Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Brief Bioinform ; 25(1)2023 11 22.
Artículo en Inglés | MEDLINE | ID: mdl-38189542

RESUMEN

Non-coding RNAs (ncRNAs) are a class of RNA molecules that do not have the potential to encode proteins. Meanwhile, they can occupy a significant portion of the human genome and participate in gene expression regulation through various mechanisms. Gestational diabetes mellitus (GDM) is a pathologic condition of carbohydrate intolerance that begins or is first detected during pregnancy, making it one of the most common pregnancy complications. Although the exact pathogenesis of GDM remains unclear, several recent studies have shown that ncRNAs play a crucial regulatory role in GDM. Herein, we present a comprehensive review on the multiple mechanisms of ncRNAs in GDM along with their potential role as biomarkers. In addition, we investigate the contribution of deep learning-based models in discovering disease-specific ncRNA biomarkers and elucidate the underlying mechanisms of ncRNA. This might assist community-wide efforts to obtain insights into the regulatory mechanisms of ncRNAs in disease and guide a novel approach for early diagnosis and treatment of disease.


Asunto(s)
Errores Innatos del Metabolismo de los Carbohidratos , Diabetes Gestacional , Síndromes de Malabsorción , Humanos , Femenino , Embarazo , Diabetes Gestacional/genética , Genoma Humano , ARN no Traducido/genética , Biomarcadores
2.
BMC Bioinformatics ; 24(1): 301, 2023 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-37507654

RESUMEN

BACKGROUND: The identification of tumor T cell antigens (TTCAs) is crucial for providing insights into their functional mechanisms and utilizing their potential in anticancer vaccines development. In this context, TTCAs are highly promising. Meanwhile, experimental technologies for discovering and characterizing new TTCAs are expensive and time-consuming. Although many machine learning (ML)-based models have been proposed for identifying new TTCAs, there is still a need to develop a robust model that can achieve higher rates of accuracy and precision. RESULTS: In this study, we propose a new stacking ensemble learning-based framework, termed StackTTCA, for accurate and large-scale identification of TTCAs. Firstly, we constructed 156 different baseline models by using 12 different feature encoding schemes and 13 popular ML algorithms. Secondly, these baseline models were trained and employed to create a new probabilistic feature vector. Finally, the optimal probabilistic feature vector was determined based the feature selection strategy and then used for the construction of our stacked model. Comparative benchmarking experiments indicated that StackTTCA clearly outperformed several ML classifiers and the existing methods in terms of the independent test, with an accuracy of 0.932 and Matthew's correlation coefficient of 0.866. CONCLUSIONS: In summary, the proposed stacking ensemble learning-based framework of StackTTCA could help to precisely and rapidly identify true TTCAs for follow-up experimental verification. In addition, we developed an online web server ( http://2pmlab.camt.cmu.ac.th/StackTTCA ) to maximize user convenience for high-throughput screening of novel TTCAs.


Asunto(s)
Biología Computacional , Neoplasias , Humanos , Biología Computacional/métodos , Algoritmos , Aprendizaje Automático , Linfocitos T
3.
BMC Bioinformatics ; 24(1): 356, 2023 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-37735626

RESUMEN

BACKGROUND: Tyrosinase is an enzyme involved in melanin production in the skin. Several hyperpigmentation disorders involve the overproduction of melanin and instability of tyrosinase activity resulting in darker, discolored patches on the skin. Therefore, discovering tyrosinase inhibitory peptides (TIPs) is of great significance for basic research and clinical treatments. However, the identification of TIPs using experimental methods is generally cost-ineffective and time-consuming. RESULTS: Herein, a stacked ensemble learning approach, called TIPred, is proposed for the accurate and quick identification of TIPs by using sequence information. TIPred explored a comprehensive set of various baseline models derived from well-known machine learning (ML) algorithms and heterogeneous feature encoding schemes from multiple perspectives, such as chemical structure properties, physicochemical properties, and composition information. Subsequently, 130 baseline models were trained and optimized to create new probabilistic features. Finally, the feature selection approach was utilized to determine the optimal feature vector for developing TIPred. Both tenfold cross-validation and independent test methods were employed to assess the predictive capability of TIPred by using the stacking strategy. Experimental results showed that TIPred significantly outperformed the state-of-the-art method in terms of the independent test, with an accuracy of 0.923, MCC of 0.757 and an AUC of 0.977. CONCLUSIONS: The proposed TIPred approach could be a valuable tool for rapidly discovering novel TIPs and effectively identifying potential TIP candidates for follow-up experimental validation. Moreover, an online webserver of TIPred is publicly available at http://pmlabstack.pythonanywhere.com/TIPred .


Asunto(s)
Melaninas , Monofenol Monooxigenasa , Algoritmos , Aprendizaje Automático , Péptidos
4.
J Comput Aided Mol Des ; 36(11): 781-796, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36284036

RESUMEN

The blood-brain barrier (BBB) is the primary barrier with a highly selective semipermeable border between blood vascular endothelial cells and the central nervous system. Since BBB can prevent drugs circulating in the blood from crossing into the interstitial fluid of the brain where neurons reside, many researchers are working hard on developing drug delivery systems to penetrate the BBB which currently poses a challenge. Thus, blood-brain barrier penetrating peptides (B3PPs) are an alternative neurotherapeutic for brain-related disorder since they can facilitate drug delivery into the brain. In the meanwhile, developing computational methods that are effective for both the identification and characterization of B3PPs in a cost-effective manner plays an important role for basic reach and in the pharmaceutical industry. Even though few computational methods for B3PP identification have been developed, their performance might fail in terms of generalization ability and interpretability. In this study, a novel and efficient scoring card method-based predictor (termed SCMB3PP) is presented for improving B3PP identification and characterization. To overcome the limitation of black-box computational approaches, the SCMB3PP predictor can automatically estimate amino acid and dipeptide propensities to be B3PPs. Both cross-validation and independent tests indicate that SCMB3PP can achieve impressive performance and outperform various popular machine learning-based methods and the existing methods on multiple independent test datasets. Furthermore, SCMB3PP-derived amino acid propensities were utilized to identify informative biophysical and biochemical properties for characterizing B3PPs. Finally, an online user-friendly web server ( http://pmlabstack.pythonanywhere.com/SCMB3PP ) is established to identify novel and potential B3PP cost-effectively. This novel computational approach is anticipated to facilitate the large-scale identification of high potential B3PP candidates for follow-up experimental validation.


Asunto(s)
Barrera Hematoencefálica , Dipéptidos , Dipéptidos/química , Dipéptidos/metabolismo , Puntaje de Propensión , Células Endoteliales , Péptidos/metabolismo , Aminoácidos/química
5.
Mol Divers ; 26(1): 467-487, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34609711

RESUMEN

Alzheimer's disease (AD) is one of the most common forms of dementia and is associated with a decline in cognitive function and language ability. The deficiency of the cholinergic neurotransmitter known as acetylcholine (ACh) is associated with AD. Acetylcholinesterase (AChE) hydrolyses ACh and inhibits the cholinergic transmission. Furthermore, both AChE and butyrylcholinesterase (BChE) plays important roles in early and late stages of AD. Therefore, the inhibition of either or both cholinesterase enzymes represent a promising therapeutic route for treating AD. In this study, a large-scale classification structure-activity relationship model was developed to predict cholinesterase inhibitory activities as well as revealing important substructures governing their activities. Herein, a non-redundant dataset constituting 985 and 1056 compounds for AChE and BChE, respectively, was obtained from the ChEMBL database. These inhibitors were described by 12 sets of molecular fingerprints and predictive models were developed using the random forest algorithm. Evaluation of the model performance by means of Matthews correlation coefficient and consideration of the model's interpretability indicated that the SubstructureCount fingerprint was the most robust with five-fold cross-validated MCC of [0.76, 0.82] for AChE and BChE, respectively, and test MCC of [0.73, 0.97]. Feature interpretation revealed that the aromatic ring system, heterocyclic nitrogen containing compounds and amines are important for cholinesterase inhibition. Finally, the model was deployed as a publicly available webserver called the ABCpred at http://codes.bio/abcpred/ .


Asunto(s)
Enfermedad de Alzheimer , Inhibidores de la Colinesterasa , Acetilcolinesterasa/metabolismo , Enfermedad de Alzheimer/tratamiento farmacológico , Butirilcolinesterasa/metabolismo , Inhibidores de la Colinesterasa/química , Humanos , Relación Estructura-Actividad
6.
Bioinformatics ; 36(11): 3350-3356, 2020 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-32145017

RESUMEN

MOTIVATION: Therapeutic peptides failing at clinical trials could be attributed to their toxicity profiles like hemolytic activity, which hamper further progress of peptides as drug candidates. The accurate prediction of hemolytic peptides (HLPs) and its activity from the given peptides is one of the challenging tasks in immunoinformatics, which is essential for drug development and basic research. Although there are a few computational methods that have been proposed for this aspect, none of them are able to identify HLPs and their activities simultaneously. RESULTS: In this study, we proposed a two-layer prediction framework, called HLPpred-Fuse, that can accurately and automatically predict both hemolytic peptides (HLPs or non-HLPs) as well as HLPs activity (high and low). More specifically, feature representation learning scheme was utilized to generate 54 probabilistic features by integrating six different machine learning classifiers and nine different sequence-based encodings. Consequently, the 54 probabilistic features were fused to provide sufficiently converged sequence information which was used as an input to extremely randomized tree for the development of two final prediction models which independently identify HLP and its activity. Performance comparisons over empirical cross-validation analysis, independent test and case study against state-of-the-art methods demonstrate that HLPpred-Fuse consistently outperformed these methods in the identification of hemolytic activity. AVAILABILITY AND IMPLEMENTATION: For the convenience of experimental scientists, a web-based tool has been established at http://thegleelab.org/HLPpred-Fuse. CONTACT: glee@ajou.ac.kr or watshara.sho@mahidol.ac.th or bala@ajou.ac.kr. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Asunto(s)
Aprendizaje Automático , Péptidos
7.
Genomics ; 112(4): 2813-2822, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32234434

RESUMEN

In general, hydrolyzed proteins, plant-derived alkaloids and toxins displays unpleasant bitter taste. Thus, the perception of bitter taste plays a crucial role in protecting animals from poisonous plants and environmental toxins. Therapeutic peptides have attracted great attention as a new drug class. The successful identification and characterization of bitter peptides are essential for drug development and nutritional research. Owing to the large volume of peptides generated in the post-genomic era, there is an urgent need to develop computational methods for rapidly and effectively discriminating bitter peptides from non-bitter peptides. To the best of our knowledge, there is yet no computational model for predicting and analyzing bitter peptides using sequence information. In this study, we present for the first time a computational model called the iBitter-SCM that can predict the bitterness of peptides directly from their amino acid sequence without any dependence on their functional domain or structural information. iBitter-SCM is a simple and effective method that was built using the scoring card method (SCM) with estimated propensity scores of amino acids and dipeptides. Our benchmarking results demonstrated that iBitter-SCM achieved an accuracy and Matthews coefficient correlation of 84.38% and 0.688, respectively, on the independent dataset. Rigorous independent test indicated that iBitter-SCM was superior to those of other widely used machine-learning classifiers (e.g. k-nearest neighbor, naive Bayes, decision tree and random forest) owing to its simplicity, interpretability and implementation. Furthermore, the analysis of estimated propensity scores of amino acids and dipeptides were performed to provide a better understanding of the biophysical and biochemical properties of bitter peptides. For the convenience of experimental scientists, a web server is provided publicly at http://camt.pythonanywhere.com/iBitter-SCM. It is anticipated that iBitter-SCM can serve as an important tool to facilitate the high-throughput prediction and de novo design of bitter peptides.


Asunto(s)
Dipéptidos/química , Análisis de Secuencia de Proteína/métodos , Programas Informáticos , Gusto , Aminoácidos/química , Interacciones Hidrofóbicas e Hidrofílicas , Aprendizaje Automático , Puntaje de Propensión , Alineación de Secuencia
8.
J Comput Chem ; 41(20): 1820-1834, 2020 07 30.
Artículo en Inglés | MEDLINE | ID: mdl-32449536

RESUMEN

Hepatitis C virus (HCV) is one of the major causes of liver disease affecting an estimated 170 million people culminating in 300,000 deaths from cirrhosis or liver cancer. NS5B is one of three potential therapeutic targets against HCV (i.e., the other two being NS3/4A and NS5A) that is central to viral replication. In this study, we developed a classification structure-activity relationship (CSAR) model for identifying substructures giving rise to anti-HCV activities among a set of 578 non-redundant compounds. NS5B inhibitors were described by a set of 12 fingerprint descriptors and predictive models were constructed from 100 independent data splits using the random forest algorithm. The modelability (MODI index) of the data set was determined to be robust with a value of 0.88 exceeding established threshold of 0.65. The predictive performance was deduced by the accuracy, sensitivity, specificity, and Matthews correlation coefficient, which was found to be statistically robust (i.e., the former three parameters afforded values in excess of 0.8 while the latter statistical parameter provided a value >0.7). An in-depth analysis of the top 20 important descriptors revealed that aromatic ring and alkyl side chains are important for NS5B inhibition. Finally, the predictive model is deployed as a publicly accessible HCVpred web server (available at http://codes.bio/hcvpred/) that would allow users to predict the biological activity as being active or inactive against HCV NS5B. Thus, the knowledge and web server presented herein can be used in the design of more potent and specific drugs against the HCV NS5B.


Asunto(s)
Antivirales/farmacología , Hepacivirus/efectos de los fármacos , Inhibidores de Proteasas/farmacología , Proteínas no Estructurales Virales/antagonistas & inhibidores , Antivirales/química , Hepacivirus/enzimología , Modelos Moleculares , Análisis Multivariante , Inhibidores de Proteasas/química , Relación Estructura-Actividad , Proteínas no Estructurales Virales/metabolismo
10.
Med Res Rev ; 39(5): 1730-1778, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-30628099

RESUMEN

The continual increase of the aging population worldwide renders Alzheimer's disease (AD) a global prime concern. Several attempts have been focused on understanding the intricate complexity of the disease's development along with the on- andgoing search for novel therapeutic strategies. Incapability of existing AD drugs to effectively modulate the pathogenesis or to delay the progression of the disease leads to a shift in the paradigm of AD drug discovery. Efforts aimed at identifying AD drugs have mostly focused on the development of disease-modifying agents in which effects are believed to be long lasting. Of particular note, the secretase enzymes, a group of proteases responsible for the metabolism of the ß-amyloid precursor protein (ßAPP) and ß-amyloid (Aß) peptides production, have been underlined for their promising therapeutic potential. This review article attempts to comprehensively cover aspects related to the identification and use of drugs targeting the secretase enzymes. Particularly, the roles of secretases in the pathogenesis of AD and their therapeutic modulation are provided herein. Moreover, an overview of the drug development process and the contribution of computational (in silico) approaches for facilitating successful drug discovery are also highlighted along with examples of relevant computational works. Promising chemical scaffolds, inhibitors, and modulators against each class of secretases are also summarized herein. Additionally, multitarget secretase modulators are also taken into consideration in light of the current growing interest in the polypharmacology of complex diseases. Finally, challenging issues and future outlook relevant to the discovery of drugs targeting secretases are also discussed.


Asunto(s)
Enfermedad de Alzheimer/tratamiento farmacológico , Secretasas de la Proteína Precursora del Amiloide/efectos de los fármacos , Fármacos Neuroprotectores/uso terapéutico , Animales , Descubrimiento de Drogas , Humanos , Neurotransmisores/metabolismo
11.
Int J Mol Sci ; 21(1)2019 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-31861928

RESUMEN

Understanding of quorum-sensing peptides (QSPs) in their functional mechanism plays an essential role in finding new opportunities to combat bacterial infections by designing drugs. With the avalanche of the newly available peptide sequences in the post-genomic age, it is highly desirable to develop a computational model for efficient, rapid and high-throughput QSP identification purely based on the peptide sequence information alone. Although, few methods have been developed for predicting QSPs, their prediction accuracy and interpretability still requires further improvements. Thus, in this work, we proposed an accurate sequence-based predictor (called iQSP) and a set of interpretable rules (called IR-QSP) for predicting and analyzing QSPs. In iQSP, we utilized a powerful support vector machine (SVM) cooperating with 18 informative features from physicochemical properties (PCPs). Rigorous independent validation test showed that iQSP achieved maximum accuracy and MCC of 93.00% and 0.86, respectively. Furthermore, a set of interpretable rules IR-QSP was extracted by using random forest model and the 18 informative PCPs. Finally, for the convenience of experimental scientists, the iQSP web server was established and made freely available online. It is anticipated that iQSP will become a useful tool or at least as a complementary existing method for predicting and analyzing QSPs.


Asunto(s)
Fenómenos Fisiológicos Bacterianos , Aprendizaje Automático , Péptidos/metabolismo , Percepción de Quorum , Secuencia de Aminoácidos , Bacterias/química , Descubrimiento de Drogas , Modelos Moleculares , Péptidos/química , Máquina de Vectores de Soporte
12.
Int J Mol Sci ; 20(22)2019 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-31731751

RESUMEN

In spite of the large-scale production and widespread distribution of vaccines and antiviral drugs, viruses remain a prominent human disease. Recently, the discovery of antiviral peptides (AVPs) has become an influential antiviral agent due to their extraordinary advantages. With the avalanche of newly-found peptide sequences in the post-genomic era, there is a great demand to develop a sequence-based predictor for timely identifying AVPs as this information is very useful for both basic research and drug development. In this study, we propose a novel sequence-based meta-predictor with an effective feature representation, called Meta-iAVP, for the accurate prediction of AVPs from given peptide sequences. Herein, the effective feature representation was extracted from a set of prediction scores derived from various machine learning algorithms and types of features. To the best of our knowledge, the model proposed herein represents the first meta-based approach for the prediction of AVPs. An overall accuracy and Matthews correlation coefficient of 95.20% and 0.90, respectively, was achieved from the independent test set on an objective benchmark dataset. Comparative analysis suggested that Meta-iAVP was superior to that of existing methods and therefore represents a useful tool for AVP prediction. Finally, in an effort to facilitate high-throughput prediction of AVPs, the model was deployed as the Meta-iAVP web server and is made freely available online at http://codes.bio/meta-iavp/ where users can submit query peptide sequences for determining the likelihood of whether or not these peptides are AVPs.


Asunto(s)
Algoritmos , Antivirales/química , Antivirales/farmacología , Péptidos/química , Péptidos/farmacología , Secuencia de Aminoácidos , Aprendizaje Automático , Análisis de Secuencia de Proteína , Programas Informáticos
13.
Int J Mol Sci ; 20(12)2019 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-31212918

RESUMEN

Cancer remains one of the major causes of death worldwide. Angiogenesis is crucial for the pathogenesis of various human diseases, especially solid tumors. The discovery of anti-angiogenic peptides is a promising therapeutic route for cancer treatment. Thus, reliably identifying anti-angiogenic peptides is extremely important for understanding their biophysical and biochemical properties that serve as the basis for the discovery of new anti-cancer drugs. This study aims to develop an efficient and interpretable computational model called TargetAntiAngio for predicting and characterizing anti-angiogenic peptides. TargetAntiAngio was developed using the random forest classifier in conjunction with various classes of peptide features. It was observed via an independent validation test that TargetAntiAngio can identify anti-angiogenic peptides with an average accuracy of 77.50% on an objective benchmark dataset. Comparisons demonstrated that TargetAntiAngio is superior to other existing methods. In addition, results revealed the following important characteristics of anti-angiogenic peptides: (i) disulfide bond forming Cys residues play an important role for inhibiting blood vessel proliferation; (ii) Cys located at the C-terminal domain can decrease endothelial formatting activity and suppress tumor growth; and (iii) Cyclic disulfide-rich peptides contribute to the inhibition of angiogenesis and cell migration, selectivity and stability. Finally, for the convenience of experimental scientists, the TargetAntiAngio web server was established and made freely available online.


Asunto(s)
Inhibidores de la Angiogénesis/química , Inhibidores de la Angiogénesis/farmacología , Proteínas Angiogénicas/química , Proteínas Angiogénicas/farmacología , Biología Computacional/métodos , Diseño de Fármacos , Programas Informáticos , Secuencia de Aminoácidos , Movimiento Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Humanos , Aprendizaje Automático , Conformación Molecular , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Reproducibilidad de los Resultados , Relación Estructura-Actividad
14.
Molecules ; 24(10)2019 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-31121946

RESUMEN

Anticancer peptides (ACPs) have emerged as a new class of therapeutic agent for cancer treatment due to their lower toxicity as well as greater efficacy, selectivity and specificity when compared to conventional small molecule drugs. However, the experimental identification of ACPs still remains a time-consuming and expensive endeavor. Therefore, it is desirable to develop and improve upon existing computational models for predicting and characterizing ACPs. In this study, we present a bioinformatics tool called the ACPred, which is an interpretable tool for the prediction and characterization of the anticancer activities of peptides. ACPred was developed by utilizing powerful machine learning models (support vector machine and random forest) and various classes of peptide features. It was observed by a jackknife cross-validation test that ACPred can achieve an overall accuracy of 95.61% in identifying ACPs. In addition, analysis revealed the following distinguishing characteristics that ACPs possess: (i) hydrophobic residue enhances the cationic properties of α-helical ACPs resulting in better cell penetration; (ii) the amphipathic nature of the α-helical structure plays a crucial role in its mechanism of cytotoxicity; and (iii) the formation of disulfide bridges on ß-sheets is vital for structural maintenance which correlates with its ability to kill cancer cells. Finally, for the convenience of experimental scientists, the ACPred web server was established and made freely available online.


Asunto(s)
Antineoplásicos/farmacología , Biología Computacional/métodos , Péptidos/farmacología , Antineoplásicos/química , Simulación por Computador , Ensayos de Selección de Medicamentos Antitumorales , Humanos , Modelos Moleculares , Péptidos/química , Máquina de Vectores de Soporte
15.
Int J Mol Sci ; 19(8)2018 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-30061509

RESUMEN

ß-Lactams are the most widely used and effective antibiotics for the treatment of infectious diseases. Unfortunately, bacteria have developed several mechanisms to combat these therapeutic agents. One of the major resistance mechanisms involves the production of ß-lactamase that hydrolyzes the ß-lactam ring thereby inactivating the drug. To overcome this threat, the small molecule ß-lactamase inhibitors (e.g., clavulanic acid, sulbactam and tazobactam) have been used in combination with ß-lactams for treatment. However, the bacterial resistance to this kind of combination therapy has evolved recently. Therefore, multiple attempts have been made to discover and develop novel broad-spectrum ß-lactamase inhibitors that sufficiently work against ß-lactamase producing bacteria. ß-lactamase inhibitory proteins (BLIPs) (e.g., BLIP, BLIP-I and BLIP-II) are potential inhibitors that have been found from soil bacterium Streptomyces spp. BLIPs bind and inhibit a wide range of class A ß-lactamases from a diverse set of Gram-positive and Gram-negative bacteria, including TEM-1, PC1, SME-1, SHV-1 and KPC-2. To the best of our knowledge, this article represents the first systematic review on ß-lactamase inhibitors with a particular focus on BLIPs and their inherent properties that favorably position them as a source of biologically-inspired drugs to combat antimicrobial resistance. Furthermore, an extensive compilation of binding data from ß-lactamase⁻BLIP interaction studies is presented herein. Such information help to provide key insights into the origin of interaction that may be useful for rationally guiding future drug design efforts.


Asunto(s)
Bacterias/enzimología , Infecciones Bacterianas/tratamiento farmacológico , Proteínas Bacterianas/farmacología , Resistencia betalactámica/efectos de los fármacos , Inhibidores de beta-Lactamasas/farmacología , beta-Lactamasas/metabolismo , Animales , Bacterias/química , Bacterias/efectos de los fármacos , Proteínas Bacterianas/química , Proteínas Bacterianas/aislamiento & purificación , Humanos , Modelos Moleculares , Streptomyces/química , Inhibidores de beta-Lactamasas/química , Inhibidores de beta-Lactamasas/aislamiento & purificación , beta-Lactamasas/química
16.
J Gen Virol ; 97(6): 1311-1323, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-26935590

RESUMEN

Viral adaptability and survival arise due to the presence of quasispecies populations that are able to escape the immune response or produce drug-resistant variants. However, the presence of H5N1 virus with natural mutations acquired without any drug selection pressure poses a great threat. Cloacal samples collected from the 2004-2005 epidemics in Thailand from Asian open-billed storks revealed one major and several minor quasispecies populations with mutations on the oseltamivir (OTV)-binding site of the neuraminidase gene (NA) without prior exposure to a drug. Therefore, this study investigated the binding between the NA-containing novel mutations and OTV drug using molecular dynamic simulations and plaque inhibition assay. The results revealed that the mutant populations, S236F mutant, S236F/C278Y mutant, A250V/V266A/P271H/G285S mutant and C278Y mutant, had a lower binding affinity with OTV as compared with the WT virus due to rearrangement of amino acid residues and increased flexibility in the 150-loop. This result was further emphasized through the IC50 values obtained for the major population and WT virus, 104.74 nM and 18.30 nM, respectively. Taken together, these data suggest that H5N1 viruses isolated from wild birds have already acquired OTV-resistant point mutations without any exposure to a drug.


Asunto(s)
Antivirales/farmacología , Farmacorresistencia Viral , Subtipo H5N1 del Virus de la Influenza A/efectos de los fármacos , Gripe Aviar/virología , Proteínas Mutantes/genética , Neuraminidasa/genética , Oseltamivir/farmacología , Proteínas Virales/genética , Animales , Aves , Variación Genética , Subtipo H5N1 del Virus de la Influenza A/clasificación , Subtipo H5N1 del Virus de la Influenza A/genética , Concentración 50 Inhibidora , Pruebas de Sensibilidad Microbiana , Simulación de Dinámica Molecular , Proteínas Mutantes/metabolismo , Neuraminidasa/metabolismo , Unión Proteica , Tailandia , Ensayo de Placa Viral , Proteínas Virales/metabolismo
17.
Sci Rep ; 14(1): 4463, 2024 02 23.
Artículo en Inglés | MEDLINE | ID: mdl-38396246

RESUMEN

The voltage-gated sodium (Nav) channel is a crucial molecular component responsible for initiating and propagating action potentials. While the α subunit, forming the channel pore, plays a central role in this function, the complete physiological function of Nav channels relies on crucial interactions between the α subunit and auxiliary proteins, known as protein-protein interactions (PPI). Nav blocking peptides (NaBPs) have been recognized as a promising and alternative therapeutic agent for pain and itch. Although traditional experimental methods can precisely determine the effect and activity of NaBPs, they remain time-consuming and costly. Hence, machine learning (ML)-based methods that are capable of accurately contributing in silico prediction of NaBPs are highly desirable. In this study, we develop an innovative meta-learning-based NaBP prediction method (MetaNaBP). MetaNaBP generates new feature representations by employing a wide range of sequence-based feature descriptors that cover multiple perspectives, in combination with powerful ML algorithms. Then, these feature representations were optimized to identify informative features using a two-step feature selection method. Finally, the selected informative features were applied to develop the final meta-predictor. To the best of our knowledge, MetaNaBP is the first meta-predictor for NaBP prediction. Experimental results demonstrated that MetaNaBP achieved an accuracy of 0.948 and a Matthews correlation coefficient of 0.898 over the independent test dataset, which were 5.79% and 11.76% higher than the existing method. In addition, the discriminative power of our feature representations surpassed that of conventional feature descriptors over both the training and independent test datasets. We anticipate that MetaNaBP will be exploited for the large-scale prediction and analysis of NaBPs to narrow down the potential NaBPs.


Asunto(s)
Algoritmos , Péptidos , Humanos , Potenciales de Acción , Dolor , Sodio
18.
J Biomol Struct Dyn ; : 1-13, 2024 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-38385478

RESUMEN

Plant-allergenic proteins (PAPs) have the potential to induce allergic reactions in certain individuals. While these proteins are generally innocuous for the majority of people, they can elicit an immune response in those with particular sensitivities. Thus, screening and prioritizing the allergenic potential of plant proteins is indispensable for the development of diagnostic tools, therapeutic interventions or medications to treat allergic reactions. However, investigating the allergenic potential of plant proteins based on experimental methods is costly and labour-intensive. Therefore, we develop StackPAP, a three-layer stacking ensemble framework for accurate large-scale identification of PAPs. In StackPAP, at the first layer, we conducted a comprehensive analysis of an extensive set of feature descriptors. Subsequently, we selected and fused five potential sequence-based feature descriptors, including amphiphilic pseudo-amino acid composition, dipeptide deviation from expected mean, amino acid composition, pseudo amino acid composition and dipeptide composition. Additionally, we applied an efficient genetic algorithm (GA-SAR) to determine informative feature sets. In the second layer, 12 powerful machine learning (ML) methods, in combination with all the informative feature sets, were employed to construct a pool of base classifiers. Finally, 13 potential base classifiers were selected using the GA-SAR method and combined to develop the final meta-classifier. Our experimental results revealed the promising prediction performance of StackPAP, with an accuracy, Matthew's correlation coefficient and AUC of 0.984, 0.969 and 0.993, respectively, as judged by the independent test dataset. In conclusion, both cross-validation and independent test results indicated the superior performance of StackPAP compared with several ML-based classifiers. To accelerate the identification of the allergenicity of plant proteins, we developed a user-friendly web server for StackPAP (https://pmlabqsar.pythonanywhere.com/StackPAP). We anticipate that StackPAP will be an efficient and useful tool for rapidly screening PAPs from a vast number of plant proteins.Communicated by Ramaswamy H. Sarma.

19.
EXCLI J ; 22: 915-927, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37780939

RESUMEN

Efficiently and precisely identifying drug targets is crucial for developing and discovering potential medications. While conventional experimental approaches can accurately pinpoint these targets, they suffer from time constraints and are not easily adaptable to high-throughput processes. On the other hand, computational approaches, particularly those utilizing machine learning (ML), offer an efficient means to accelerate the prediction of druggable proteins based solely on their primary sequences. Recently, several state-of-the-art computational methods have been developed for predicting and analyzing druggable proteins. These computational methods showed high diversity in terms of benchmark datasets, feature extraction schemes, ML algorithms, evaluation strategies and webserver/software usability. Thus, our objective is to reexamine these computational approaches and conduct a comprehensive assessment of their strengths and weaknesses across multiple aspects. In this study, we deliver the first comprehensive survey regarding the state-of-the-art computational approaches for in silico prediction of druggable proteins. First, we provided information regarding the existing benchmark datasets and the types of ML methods employed. Second, we investigated the effectiveness of these computational methods in druggable protein identification for each benchmark dataset. Third, we summarized the important features used in this field and the existing webserver/software. Finally, we addressed the present constraints of the existing methods and offer valuable guidance to the scientific community in designing and developing novel prediction models. We anticipate that this comprehensive review will provide crucial information for the development of more accurate and efficient druggable protein predictors.

20.
Sci Rep ; 13(1): 22994, 2023 12 27.
Artículo en Inglés | MEDLINE | ID: mdl-38151513

RESUMEN

The role of estrogen receptors (ERs) in breast cancer is of great importance in both clinical practice and scientific exploration. However, around 15-30% of those affected do not see benefits from the usual treatments owing to the innate resistance mechanisms, while 30-40% will gain resistance through treatments. In order to address this problem and facilitate community-wide efforts, machine learning (ML)-based approaches are considered one of the most cost-effective and large-scale identification methods. Herein, we propose a new SMILES-based stacked approach, termed StackER, for the accelerated and efficient identification of ERα and ERß inhibitors. In StackER, we first established an up-to-date dataset consisting of 1,996 and 1,207 compounds for ERα and ERß, respectively. Using the up-to-date dataset, StackER explored a wide range of different SMILES-based feature descriptors and ML algorithms in order to generate probabilistic features (PFs). Finally, the selected PFs derived from the two-step feature selection strategy were used for the development of an efficient stacked model. Both cross-validation and independent tests showed that StackER surpassed several conventional ML classifiers and the existing method in precisely predicting ERα and ERß inhibitors. Remarkably, StackER achieved MCC values of 0.829-0.847 and 0.712-0.786 in terms of the cross-validation and independent tests, respectively, which were 5.92-8.29 and 1.59-3.45% higher than the existing method. In addition, StackER was applied to determine useful features for being ERα and ERß inhibitors and identify FDA-approved drugs as potential ERα inhibitors in efforts to facilitate drug repurposing. This innovative stacked method is anticipated to facilitate community-wide efforts in efficiently narrowing down ER inhibitor screening.


Asunto(s)
Neoplasias de la Mama , Receptor beta de Estrógeno , Humanos , Femenino , Receptor alfa de Estrógeno , Receptores de Estrógenos , Neoplasias de la Mama/tratamiento farmacológico , Algoritmos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA