RESUMEN
Large enzyme families catalyze metabolic diversification by virtue of their ability to use diverse chemical scaffolds. How enzyme families attain such functional diversity is not clear. Furthermore, duplication and promiscuity in such enzyme families limits their functional prediction, which has produced a burgeoning set of incompletely annotated genes in plant genomes. Here, we address these challenges using BAHD acyltransferases as a model. This fast-evolving family expanded drastically in land plants, increasing from one to five copies in algae to approximately 100 copies in diploid angiosperm genomes. Compilation of >160 published activities helped visualize the chemical space occupied by this family and define eight different classes based on structural similarities between acceptor substrates. Using orthologous groups (OGs) across 52 sequenced plant genomes, we developed a method to predict BAHD acceptor substrate class utilization as well as origins of individual BAHD OGs in plant evolution. This method was validated using six novel and 28 previously characterized enzymes and helped improve putative substrate class predictions for BAHDs in the tomato genome. Our results also revealed that while cuticular wax and lignin biosynthetic activities were more ancient, anthocyanin acylation activity was fixed in BAHDs later near the origin of angiosperms. The OG-based analysis enabled identification of signature motifs in anthocyanin-acylating BAHDs, whose importance was validated via molecular dynamic simulations, site-directed mutagenesis and kinetic assays. Our results not only describe how BAHDs contributed to evolution of multiple chemical phenotypes in the plant world but also propose a biocuration-enabled approach for improved functional annotation of plant enzyme families.
Asunto(s)
Aciltransferasas , Solanum lycopersicum , Aciltransferasas/metabolismo , Antocianinas/metabolismo , Genoma de Planta/genética , Solanum lycopersicum/genética , Filogenia , Plantas/metabolismoRESUMEN
To modulate responses to developmental or environmental cues, plants use Gretchen Hagen 3 (GH3) acyl acid amido synthetases to conjugate an amino acid to a plant hormone, a reaction that regulates free hormone concentration and downstream responses. The model plant Arabidopsis thaliana has 19 GH3 proteins, of which 8 have confirmed biochemical functions. One Brassicaceae-specific clade of GH3 proteins was predicted to use benzoate as a substrate and includes AtGH3.7 and AtGH3.12/PBS3. Previously identified as a 4-hydroxybenzoic acid-glutamate synthetase, AtGH3.12/PBS3 influences pathogen defense responses through salicylic acid. Recent work has shown that AtGH3.12/PBS3 uses isochorismate as a substrate, forming an isochorismate-glutamate conjugate that converts into salicylic acid. Here, we show that AtGH3.7 and AtGH3.12/PBS3 can also conjugate chorismate to cysteine and glutamate, which act as precursors to aromatic amino acids and salicylic acid, respectively. The X-ray crystal structure of AtGH3.12/PBS3 in complex with AMP and chorismate at 1.94 Å resolution, along with site-directed mutagenesis, revealed how the active site potentially accommodates this substrate. Examination of Arabidopsis knockout lines indicated that the gh3.7 mutants do not alter growth and showed no increased susceptibility to the pathogen Pseudomonas syringae, unlike gh3.12 mutants, which were more susceptible than WT plants, as was the gh3.7/gh3.12 double mutant. The findings of our study suggest that GH3 proteins can use metabolic precursors of aromatic amino acids as substrates.
Asunto(s)
Aminoácidos Aromáticos/metabolismo , Brassicaceae/enzimología , Ácido Corísmico/metabolismo , Ligasas/metabolismo , Ácido Salicílico/metabolismo , Arabidopsis/enzimología , Dominio Catalítico , Cinética , Ligasas/química , Ligasas/genética , Modelos Moleculares , Mutación , Especificidad de la Especie , Especificidad por SustratoRESUMEN
Nonribosomal peptide synthetases (NRPSs) are multidomain modular biosynthetic assembly lines that polymerize amino acids into a myriad of biologically active nonribosomal peptides (NRPs). NRPS thioesterase (TE) domains employ diverse release strategies for off-loading thioester-tethered polymeric peptides from termination modules typically via hydrolysis, aminolysis, or cyclization to provide mature antibiotics as carboxylic acids/esters, amides, and lactams/lactones, respectively. Here we report the enzyme-catalyzed formation of a highly strained ß-lactone ring during TE-mediated cyclization of a ß-hydroxythioester to release the antibiotic obafluorin (Obi) from an NRPS assembly line. The Obi NRPS (ObiF) contains a type I TE domain with a rare catalytic cysteine residue that plays a direct role in ß-lactone ring formation. We present a detailed genetic and biochemical characterization of the entire Obi biosynthetic gene cluster in plant-associated Pseudomonas fluorescens ATCC 39502 that establishes a general strategy for ß-lactone biogenesis.
Asunto(s)
Antibacterianos/biosíntesis , Lactonas/metabolismo , Péptido Sintasas/metabolismo , Antibacterianos/química , Biocatálisis , Lactonas/química , Pseudomonas fluorescens/enzimología , Pseudomonas fluorescens/genética , Pseudomonas fluorescens/metabolismoRESUMEN
Structural biologists rely on X-ray crystallography as the main technique for determining the three-dimensional structures of macromolecules; however, in recent years, new methods that go beyond X-ray-based technologies are broadening the selection of tools to understand molecular structure and function. Simultaneously, national facilities are developing programming tools and maintaining personnel to aid novice structural biologists in de novo structure determination. The combination of X-ray free electron lasers (XFELs) and serial femtosecond crystallography (SFX) now enable time-resolved structure determination that allows for capture of dynamic processes, such as reaction mechanism and conformational flexibility. XFEL and SFX, along with microcrystal electron diffraction (MicroED), help side-step the need for large crystals for structural studies. Moreover, advances in cryogenic electron microscopy (cryo-EM) as a tool for structure determination is revolutionizing how difficult to crystallize macromolecules and/or complexes can be visualized at the atomic scale. This review aims to provide a broad overview of these new methods and to guide readers to more in-depth literature of these methods.
Asunto(s)
Electrones , Rayos Láser , Cristalografía por Rayos X , Biología Molecular , Rayos XRESUMEN
Nonribosomal peptide synthetases produce diverse natural products using a multidomain architecture where the growing peptide, attached to an integrated carrier domain, is delivered to neighboring catalytic domains for bond formation and modification. Investigation of these systems can lead to the discovery of new structures, unusual biosynthetic transformations, and to the engineering of catalysts for generating new products. The antimicrobial ß-lactone obafluorin is produced nonribosomally from dihydroxybenzoic acid and a ß-hydroxy amino acid that cyclizes into the ß-lactone during product release. Here we report the structure of the nonribosomal peptide synthetase ObiF1, highlighting the structure of the ß-lactone-producing thioesterase domain and an interaction between the C-terminal MbtH-like domain with an upstream adenylation domain. Biochemical assays examine catalytic promiscuity, provide mechanistic insight, and demonstrate utility for generating obafluorin analogs. These results advance our understanding of the structural cycle of nonribosomal peptide synthetases and provide insights into the production of ß-lactone natural products.