-33632118

RESUMEN

BACKGROUND: Magnetosome formation in the alphaproteobacterium Magnetospirillum gryphiswaldense is controlled by more than 30 known mam and mms genes clustered within a large genomic region, the 'magnetosome island' (MAI), which also harbors numerous mobile genetic elements, repeats, and genetic junk. Because of the inherent genetic instability of the MAI caused by neighboring gene content, the elimination of these regions and their substitution by a compact, minimal magnetosome expression cassette would be important for future analysis and engineering. In addition, the role of the MAI boundaries and adjacent regions are still unclear, and recent studies indicated that further auxiliary determinants for magnetosome biosynthesis are encoded outside the MAI. However, techniques for large-scale genome editing of magnetic bacteria are still limited, and the full complement of genes controlling magnetosome formation has remained uncertain. RESULTS: Here we demonstrate that an allelic replacement method based on homologous recombination can be applied for large-scale genome editing in M. gryphiswaldense. By analysis of 24 deletion mutants covering about 167 kb of non-redundant genome content, we identified genes and regions inside and outside the MAI irrelevant for magnetosome biosynthesis. A contiguous stretch of ~ 100 kb, including the scattered mam and mms6 operons, could be functionally substituted by a compact and contiguous ~ 38 kb cassette comprising all essential biosynthetic gene clusters, but devoid of interspersing irrelevant or problematic gene content. CONCLUSIONS: Our results further delineate the genetic complement for magnetosome biosynthesis and will be useful for future large-scale genome editing and genetic engineering of magnetosome biosynthesis.


Asunto(s)
Genoma Bacteriano , Magnetosomas/metabolismo , Magnetospirillum/genética , Magnetospirillum/metabolismo , Familia de Multigenes , Genes Bacterianos , Genómica , Mutación , Operón
6.
Microb Cell Fact ; 20(1): 35, 2021 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-33541381

RESUMEN

BACKGROUND: Because of its tractability and straightforward cultivation, the magnetic bacterium Magnetospirillum gryphiswaldense has emerged as a model for the analysis of magnetosome biosynthesis and bioproduction. However, its future use as platform for synthetic biology and biotechnology will require methods for large-scale genome editing and streamlining. RESULTS: We established an approach for combinatory genome reduction and generated a library of strains in which up to 16 regions including large gene clusters, mobile genetic elements and phage-related genes were sequentially removed, equivalent to ~ 227.6 kb and nearly 5.5% of the genome. Finally, the fragmented genomic magnetosome island was replaced by a compact cassette comprising all key magnetosome biosynthetic gene clusters. The prospective 'chassis' revealed wild type-like cell growth and magnetosome biosynthesis under optimal conditions, as well as slightly improved resilience and increased genetic stability. CONCLUSION: We provide first proof-of-principle for the feasibility of multiple genome reduction and large-scale engineering of magnetotactic bacteria. The library of deletions will be valuable for turning M. gryphiswaldense into a microbial cell factory for synthetic biology and production of magnetic nanoparticles.


Asunto(s)
Eliminación de Gen , Genoma Bacteriano , Magnetosomas , Magnetospirillum , Magnetosomas/genética , Magnetosomas/metabolismo , Magnetospirillum/genética , Magnetospirillum/metabolismo
7.
Int J Mol Sci ; 22(8)2021 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-33923565

RESUMEN

Magnetosomes are membrane-enclosed iron oxide crystals biosynthesized by magnetotactic bacteria. As the biomineralization of bacterial magnetosomes can be genetically controlled, they have become promising nanomaterials for bionanotechnological applications. In the present paper, we explore a novel application of magnetosomes as nanotool for manipulating axonal outgrowth via stretch-growth (SG). SG refers to the process of stimulation of axonal outgrowth through the application of mechanical forces. Thanks to their superior magnetic properties, magnetosomes have been used to magnetize mouse hippocampal neurons in order to stretch axons under the application of magnetic fields. We found that magnetosomes are avidly internalized by cells. They adhere to the cell membrane, are quickly internalized, and slowly degrade after a few days from the internalization process. Our data show that bacterial magnetosomes are more efficient than synthetic iron oxide nanoparticles in stimulating axonal outgrowth via SG.


Asunto(s)
Axones/metabolismo , Magnetosomas/metabolismo , Proyección Neuronal , Animales , Axones/fisiología , Axones/ultraestructura , Transporte Biológico , Células Cultivadas , Femenino , Hipocampo/citología , Magnetospirillum/química , Masculino , Ratones , Ratones Endogámicos C57BL , Estrés Mecánico
8.
J Bacteriol ; 202(21)2020 10 08.
Artículo en Inglés | MEDLINE | ID: mdl-32817094

RESUMEN

Magnetotactic bacteria are aquatic or sediment-dwelling microorganisms able to take advantage of the Earth's magnetic field for directed motility. The source of this amazing trait is magnetosomes, unique organelles used to synthesize single nanometer-sized crystals of magnetic iron minerals that are queued up to build an intracellular compass. Most of these microorganisms cannot be cultivated under controlled conditions, much less genetically engineered, with only few exceptions. However, two of the genetically amenable Magnetospirillum species have emerged as tractable model organisms to study magnetosome formation and magnetotaxis. Recently, much has been revealed about the process of magnetosome biogenesis and dedicated structures for magnetosome dynamics and positioning, which suggest an unexpected cellular intricacy of these organisms. In this minireview, we summarize new insights and place the molecular mechanisms of magnetosome formation in the context of the complex cell biology of Magnetospirillum spp. First, we provide an overview on magnetosome vesicle synthesis and magnetite biomineralization, followed by a discussion of the perceptions of dynamic organelle positioning and its biological implications, which highlight that magnetotactic bacteria have evolved sophisticated mechanisms to construct, incorporate, and inherit a unique navigational device. Finally, we discuss the impact of magnetotaxis on motility and its interconnection with chemotaxis, showing that magnetotactic bacteria are outstandingly adapted to lifestyle and habitat.


Asunto(s)
Proteínas Bacterianas/metabolismo , Citoesqueleto/metabolismo , Óxido Ferrosoférrico/química , Magnetosomas/fisiología , Magnetospirillum/fisiología , Taxia , Quimiotaxis , Flagelos/metabolismo
9.
Mol Microbiol ; 112(5): 1423-1439, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31419361

RESUMEN

Cell division needs to be tightly regulated and closely coordinated with other cellular processes to ensure the generation of fully viable offspring. Here, we investigate division site placement by the cell division regulator MipZ in the alphaproteobacterium Magnetospirillum gryphiswaldense, a species that forms linear chains of magnetosomes to navigate within the geomagnetic field. We show that M. gryphiswaldense contains two MipZ homologs, termed MipZ1 and MipZ2. MipZ2 localizes to the division site, but its absence does not cause any obvious phenotype. MipZ1, by contrast, forms a dynamic bipolar gradient, and its deletion or overproduction cause cell filamentation, suggesting an important role in cell division. The monomeric form of MipZ1 interacts with the chromosome partitioning protein ParB, whereas its ATP-dependent dimeric form shows non-specific DNA-binding activity. Notably, both the dimeric and, to a lesser extent, the monomeric form inhibit FtsZ polymerization in vitro. MipZ1 thus represents a canonical gradient-forming MipZ homolog that critically contributes to the spatiotemporal control of FtsZ ring formation. Collectively, our findings add to the view that the regulatory role of MipZ proteins in cell division is conserved among many alphaproteobacteria. However, their number and biochemical properties may have adapted to the specific needs of the host organism.


Asunto(s)
Adenosina Trifosfatasas/metabolismo , División Celular/fisiología , Magnetosomas/metabolismo , Magnetospirillum/metabolismo , Magnetospirillum/citología , Magnetospirillum/crecimiento & desarrollo
10.
Environ Microbiol ; 22(4): 1603-1618, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32079043

RESUMEN

The magnetotactic lifestyle represents one of the most complex traits found in many bacteria from aquatic environments and depends on magnetic organelles, the magnetosomes. Genetic transfer of magnetosome biosynthesis operons to a non-magnetotactic bacterium has only been reported once so far, but it is unclear whether this may also occur in other recipients. Besides magnetotactic species from freshwater, the genus Magnetospirillum of the Alphaproteobacteria also comprises a number of strains lacking magnetosomes, which are abundant in diverse microbial communities. Their close phylogenetic interrelationships raise the question whether the non-magnetotactic magnetospirilla may have the potential to (re)gain a magnetotactic lifestyle upon acquisition of magnetosome gene clusters. Here, we studied the transfer of magnetosome gene operons into several non-magnetotactic environmental magnetospirilla. Single-step transfer of a compact vector harbouring >30 major magnetosome genes from M. gryphiswaldense induced magnetosome biosynthesis in a Magnetospirillum strain from a constructed wetland. However, the resulting magnetic cellular alignment was insufficient for efficient magnetotaxis under conditions mimicking the weak geomagnetic field. Our work provides insights into possible evolutionary scenarios and potential limitations for the dissemination of magnetotaxis by horizontal gene transfer and expands the range of foreign recipients that can be genetically magnetized.


Asunto(s)
Magnetosomas/metabolismo , Magnetospirillum/genética , Magnetospirillum/metabolismo , Operón , Transferencia de Gen Horizontal , Familia de Multigenes , Filogenia , Humedales
11.
Small ; 16(16): e1906922, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32187836

RESUMEN

Their unique material characteristics, i.e. high crystallinity, strong magnetization, uniform shape and size, and the ability to engineer the enveloping membrane in vivo make bacterial magnetosomes highly interesting for many biomedical and biotechnological applications. In this study, a versatile toolkit is developed for the multifunctionalization of magnetic nanoparticles in the magnetotactic bacterium Magnetospirillum gryphiswaldense, and the use of several abundant magnetosome membrane proteins as anchors for functional moieties is explored. High-level magnetosome display of cargo proteins enables the generation of engineered nanoparticles with several genetically encoded functionalities, including a core-shell structure, magnetization, two different catalytic activities, fluorescence and the presence of a versatile connector that allows the incorporation into a hydrogel-based matrix by specific coupling reactions. The resulting reusable magnetic composite demonstrates the high potential of synthetic biology for the production of multifunctional nanomaterials, turning the magnetosome surface into a platform for specific versatile display of functional moieties.


Asunto(s)
Nanopartículas de Magnetita , Magnetosomas , Magnetospirillum , Proteínas Bacterianas , Proteínas de la Membrana
12.
Appl Environ Microbiol ; 86(3)2020 01 21.
Artículo en Inglés | MEDLINE | ID: mdl-31732570

RESUMEN

The alphaproteobacterium Magnetospirillum gryphiswaldense has the intriguing ability to navigate within magnetic fields, a behavior named magnetotaxis, governed by the formation of magnetosomes, intracellular membrane-enveloped crystals of magnetite. Magnetosomes are aligned in chains along the cell's motility axis by a dedicated multipart cytoskeleton ("magnetoskeleton"); however, precise estimates of its significance for magnetotaxis have not been reported. Here, we estimated the alignment of strains deficient in various magnetoskeletal constituents by live-cell motility tracking within defined magnetic fields ranging from 50 µT (reflecting the geomagnetic field) up to 400 µT. Motility tracking revealed that ΔmamY and ΔmamK strains (which assemble mispositioned and fragmented chains, respectively) are partially impaired in magnetotaxis, with approximately equal contributions of both proteins. This impairment was reflected by a required magnetic field strength of 200 µT to achieve a similar degree of alignment as for the wild-type strain in a 50-µT magnetic field. In contrast, the ΔmamJ strain, which predominantly forms clusters of magnetosomes, was only weakly aligned under any of the tested field conditions and could barely be distinguished from a nonmagnetic mutant. Most findings were corroborated by a soft agar swimming assay to analyze magnetotaxis based on the degree of distortion of swim halos formed in magnetic fields. Motility tracking further revealed that swimming speeds of M. gryphiswaldense are highest within the field strength equaling the geomagnetic field. In conclusion, magnetic properties and intracellular positioning of magnetosomes by a dedicated magnetoskeleton are required and optimized for bacterial magnetotaxis and most efficient locomotion within the geomagnetic field.IMPORTANCE In Magnetospirillum gryphiswaldense, magnetosomes are aligned in quasi-linear chains in a helical cell by a complex cytoskeletal network, including the actin-like MamK and adapter MamJ for magnetosome chain concatenation and segregation and MamY to position magnetosome chains along the shortest cellular axis of motility. Magnetosome chain positioning is assumed to be required for efficient magnetic navigation; however, the significance and contribution of all key constituents have not been quantified within defined and weak magnetic fields reflecting the geomagnetic field. Employing two different motility-based methods to consider the flagellum-mediated propulsion of cells, we depict individual benefits of all magnetoskeletal constituents for magnetotaxis. Whereas lack of mamJ resulted almost in an inability to align cells in weak magnetic fields, an approximately 4-fold-increased magnetic field strength was required to compensate for the loss of mamK or mamY In summary, the magnetoskeleton and optimal positioning of magnetosome chains are required for efficient magnetotaxis.


Asunto(s)
Técnicas Bacteriológicas , Rastreo Celular/métodos , Campos Magnéticos , Magnetospirillum/fisiología , Taxia
13.
Appl Environ Microbiol ; 87(1)2020 12 17.
Artículo en Inglés | MEDLINE | ID: mdl-33067189

RESUMEN

Magnetospirillum gryphiswaldense employs iron-rich nanoparticles for magnetic navigation within environmental redox gradients. This behavior termed magneto-aerotaxis was previously shown to rely on the sensory pathway CheOp1, but the precise localization of CheOp1-related chemoreceptor arrays during the cell cycle and its possible interconnection with three other chemotaxis pathways have remained unstudied. Here, we analyzed the localization of chemoreceptor-associated adaptor protein CheW1 and histidine kinase CheA1 by superresolution microscopy in a spatiotemporal manner. CheW1 localized in dynamic clusters that undergo occasional segregation and fusion events at lateral sites of both cell poles. Newly formed smaller clusters originating at midcell before completion of cytokinesis were found to grow in size during the cell cycle. Bipolar CheA1 localization and formation of aerotactic swim halos were affected depending on the fluorescent protein tag, indicating that CheA1 localization is important for aerotaxis. Furthermore, polar CheW1 localization was independent of cheOp2 to cheOp4 but lost in the absence of cheOp1 or cheA1 Results were corroborated by the detection of a direct protein interaction between CheA1 and CheW1 and by the observation that cheOp2- and cheOp3-encoded CheW paralogs localized in spatially distinct smaller clusters at the cell boundary. Although the findings of a minor aerotaxis-related CheOp4 phenotype and weak protein interactions between CheOp1 and CheOp4 by two-hybrid analysis implied that CheW1 and CheW4 might be part of the same chemoreceptor array, CheW4 was localized in spatially distinct polar-lateral arrays independent of CheOp1, suggesting that CheOp1 and CheOp4 are also not connected at the molecular level.IMPORTANCE Magnetotactic bacteria (MTB) use the geomagnetic field for navigation in aquatic redox gradients. However, the highly complex signal transduction networks in these environmental microbes are poorly understood. Here, we analyzed the localization of selected chemotaxis proteins to spatially and temporally resolve chemotaxis array localization in Magnetospirillum gryphiswaldense Our findings suggest that bipolar localization of chemotaxis arrays related to the key signaling pathway CheOp1 is important for aerotaxis and that CheOp1 signaling units assemble independent of the three other chemotaxis pathways present in M. gryphiswaldense Overall, our results provide deeper insights into the complex organization of signaling pathways in MTB and add to the general understanding of environmental bacteria possessing multiple chemotaxis pathways.


Asunto(s)
Proteínas Bacterianas/genética , Quimiotaxis/genética , Histidina Quinasa/genética , Magnetospirillum/fisiología , Proteínas Bacterianas/metabolismo , Histidina Quinasa/metabolismo , Magnetospirillum/enzimología , Magnetospirillum/genética , Transducción de Señal/genética
14.
Microb Cell Fact ; 19(1): 206, 2020 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-33168043

RESUMEN

BACKGROUND: Magnetosomes produced by magnetotactic bacteria represent magnetic nanoparticles with unprecedented characteristics. However, their use in many biotechnological applications has so far been hampered by their challenging bioproduction at larger scales. RESULTS: Here, we developed an oxystat batch fermentation regime for microoxic cultivation of Magnetospirillum gryphiswaldense in a 3 L bioreactor. An automated cascade regulation enabled highly reproducible growth over a wide range of precisely controlled oxygen concentrations (1-95% of air saturation). In addition, consumption of lactate as the carbon source and nitrate as alternative electron acceptor were monitored during cultivation. While nitrate became growth limiting during anaerobic growth, lactate was the growth limiting factor during microoxic cultivation. Analysis of microoxic magnetosome biomineralization by cellular iron content, magnetic response, transmission electron microscopy and small-angle X-ray scattering revealed magnetosomal magnetite crystals were highly uniform in size and shape. CONCLUSION: The fermentation regime established in this study facilitates stable oxygen control during culturing of Magnetospirillum gryphiswaldense. Further scale-up seems feasible by combining the stable oxygen control with feeding strategies employed in previous studies. Results of this study will facilitate the highly reproducible laboratory-scale bioproduction of magnetosomes for a diverse range of future applications in the fields of biotechnology and biomedicine.


Asunto(s)
Automatización de Laboratorios , Fermentación , Magnetosomas/metabolismo , Magnetospirillum/crecimiento & desarrollo , Magnetospirillum/metabolismo , Oxígeno/metabolismo , Proteínas Bacterianas/metabolismo , Reactores Biológicos , Biotecnología , Carbono/metabolismo , Óxido Ferrosoférrico/metabolismo
16.
Mol Microbiol ; 107(4): 542-557, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29243866

RESUMEN

Magnetospirillum gryphiswaldense MSR-1 synthesizes membrane-enclosed magnetite (Fe3 O4 ) nanoparticles, magnetosomes, for magnetotaxis. Formation of these organelles involves a complex process comprising key steps which are governed by specific magnetosome-associated proteins. MamB, a cation diffusion facilitator (CDF) family member has been implicated in magnetosome-directed iron transport. However, deletion mutagenesis studies revealed that MamB is essential for the formation of magnetosome membrane vesicles, but its precise role remains elusive. In this study, we employed a multi-disciplinary approach to define the role of MamB during magnetosome formation. Using site-directed mutagenesis complemented by structural analyses, fluorescence microscopy and cryo-electron tomography, we show that MamB is most likely an active magnetosome-directed transporter serving two distinct, yet essential functions. First, MamB initiates magnetosome vesicle formation in a transport-independent process, probably by serving as a landmark protein. Second, MamB transport activity is required for magnetite nucleation. Furthermore, by determining the crystal structure of the MamB cytosolic C-terminal domain, we also provide mechanistic insight into transport regulation. Additionally, we present evidence that magnetosome vesicle growth and chain formation are independent of magnetite nucleation and magnetic interactions respectively. Together, our data provide novel insight into the role of the key bifunctional magnetosome protein MamB, and the early steps of magnetosome formation.


Asunto(s)
Proteínas Bacterianas/metabolismo , Biomineralización , Óxido Ferrosoférrico/metabolismo , Magnetosomas/metabolismo , Magnetospirillum/enzimología , Alelos , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Dispersión Dinámica de Luz , Óxido Ferrosoférrico/química , Magnetosomas/química , Magnetospirillum/genética , Mutagénesis Sitio-Dirigida , Dominios Proteicos , Difracción de Rayos X
17.
Appl Environ Microbiol ; 85(24)2019 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-31604767

RESUMEN

Magnetosomes are membrane-enveloped single-domain ferromagnetic nanoparticles enabling the navigation of magnetotactic bacteria along magnetic field lines. Strict control over each step of biomineralization generates particles of high crystallinity, strong magnetization, and remarkable uniformity in size and shape, which is particularly interesting for many biomedical and biotechnological applications. However, to understand the physicochemical processes involved in magnetite biomineralization, close and precise monitoring of particle production is required. Commonly used techniques, such as transmission electron microscopy (TEM) or Fe measurements, allow only for semiquantitative assessment of the magnetosome formation without routinely revealing quantitative structural information. In this study, lab-based small-angle X-ray scattering (SAXS) is explored as a means to monitor the different stages of magnetosome biogenesis in the model organism Magnetospirillum gryphiswaldense SAXS is evaluated as a quantitative stand-alone technique to analyze the size, shape, and arrangement of magnetosomes in cells cultivated under different growth conditions. By applying a simple and robust fitting procedure based on spheres aligned in linear chains, it is demonstrated that the SAXS data sets contain information on both the diameter of the inorganic crystal and the protein-rich magnetosome membrane. The analyses corroborate a narrow particle size distribution with an overall magnetosome radius of 19 nm in Magnetospirillum gryphiswaldense Furthermore, the averaged distance between individual magnetosomes is determined, revealing a chain-like particle arrangement with a center-to-center distance of 53 nm. Overall, these data demonstrate that SAXS can be used as a novel stand-alone technique allowing for the at-line monitoring of magnetosome biosynthesis, thereby providing accurate information on the particle nanostructure.IMPORTANCE This study explores lab-based small-angle X-ray scattering (SAXS) as a novel quantitative stand-alone technique to monitor the size, shape, and arrangement of magnetosomes during different stages of particle biogenesis in the model organism Magnetospirillum gryphiswaldense The SAXS data sets contain volume-averaged, statistically accurate information on both the diameter of the inorganic nanocrystal and the enveloping protein-rich magnetosome membrane. As a robust and nondestructive in situ technique, SAXS can provide new insights into the physicochemical steps involved in the biosynthesis of magnetosome nanoparticles as well as their assembly into well-ordered chains. The proposed fit model can easily be adapted to account for different particle shapes and arrangements produced by other strains of magnetotactic bacteria, thus rendering SAXS a highly versatile method.


Asunto(s)
Magnetosomas/ultraestructura , Magnetospirillum/citología , Magnetospirillum/metabolismo , Nanoestructuras/química , Proteínas Bacterianas , Estudios de Evaluación como Asunto , Óxido Ferrosoférrico , Proteínas de la Membrana/metabolismo , Microscopía Electrónica , Dispersión del Ángulo Pequeño , Difracción de Rayos X
18.
Anal Biochem ; 585: 113402, 2019 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-31442385

RESUMEN

SEAP (secreted embryonic alkaline phosphatase) has been suggested as versatile reporter protein inter alia for cell ligand interaction. Generic photometric assay formats for this enzyme are currently lacking. Using the interaction of recombinant hCD40 ligand with HEK-Blue sensor cells expressing the CD40 receptor as example, we show that such an assay can be developed based on BCIP/NBT (5-bromo-4-chloro-3-indolyl phosphate/nitroblue tetrazolium chloride) as substrate. Supplementation of the reaction buffer with a micelle-forming detergent (TWEEN 20) stabilizes the water-insoluble reactions products thereby allowing reproducible photometric quantification of the colloidal dispersion. After optimizing the assay in terms of incubation time, cell number and environmental conditions, a cellular response to stimulation was already visible for 0.25 ng mL-1 of rhCD40L. Moreover, the sensitivity of the assay was significantly better than reported previously for alternative assays used in combination with the commercially available reporter cells. The use of BCIP/NBT as substrate therefore provides a robust and sensitive method to monitor SEAP activity in solution, which could conceivably be extended to other cell-based and biological assays using SEAP as reporter protein.


Asunto(s)
Fosfatasa Alcalina/análisis , Fosfatasa Alcalina/metabolismo , Indoles/química , Nitroazul de Tetrazolio/química , Técnicas Biosensibles , Ligando de CD40/metabolismo , Línea Celular , Coloides/química , Humanos , Indicadores y Reactivos/química , Ligandos , Límite de Detección , Proteína Cofactora de Membrana/química , Fotometría
19.
PLoS Genet ; 12(6): e1006101, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-27286560

RESUMEN

Magnetosomes of magnetotactic bacteria contain well-ordered nanocrystals for magnetic navigation and have recently emerged as the most sophisticated model system to study the formation of membrane bounded organelles in prokaryotes. Magnetosome biosynthesis is thought to begin with the formation of a dedicated compartment, the magnetosome membrane (MM), in which the biosynthesis of a magnetic mineral is strictly controlled. While the biomineralization of magnetosomes and their subsequent assembly into linear chains recently have become increasingly well studied, the molecular mechanisms and early stages involved in MM formation remained poorly understood. In the Alphaproteobacterium Magnetospirillum gryphiswaldense, approximately 30 genes were found to control magnetosome biosynthesis. By cryo-electron tomography of several key mutant strains we identified the gene complement controlling MM formation in this model organism. Whereas the putative magnetosomal iron transporter MamB was most crucial for the process and caused the most severe MM phenotype upon elimination, MamM, MamQ and MamL were also required for the formation of wild-type-like MMs. A subset of seven genes (mamLQBIEMO) combined within a synthetic operon was sufficient to restore the formation of intracellular membranes in the absence of other genes from the key mamAB operon. Tracking of de novo magnetosome membrane formation by genetic induction revealed that magnetosomes originate from unspecific cytoplasmic membrane locations before alignment into coherent chains. Our results indicate that no single factor alone is essential for MM formation, which instead is orchestrated by the cumulative action of several magnetosome proteins.


Asunto(s)
Membrana Celular/metabolismo , Magnetosomas , Magnetospirillum/metabolismo , Proteínas de Transporte de Catión/genética , Óxido Ferrosoférrico/metabolismo , Hierro/metabolismo , Magnetosomas/genética , Magnetosomas/metabolismo , Magnetosomas/ultraestructura , Magnetospirillum/genética
20.
Appl Environ Microbiol ; 84(17)2018 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-29959254

RESUMEN

Magnetic nanoparticles (MNPs) are useful for many biomedical applications, but it is challenging to synthetically produce them in large numbers with uniform properties and surface functionalization. Magnetotactic bacteria (MTB) produce magnetosomes with homogenous sizes, shapes, and magnetic properties. Consequently, there is interest in using MTB as biological factories for MNP production. Nonetheless, MTB can only be grown to low yields, and wild-type strains produce low numbers of MNPs/bacterium. There are also limited technologies to facilitate the selection of MTB with different magnetic contents, such as MTB with compromised and enhanced biomineralization ability. Here, we describe a magnetic microfluidic platform combined with transient cold/alkaline treatment to temporarily reduce the rapid flagellar motion of MTB without compromising their long-term proliferation and biomineralization ability for separating MTB on the basis of their magnetic contents. This strategy enables live MTB to be enriched, which, to the best of our knowledge, has not been achieved with another previously described magnetic microfluidic device that makes use of ferrofluid and heat. Our device also facilitates the high-throughput (25,000 cells/min) separation of wild-type Magnetospirillum gryphiswaldense (MSR-1) from nonmagnetic ΔmamAB MSR-1 mutants with a sensitivity of up to 80% and isolation purity of up to 95%, as confirmed with a gold-standard fluorescent-activated cell sorter (FACS) technique. This offers a 25-fold higher throughput than other previously described magnetic microfluidic platforms (1,000 cells/min). The device can also be used to isolate Magnetospirillum magneticum (AMB-1) mutants with different ranges of magnetosome numbers with efficiencies close to theoretical estimates. We believe this technology will facilitate the magnetic characterization of genetically engineered MTB for a variety of applications, including using MTB for large-scale, controlled MNP production.IMPORTANCE Our magnetic microfluidic technology can greatly facilitate biological applications with magnetotactic bacteria, from selection and screening to analysis. This technology will be of interest to microbiologists, chemists, and bioengineers who are interested in the biomineralization and selection of magnetotactic bacteria (MTB) for applications such as directed evolution and magnetogenetics.


Asunto(s)
Magnetospirillum/aislamiento & purificación , Técnicas Analíticas Microfluídicas/métodos , Microfluídica/instrumentación , Microfluídica/métodos , Ensayos Analíticos de Alto Rendimiento/métodos , Nanopartículas de Magnetita/microbiología , Magnetosomas/fisiología , Magnetospirillum/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA