Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 140
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Immunity ; 48(2): 286-298.e6, 2018 02 20.
Artículo en Inglés | MEDLINE | ID: mdl-29396162

RESUMEN

Glucocorticoids are steroid hormones with strong anti-inflammatory and immunosuppressive effects that are produced in a diurnal fashion. Although glucocorticoids have the potential to induce interleukin-7 receptor (IL-7R) expression in T cells, whether they control T cell homeostasis and responses at physiological concentrations remains unclear. We found that glucocorticoid receptor signaling induces IL-7R expression in mouse T cells by binding to an enhancer of the IL-7Rα locus, with a peak at midnight and a trough at midday. This diurnal induction of IL-7R supported the survival of T cells and their redistribution between lymph nodes, spleen, and blood by controlling expression of the chemokine receptor CXCR4. In mice, T cell accumulation in the spleen at night enhanced immune responses against soluble antigens and systemic bacterial infection. Our results reveal the immunoenhancing role of glucocorticoids in adaptive immunity and provide insight into how immune function is regulated by the diurnal rhythm.


Asunto(s)
Ritmo Circadiano/fisiología , Glucocorticoides/farmacología , Receptores CXCR4/fisiología , Receptores de Interleucina-7/fisiología , Linfocitos T/inmunología , Animales , Células Cultivadas , Quimiocina CXCL12/biosíntesis , Femenino , Memoria Inmunológica , Activación de Linfocitos , Masculino , Ratones , Ratones Endogámicos C57BL , Receptores de Glucocorticoides/fisiología
2.
Cell ; 139(6): 1130-42, 2009 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-20005806

RESUMEN

In mammals, the transcription factor SRY, encoded by the Y chromosome, is normally responsible for triggering the indifferent gonads to develop as testes rather than ovaries. However, testis differentiation can occur in its absence. Here we demonstrate in the mouse that a single factor, the forkhead transcriptional regulator FOXL2, is required to prevent transdifferentiation of an adult ovary to a testis. Inducible deletion of Foxl2 in adult ovarian follicles leads to immediate upregulation of testis-specific genes including the critical SRY target gene Sox9. Concordantly, reprogramming of granulosa and theca cell lineages into Sertoli-like and Leydig-like cell lineages occurs with testosterone levels comparable to those of normal XY male littermates. Our results show that maintenance of the ovarian phenotype is an active process throughout life. They might also have important medical implications for the understanding and treatment of some disorders of sexual development in children and premature menopause in women.


Asunto(s)
Transdiferenciación Celular , Factores de Transcripción Forkhead/metabolismo , Ovario/metabolismo , Testículo/metabolismo , Animales , Femenino , Proteína Forkhead Box L2 , Factores de Transcripción Forkhead/genética , Eliminación de Gen , Células de la Granulosa/citología , Masculino , Ratones , Oocitos/metabolismo , Ovario/citología , Células de Sertoli/citología , Testículo/citología
3.
Cell ; 135(5): 825-37, 2008 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-19041748

RESUMEN

Loss- and gain-of-function mutations in the broadly expressed gene Lrp5 affect bone formation, causing osteoporosis and high bone mass, respectively. Although Lrp5 is viewed as a Wnt coreceptor, osteoblast-specific disruption of beta-Catenin does not affect bone formation. Instead, we show here that Lrp5 inhibits expression of Tph1, the rate-limiting biosynthetic enzyme for serotonin in enterochromaffin cells of the duodenum. Accordingly, decreasing serotonin blood levels normalizes bone formation and bone mass in Lrp5-deficient mice, and gut- but not osteoblast-specific Lrp5 inactivation decreases bone formation in a beta-Catenin-independent manner. Moreover, gut-specific activation of Lrp5, or inactivation of Tph1, increases bone mass and prevents ovariectomy-induced bone loss. Serotonin acts on osteoblasts through the Htr1b receptor and CREB to inhibit their proliferation. By identifying duodenum-derived serotonin as a hormone inhibiting bone formation in an Lrp5-dependent manner, this study broadens our understanding of bone remodeling and suggests potential therapies to increase bone mass.


Asunto(s)
Duodeno/metabolismo , Proteínas Relacionadas con Receptor de LDL/metabolismo , Osteogénesis , Serotonina/metabolismo , Animales , Proteína de Unión a CREB/metabolismo , Femenino , Proteínas Relacionadas con Receptor de LDL/genética , Proteína-5 Relacionada con Receptor de Lipoproteína de Baja Densidad , Ratones , Receptor de Serotonina 5-HT1B/metabolismo , Triptófano Hidroxilasa/metabolismo
4.
Biochem Biophys Res Commun ; 530(1): 209-214, 2020 09 10.
Artículo en Inglés | MEDLINE | ID: mdl-32828287

RESUMEN

More than two decades after the discovery of adult neurogenesis in humans, researchers still struggle to elucidate the underlying transcriptional and post-transcriptional mechanisms. RNA interference is a crucially important process in the central nervous system, and its role in adult neurogenesis is poorly understood. In this work, we address the role of Dicer-dependent microRNA biogenesis in neuronal differentiation of adult neural stem cells within the subventricular zone of the mouse brain. Loss of the Dicer1 gene in the tailless (Tlx)-positive cells did not cause the decline in their numbers, but severely affected differentiation. Thus, our findings identify yet another phenomenon associated with microRNA pathway deregulation in adult neural stem cells which might be of relevance both for neuroscience and clinical practice.


Asunto(s)
Proliferación Celular , MicroARNs/genética , Células-Madre Neurales/citología , Neurogénesis , Células Madre Adultas/citología , Células Madre Adultas/metabolismo , Animales , Células Cultivadas , ARN Helicasas DEAD-box/genética , Femenino , Regulación del Desarrollo de la Expresión Génica , Ventrículos Laterales/citología , Ventrículos Laterales/metabolismo , Masculino , Ratones , Células-Madre Neurales/metabolismo , Ribonucleasa III/genética , Transcriptoma
5.
Genes Dev ; 24(20): 2330-42, 2010 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-20952540

RESUMEN

Serotonin is a bioamine regulating bone mass accrual differently depending on its site of synthesis. It decreases accrual when synthesized in the gut, and increases it when synthesized in the brain. The signal transduction events elicited by gut-derived serotonin once it binds to the Htr1b receptor present on osteoblasts have been identified and culminate in cAMP response element-binding protein (CREB) regulation of osteoblast proliferation. In contrast, we do not know how brain-derived serotonin favors bone mass accrual following its binding to the Htr2c receptor on neurons of the hypothalamic ventromedial nucleus (VMH). We show here--through gene expression analysis, serotonin treatment of wild-type and Htr2c(-/-) hypothalamic explants, and cell-specific gene deletion in the mouse--that, following its binding to the Htr2c receptor on VMH neurons, serotonin uses a calmodulin kinase (CaMK)-dependent signaling cascade involving CaMKKß and CaMKIV to decrease the sympathetic tone and increase bone mass accrual. We further show that the transcriptional mediator of these events is CREB, whose phosphorylation on Ser 133 is increased by CaMKIV following serotonin treatment of hypothalamic explants. A microarray experiment identified two genes necessary for optimum sympathetic activity whose expression is regulated by CREB. These results provide a molecular understanding of how serotonin signals in hypothalamic neurons to regulate bone mass accrual and identify CREB as a critical determinant of this function, although through different mechanisms depending on the cell type, neuron, or osteoblast in which it is expressed.


Asunto(s)
Proteína de Unión a Elemento de Respuesta al AMP Cíclico/metabolismo , Neuronas/metabolismo , Osteoblastos/metabolismo , Serotonina/metabolismo , Animales , Huesos/citología , Huesos/metabolismo , Encéfalo/metabolismo , Proteínas Quinasas Dependientes de Calcio-Calmodulina/genética , Proteínas Quinasas Dependientes de Calcio-Calmodulina/metabolismo , Línea Celular Tumoral , Análisis por Conglomerados , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/genética , Femenino , Técnica del Anticuerpo Fluorescente , Expresión Génica/efectos de los fármacos , Perfilación de la Expresión Génica , Hipotálamo/citología , Hipotálamo/metabolismo , Isoenzimas/genética , Isoenzimas/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos , Ratones Noqueados , Análisis de Secuencia por Matrices de Oligonucleótidos , Fosforilación/efectos de los fármacos , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Serotonina/farmacología
6.
Genes Dev ; 24(7): 683-95, 2010 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-20360385

RESUMEN

Malignant gliomas are the most common primary brain tumors, and are associated with frequent resistance to therapy as well as poor prognosis. Here we demonstrate that the nuclear receptor tailless (Tlx), which in the adult is expressed exclusively in astrocyte-like B cells of the subventricular zone, acts as a key regulator of neural stem cell (NSC) expansion and brain tumor initiation from NSCs. Overexpression of Tlx antagonizes age-dependent exhaustion of NSCs in mice and leads to migration of stem/progenitor cells from their natural niche. The increase of NSCs persists with age, and leads to efficient production of newborn neurons in aged brain tissues. These cells initiate the development of glioma-like lesions and gliomas. Glioma development is accelerated upon loss of the tumor suppressor p53. Tlx-induced NSC expansion and gliomagenesis are associated with increased angiogenesis, which allows for the migration and maintenance of brain tumor stem cells in the perivascular niche. We also demonstrate that Tlx transcripts are overexpressed in human primary glioblastomas in which Tlx expression is restricted to a subpopulation of nestin-positive perivascular tumor cells. Our study clearly demonstrates how NSCs contribute to brain tumorgenesis driven by a stem cell-specific transcription factor, thus providing novel insights into the histogenesis and molecular pathogenesis of primary brain tumors.


Asunto(s)
Neoplasias Encefálicas/patología , Glioma/patología , Neuronas/citología , Receptores Citoplasmáticos y Nucleares/metabolismo , Células Madre/citología , Envejecimiento , Animales , Encéfalo/citología , Encéfalo/crecimiento & desarrollo , Encéfalo/patología , Neoplasias Encefálicas/metabolismo , Proliferación Celular , Expresión Génica , Genes p53/genética , Glioma/metabolismo , Humanos , Ratones , Ratones Endogámicos C57BL , Mutación/genética , Neovascularización Patológica/fisiopatología , Neurogénesis , Neuronas/patología , Receptores Citoplasmáticos y Nucleares/genética , Células Madre/patología
7.
Am J Physiol Renal Physiol ; 311(5): F901-F906, 2016 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-27582101

RESUMEN

The distal nephron is a heterogeneous part of the nephron composed by six different cell types, forming the epithelium of the distal convoluted (DCT), connecting, and collecting duct. To dissect the function of these cells, knockout models specific for their unique cell marker have been created. However, since this part of the nephron develops at the border between the ureteric bud and the metanephric mesenchyme, the specificity of the single cell markers has been recently questioned. Here, by mapping the fate of the aquaporin 2 (AQP2) and Na+-Cl- cotransporter (NCC)-positive cells using transgenic mouse lines expressing the yellow fluorescent protein fluorescent marker, we showed that the origin of the distal nephron is extremely composite. Indeed, AQP2-expressing precursor results give rise not only to the principal cells, but also to some of the A- and B-type intercalated cells and even to cells of the DCT. On the other hand, some principal cells and B-type intercalated cells can develop from NCC-expressing precursors. In conclusion, these results demonstrate that the origin of different cell types in the distal nephron is not as clearly defined as originally thought. Importantly, they highlight the fact that knocking out a gene encoding for a selective functional marker in the adult does not guarantee cell specificity during the overall kidney development. Tools allowing not only cell-specific but also time-controlled recombination will be useful in this sense.


Asunto(s)
Túbulos Renales Colectores/metabolismo , Túbulos Renales Distales/metabolismo , Nefronas/metabolismo , Animales , Acuaporina 2/metabolismo , Ratones , Ratones Transgénicos , Modelos Biológicos , Simportadores del Cloruro de Sodio/metabolismo
8.
Hepatology ; 61(3): 979-89, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25266280

RESUMEN

UNLABELLED: The ubiquitously expressed transcriptional regulator serum response factor (SRF) is controlled by both Ras/MAPK (mitogen-activated protein kinase) and Rho/actin signaling pathways, which are frequently activated in hepatocellular carcinoma (HCC). We generated SRF-VP16iHep mice, which conditionally express constitutively active SRF-VP16 in hepatocytes, thereby controlling subsets of both Ras/MAPK- and Rho/actin-stimulated target genes. All SRF-VP16iHep mice develop hyperproliferative liver nodules that progresses to lethal HCC. Some murine (m)HCCs acquire Ctnnb1 mutations equivalent to those in human (h)HCC. The resulting transcript signatures mirror those of a distinct subgroup of hHCCs, with shared activation of oncofetal genes including Igf2, correlating with CpG hypomethylation at the imprinted Igf2/H19 locus. CONCLUSION: SRF-VP16iHep mHCC reveal convergent Ras/MAPK and Rho/actin signaling as a highly oncogenic driver mechanism for hepatocarcinogenesis. This suggests simultaneous inhibition of Ras/MAPK and Rho/actin signaling as a treatment strategy in hHCC therapy.


Asunto(s)
Neoplasias Hepáticas Experimentales/etiología , Factor de Respuesta Sérica/fisiología , Animales , Proliferación Celular , Islas de CpG , Metilación de ADN , Perfilación de la Expresión Génica , Hepatocitos/patología , Proteína Vmw65 de Virus del Herpes Simple/genética , Humanos , Factor II del Crecimiento Similar a la Insulina/genética , Linfocitos/patología , Ratones , Mutación , beta Catenina/genética
9.
J Neurosci ; 34(46): 15297-305, 2014 Nov 12.
Artículo en Inglés | MEDLINE | ID: mdl-25392497

RESUMEN

Sex differences in brain function underlie robust differences between males and females in both normal and disease states. Although alternative mechanisms exist, sexual differentiation of the male mammalian brain is initiated predominantly by testosterone secreted by the testes during the perinatal period. Despite considerable advances in understanding how testosterone and its metabolite estradiol sexually differentiate the brain, little is known about the mechanism that generates the male-specific perinatal testosterone surge. In mice, we show that a male-specific activation of GnRH neurons occurs 0-2 h following birth and that this correlates with the male-specific surge of testosterone occurring up to 5 h after birth. The necessity of GnRH signaling for the sexually differentiating effects of the perinatal testosterone surge was demonstrated by the persistence of female-like brain characteristics in adult male, GnRH receptor knock-out mice. Kisspeptin neurons have recently been identified to be potent, direct activators of GnRH neurons. We demonstrate that a population of kisspeptin neurons appears in the preoptic area of only the male between E19 and P1. The importance of kisspeptin inputs to GnRH neurons for the process of sexual differentiation was demonstrated by the lack of a normal neonatal testosterone surge, and disordered brain sexual differentiation of male mice in which the kisspeptin receptor was deleted selectively from GnRH neurons. These observations demonstrate the necessity of perinatal GnRH signaling for driving brain sexual differentiation and indicate that kisspeptin inputs to GnRH neurons are essential for this process to occur.


Asunto(s)
Hormona Liberadora de Gonadotropina/fisiología , Neuronas/fisiología , Área Preóptica/metabolismo , Receptores Acoplados a Proteínas G/fisiología , Diferenciación Sexual/fisiología , Transducción de Señal , Animales , Animales Recién Nacidos , Femenino , Hormona Liberadora de Gonadotropina/genética , Masculino , Ratones , Ratones Noqueados , Neuronas/metabolismo , Embarazo , Receptores Acoplados a Proteínas G/genética , Receptores de Kisspeptina-1 , Receptores LHRH/genética , Receptores LHRH/fisiología , Caracteres Sexuales , Testosterona/sangre , Tirosina 3-Monooxigenasa/metabolismo , Vasopresinas/metabolismo
10.
J Neurosci ; 34(32): 10659-74, 2014 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-25100599

RESUMEN

The role of neuronal noncoding RNAs in energy control of the body is not fully understood. The arcuate nucleus (ARC) of the hypothalamus comprises neurons regulating food intake and body weight. Here we show that Dicer-dependent loss of microRNAs in these neurons of adult (DicerCKO) mice causes chronic overactivation of the signaling pathways involving phosphatidylinositol-3-kinase (PI3K), Akt, and mammalian target of rapamycin (mTOR) and an imbalance in the levels of neuropeptides, resulting in severe hyperphagic obesity. Similarly, the activation of PI3K-Akt-mTOR pathway due to Pten deletion in the adult forebrain leads to comparable weight increase. Conversely, the mTORC1 inhibitor rapamycin normalizes obesity in mice with an inactivated Dicer1 or Pten gene. Importantly, the continuous delivery of oligonucleotides mimicking microRNAs, which are predicted to target PI3K-Akt-mTOR pathway components, to the hypothalamus attenuates adiposity in DicerCKO mice. Furthermore, loss of miR-103 causes strong upregulation of the PI3K-Akt-mTOR pathway in vitro and its application into the ARC of the Dicer-deficient mice both reverses upregulation of Pik3cg, the mRNA encoding the catalytic subunit p110γ of the PI3K complex, and attenuates the hyperphagic obesity. Our data demonstrate in vivo the crucial role of neuronal microRNAs in the control of energy homeostasis.


Asunto(s)
Hiperfagia/complicaciones , Hipotálamo/metabolismo , MicroARNs/metabolismo , Obesidad/etiología , Obesidad/patología , Absorciometría de Fotón , Proteína Relacionada con Agouti/genética , Proteína Relacionada con Agouti/metabolismo , Animales , ARN Helicasas DEAD-box/deficiencia , ARN Helicasas DEAD-box/genética , Células HeLa , Humanos , Proteínas Luminiscentes/genética , Ratones , Ratones Endogámicos C57BL , MicroARNs/genética , Neuropéptido Y/genética , Neuropéptido Y/metabolismo , Proteína Oncogénica v-akt/metabolismo , Fosfohidrolasa PTEN/deficiencia , Fosfohidrolasa PTEN/genética , Fosfatidilinositol 3-Quinasas/metabolismo , Ribonucleasa III/deficiencia , Ribonucleasa III/genética , Serina-Treonina Quinasas TOR/metabolismo , Transducción Genética
11.
Proc Natl Acad Sci U S A ; 109(2): 621-6, 2012 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-22190495

RESUMEN

Calorie restriction delays brain senescence and prevents neurodegeneration, but critical regulators of these beneficial responses other than the NAD(+)-dependent histone deacetylase Sirtuin-1 (Sirt-1) are unknown. We report that effects of calorie restriction on neuronal plasticity, memory and social behavior are abolished in mice lacking cAMP responsive-element binding (CREB)-1 in the forebrain. Moreover, CREB deficiency drastically reduces the expression of Sirt-1 and the induction of genes relevant to neuronal metabolism and survival in the cortex and hippocampus of dietary-restricted animals. Biochemical studies reveal a complex interplay between CREB and Sirt-1: CREB directly regulates the transcription of the sirtuin in neuronal cells by binding to Sirt-1 chromatin; Sirt-1, in turn, is recruited by CREB to DNA and promotes CREB-dependent expression of target gene peroxisome proliferator-activated receptor-γ coactivator-1α and neuronal NO Synthase. Accordingly, expression of these CREB targets is markedly reduced in the brain of Sirt KO mice that are, like CREB-deficient mice, poorly responsive to calorie restriction. Thus, the above circuitry, modulated by nutrient availability, links energy metabolism with neurotrophin signaling, participates in brain adaptation to nutrient restriction, and is potentially relevant to accelerated brain aging by overnutrition and diabetes.


Asunto(s)
Restricción Calórica , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/metabolismo , Regulación de la Expresión Génica/fisiología , Neuronas/metabolismo , Prosencéfalo/metabolismo , Sirtuina 1/metabolismo , Análisis de Varianza , Animales , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/deficiencia , Potenciación a Largo Plazo/fisiología , Masculino , Memoria/fisiología , Ratones , Ratones Endogámicos C57BL , Ratones Mutantes , Plasticidad Neuronal/fisiología , Desempeño Psicomotor , Sirtuina 1/genética , Conducta Social
12.
J Neurosci ; 33(38): 15132-44, 2013 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-24048844

RESUMEN

Dendrite development is controlled by the interplay of intrinsic and extrinsic signals affecting initiation, growth, and maintenance of complex dendrites. Bone morphogenetic proteins (BMPs) stimulate dendrite growth in cultures of sympathetic, cortical, and hippocampal neurons but it was unclear whether BMPs control dendrite morphology in vivo. Using a conditional knock-out strategy to eliminate Bmpr1a and Smad4 in immature noradrenergic sympathetic neurons we now show that dendrite length, complexity, and neuron cell body size are reduced in adult mice deficient of Bmpr1a. The combined deletion of Bmpr1a and Bmpr1b causes no further decrease in dendritic features. Sympathetic neurons devoid of Bmpr1a/1b display normal Smad1/5/8 phosphorylation, which suggests that Smad-independent signaling paths are involved in dendritic growth control downstream of BMPR1A/B. Indeed, in the Smad4 conditional knock-out dendrite and cell body size are not affected and dendrite complexity and number are increased. Together, these results demonstrate an in vivo function for BMPs in the generation of mature sympathetic neuron dendrites. BMPR1 signaling controls dendrite complexity postnatally during the major dendritic growth period of sympathetic neurons.


Asunto(s)
Proteínas Morfogenéticas Óseas/metabolismo , Dendritas/metabolismo , Ganglios Simpáticos/citología , Células Receptoras Sensoriales/citología , Transducción de Señal/fisiología , Factores de Edad , Análisis de Varianza , Animales , Animales Recién Nacidos , Proteínas Arqueales/metabolismo , Receptores de Proteínas Morfogenéticas Óseas de Tipo 1/deficiencia , Receptores de Proteínas Morfogenéticas Óseas de Tipo 1/genética , Proteínas Morfogenéticas Óseas/genética , Células Cultivadas , ADN Polimerasa Dirigida por ADN/metabolismo , Embrión de Mamíferos , Colorantes Fluorescentes/metabolismo , Regulación del Desarrollo de la Expresión Génica/genética , Proteínas de Homeodominio/metabolismo , Imagenología Tridimensional , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Proteínas Asociadas a Microtúbulos/metabolismo , Modelos Neurológicos , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Proteína Smad4/deficiencia , Proteína Smad4/genética , Estadísticas no Paramétricas , Factores de Transcripción/metabolismo
13.
Biochem Biophys Res Commun ; 447(3): 407-12, 2014 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-24713303

RESUMEN

Although the mineralocorticoid receptor (MR) is expressed in osteoblasts and osteocytes and frequently co-localizes with the glucocorticoid receptors (GR), its pathophysiological functions in bone remain elusive. We report here that pharmacologic inhibition of MR function with eplerenone resulted in increased bone mass, with stimulation of bone formation and suppression of resorption, while specific genetic deletion of MR in osteoblast lineage cells had no effect. Further, treatment with eplerenone as well as specific deletion of MR in osteocytes ameliorated the cortical bone thinning caused by slow-release prednisolone pellets. Thus, MR may be involved in the deleterious effects of glucocorticoid excess on cortical bone.


Asunto(s)
Enfermedades Óseas Metabólicas/inducido químicamente , Huesos/efectos de los fármacos , Glucocorticoides/efectos adversos , Osteogénesis/efectos de los fármacos , Receptores de Mineralocorticoides/fisiología , Animales , Enfermedades Óseas Metabólicas/metabolismo , Huesos/metabolismo , Eplerenona , Ratones , Ratones Endogámicos , Antagonistas de Receptores de Mineralocorticoides/farmacología , Osteocitos/efectos de los fármacos , Osteocitos/metabolismo , Prednisona/efectos adversos , Espironolactona/análogos & derivados , Espironolactona/farmacología
14.
Proc Natl Acad Sci U S A ; 107(32): 14449-54, 2010 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-20663957

RESUMEN

High levels of corticosteroids (as circulate after stress) quickly and reversibly enhance hippocampal glutamatergic transmission via nongenomic actions requiring mineralocorticoid receptors. Subsequently, the hormone slowly and long-lastingly normalizes hippocampal cell function, through nuclear glucocorticoid receptors. Here we describe a rapid mineralocorticoid receptor-dependent enhancement of glutamatergic transmission in basolateral amygdala neurons. Contrary to the hippocampus, this rapid enhancement is long-lasting, potentially allowing an extended window for encoding of emotional aspects during stressful events. Importantly, the long-lasting change in state of amygdala neurons greatly affects the responsiveness to subsequent surges of corticosterone, revealing a quick suppression of glutamatergic transmission, which requires the glucocorticoid receptor. Responses of basolateral amygdala neurons to the stress hormone corticosterone can thus switch from excitatory to inhibitory, depending on the recent stress history of the organism.


Asunto(s)
Amígdala del Cerebelo/fisiología , Corticosterona/farmacología , Plasticidad Neuronal/fisiología , Potenciales Sinápticos/fisiología , Amígdala del Cerebelo/citología , Animales , Potenciales Postsinápticos Excitadores , Ácido Glutámico , Potenciales Postsinápticos Inhibidores , Masculino , Ratones , Ratones Endogámicos C57BL , Neuronas/fisiología , Receptores de Mineralocorticoides/metabolismo , Estrés Fisiológico/fisiología , Transmisión Sináptica
15.
Nat Genet ; 31(1): 47-54, 2002 May.
Artículo en Inglés | MEDLINE | ID: mdl-11967539

RESUMEN

Control of cellular survival and proliferation is dependent on extracellular signals and is a prerequisite for ordered tissue development and maintenance. Activation of the cAMP responsive element binding protein (CREB) by phosphorylation has been implicated in the survival of mammalian cells. To define its roles in the mouse central nervous system, we disrupted Creb1 in brain of developing and adult mice using the Cre/loxP system. Mice with a Crem(-/-) background and lacking Creb in the central nervous system during development show extensive apoptosis of postmitotic neurons. By contrast, mice in which both Creb1 and Crem are disrupted in the postnatal forebrain show progressive neurodegeneration in the hippocampus and in the dorsolateral striatum. The striatal phenotype is reminiscent of Huntington disease and is consistent with the postulated role of CREB-mediated signaling in polyglutamine-triggered diseases.


Asunto(s)
Encéfalo/fisiología , Degeneración Nerviosa/etiología , Proteínas Represoras , Factores de Transcripción/fisiología , Animales , Apoptosis , Cuerpo Estriado/patología , Modulador del Elemento de Respuesta al AMP Cíclico , Proteína de Unión a Elemento de Respuesta al AMP Cíclico , Proteínas de Unión al ADN/deficiencia , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/fisiología , Femenino , Humanos , Enfermedad de Huntington/etiología , Enfermedad de Huntington/genética , Enfermedad de Huntington/patología , Masculino , Ratones , Ratones Noqueados , Ratones Transgénicos , Degeneración Nerviosa/genética , Degeneración Nerviosa/patología , Péptidos/genética , Fenotipo , Transducción de Señal , Factores de Transcripción/deficiencia , Factores de Transcripción/genética
16.
J Neurosci ; 31(2): 453-60, 2011 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-21228155

RESUMEN

The nucleolus represents an essential stress sensor for the cell. However, the molecular consequences of nucleolar damage and their possible link with neurodegenerative diseases remain to be elucidated. Here, we show that nucleolar damage is present in both genders in Parkinson's disease (PD) and in the pharmacological PD model induced by the neurotoxin 1,2,3,6-tetrahydro-1-methyl-4-phenylpyridine hydrochloride (MPTP). Mouse mutants with nucleolar disruption restricted to dopaminergic (DA) neurons show phenotypic alterations that resemble PD, such as progressive and differential loss of DA neurons and locomotor abnormalities. At the molecular level, nucleolar disruption results in increased p53 levels and downregulation of mammalian target of rapamycin (mTOR) activity, leading to mitochondrial dysfunction and increased oxidative stress, similar to PD. In turn, increased oxidative stress induced by MPTP causes mTOR and ribosomal RNA synthesis inhibition. Collectively, these observations suggest that the interplay between nucleolar dysfunction and increased oxidative stress, involving p53 and mTOR signaling, may constitute a destructive axis in experimental and sporadic PD.


Asunto(s)
Nucléolo Celular/patología , Dopamina/metabolismo , Neuronas/patología , Estrés Oxidativo , Trastornos Parkinsonianos/metabolismo , Trastornos Parkinsonianos/patología , Serina-Treonina Quinasas TOR/fisiología , 1-Metil-4-fenil-1,2,3,6-Tetrahidropiridina , Animales , Encéfalo/metabolismo , Encéfalo/patología , Nucléolo Celular/metabolismo , Eliminación de Gen , Humanos , Ratones , Ratones Endogámicos C57BL , Ratones Mutantes , Ratones Transgénicos , Mitocondrias/fisiología , Destreza Motora , Neuronas/metabolismo , Enfermedad de Parkinson/patología , Trastornos Parkinsonianos/fisiopatología , Proteínas del Complejo de Iniciación de Transcripción Pol1/genética , Transducción de Señal , Proteína p53 Supresora de Tumor/fisiología
17.
Dev Biol ; 355(1): 89-100, 2011 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-21539825

RESUMEN

Differentiation of sympathetic neurons is controlled by a group of transcription factors, including Phox2b, Ascl1, Hand2 and Gata3, induced by bone morphogenetic proteins (BMPs) in progenitors located in ganglion primordia at the dorsal aorta. Here, we address the function of the transcription factors AP-2ß and AP-2α, expressed in migrating neural crest cells (NCC) and maintained in sympathetic progenitors and differentiated neurons. The elimination of both AP-2α and AP-2ß results in the virtually complete absence of sympathetic and sensory ganglia due to apoptotic cell death of migrating NCC. In the AP-2ß knockout only sympathetic ganglia (SG) are targeted, leading to a reduction in ganglion size by about 40%, which is also caused by apoptotic death of neural crest progenitors. The conditional double knockout of AP-2α and AP-2ß in sympathetic progenitors and differentiated noradrenergic neurons results in a further decrease in neuron number, leading eventually to small sympathetic ganglion rudiments postnatally. The elimination of AP-2ß also leads to the complete absence of noradrenergic neurons of the Locus coeruleus (LC). Whereas AP-2α/ß transcription factors are in vivo not required for the onset or maintenance of noradrenergic differentiation, their essential survival functions are demonstrated for sympathetic progenitors and noradrenergic neurons.


Asunto(s)
Ganglios Simpáticos/metabolismo , Células-Madre Neurales/metabolismo , Factor de Transcripción AP-2/metabolismo , Animales , Diferenciación Celular , Supervivencia Celular , Células Cultivadas , Ganglios Sensoriales/metabolismo , Regulación del Desarrollo de la Expresión Génica , Locus Coeruleus/metabolismo , Ratones , Ratones Noqueados , Cresta Neural/metabolismo , Factor de Transcripción AP-2/genética
18.
J Biol Chem ; 286(30): 26555-67, 2011 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-21646349

RESUMEN

As glucocorticoid resistance (GCR) and the concomitant burden pose a worldwide problem, there is an urgent need for a more effective glucocorticoid therapy, for which insights into the molecular mechanisms of GCR are essential. In this study, we addressed the hypothesis that TNFα, a strong pro-inflammatory mediator in numerous inflammatory diseases, compromises the protective function of the glucocorticoid receptor (GR) against TNFα-induced lethal inflammation. Indeed, protection of mice by dexamethasone against TNFα lethality was completely abolished when it was administered after TNFα stimulation, indicating compromised GR function upon TNFα challenge. TNFα-induced GCR was further demonstrated by impaired GR-dependent gene expression in the liver. Furthermore, TNFα down-regulates the levels of both GR mRNA and protein. However, this down-regulation seems to occur independently of GC production, as TNFα also resulted in down-regulation of GR levels in adrenalectomized mice. These findings suggest that the decreased amount of GR determines the GR response and outcome of TNFα-induced shock, as supported by our studies with GR heterozygous mice. We propose that by inducing GCR, TNFα inhibits a major brake on inflammation and thereby amplifies the pro-inflammatory response. Our findings might prove helpful in understanding GCR in inflammatory diseases in which TNFα is intimately involved.


Asunto(s)
Regulación hacia Abajo , Receptores de Glucocorticoides/biosíntesis , Choque/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , Animales , Femenino , Ratones , Ratones Transgénicos , ARN Mensajero/biosíntesis , ARN Mensajero/genética , Receptores de Glucocorticoides/genética , Choque/inducido químicamente , Choque/genética , Factor de Necrosis Tumoral alfa/genética , Factor de Necrosis Tumoral alfa/toxicidad
19.
Circulation ; 123(4): 400-8, 2011 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-21242479

RESUMEN

BACKGROUND: Mineralocorticoid receptor (MR) blockade improves morbidity and mortality among patients with heart failure; however, the underlying mechanisms are still under investigation. We studied left ventricular remodeling after myocardial infarction in mice with cardiomyocyte-specific inactivation of the MR gene (MR(MLCCre)) that were generated with a conditional MR allele (MR(flox)) in combination with a transgene expressing Cre recombinase under control of the myosin light-chain (MLC2a) gene promoter. METHODS AND RESULTS: Control (MR(flox/flox), MR(flox/wt)) and MR(MLCCre) mice underwent coronary artery ligation. MR ablation had no detectable baseline effect on cardiac morphology and function. The progressive left ventricular chamber enlargement and functional deterioration in infarcted control mice, detected by echocardiography and conductance catheter analysis during the 8-week observation period, were substantially attenuated in MR(MLCCre) mice. Chronically infarcted MR(MLCCre) mice displayed attenuated pulmonary edema, reduced cardiac hypertrophy, increased capillary density, and reduced accumulation of extracellular matrix proteins in the surviving left ventricular myocardium. Moreover, cardiomyocyte-specific MR ablation prevented the increases in myocardial and mitochondrial O(2)(·-) production and upregulation of the NADPH oxidase subunits Nox2 and Nox4. At 7 days, MR(MLCCre) mice exhibited enhanced infarct neovessel formation and collagen structural organization associated with reduced infarct expansion. Mechanistically, cardiomyocytes lacking MR displayed accelerated stress-induced activation and subsequent suppression of nuclear factor-κB and reduced apoptosis early after myocardial infarction. CONCLUSION: Cardiomyocyte-specific MR deficiency improved infarct healing and prevented progressive adverse cardiac remodeling, contractile dysfunction, and molecular alterations in ischemic heart failure, highlighting the importance of cardiomyocyte MR for heart failure development and progression.


Asunto(s)
Infarto del Miocardio/fisiopatología , Miocitos Cardíacos/fisiología , Receptores de Mineralocorticoides/fisiología , Remodelación Ventricular/fisiología , Animales , Apoptosis , Cardiomegalia/metabolismo , Cardiomegalia/fisiopatología , Células Cultivadas , Vasos Coronarios/metabolismo , Vasos Coronarios/fisiopatología , Femenino , Eliminación de Gen , Masculino , Glicoproteínas de Membrana/metabolismo , Ratones , Ratones Transgénicos , Infarto del Miocardio/genética , Infarto del Miocardio/metabolismo , Miocitos Cardíacos/metabolismo , NADPH Oxidasa 2 , NADPH Oxidasa 4 , NADPH Oxidasas/metabolismo , FN-kappa B/metabolismo , Neovascularización Fisiológica , Edema Pulmonar/metabolismo , Edema Pulmonar/fisiopatología , Receptores de Mineralocorticoides/genética , Receptores de Mineralocorticoides/metabolismo , Superóxidos/metabolismo , Regulación hacia Arriba , Remodelación Ventricular/genética
20.
Eur J Neurosci ; 35(5): 735-41, 2012 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-22356487

RESUMEN

The high susceptibility of dopaminergic (DA) neurons to cellular stress is regarded as a primary cause of Parkinson's disease. Here we investigate the role of the serum response factor (SRF), an important regulator of anti-apoptotic responses, for the survival of DA neurons in mice. We show that loss of SRF in DA neurons does not affect their viability and does not influence dopamine-dependent behaviors. However, ablation of SRF causes exacerbated sensitivity to 1-methyl 4-phenyl 1,2,3,6-tetrahydropyridine (MPTP), leading to significantly greater loss of DA neurons in the substantia nigra, compared with DA neurons located in the ventral tegmental area. In addition, loss of SRF decreases levels of the anti-apoptotic proteins brain-derived neurotrophic factor (BDNF) and Bcl-2, a plausible underlying cause of increased sensitivity to oxidative stress. These observations support the notion that dysfunction of the SRF-activating mitogen-associated kinase pathway may be part of Parkinson's disease etiology.


Asunto(s)
Neuronas Dopaminérgicas/metabolismo , Neuronas Dopaminérgicas/patología , Intoxicación por MPTP/metabolismo , Intoxicación por MPTP/patología , Estrés Oxidativo/fisiología , Factor de Respuesta Sérica/deficiencia , Animales , Susceptibilidad a Enfermedades/metabolismo , Susceptibilidad a Enfermedades/patología , Predisposición Genética a la Enfermedad , Intoxicación por MPTP/genética , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Estrés Oxidativo/genética , Trastornos Parkinsonianos/genética , Trastornos Parkinsonianos/metabolismo , Trastornos Parkinsonianos/patología , Factor de Respuesta Sérica/genética , Sustancia Negra/metabolismo , Sustancia Negra/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA