Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Int J Mol Sci ; 22(21)2021 Oct 29.
Artículo en Inglés | MEDLINE | ID: mdl-34769174

RESUMEN

A pivotal role of type I interferons in systemic lupus erythematosus (SLE) is widely accepted. Type III interferons (IFN-λ) however, the most recently discovered cytokines grouped within the interferon family, have not been extensively studied in lupus disease models yet. Growing evidence suggests a role for IFN-λ in regulating both innate and adaptive immune responses, and increased serum concentrations have been described in multiple autoimmune diseases including SLE. Using the pristane-induced lupus model, we found that mice with defective IFN-λ receptors (Ifnlr1-/-) showed increased survival rates, decreased lipogranuloma formation and reduced anti-dsDNA autoantibody titers in the early phase of autoimmunity development compared to pristane-treated wild-type mice. Moreover, Ifnlr1-/- mice treated with pristane had reduced numbers of inflammatory mononuclear phagocytes and cNK cells in their kidneys, resembling untreated control mice. Systemically, circulating B cells and monocytes (CD115+Ly6C+) were reduced in pristane-treated Ifnlr1-/- mice. The present study supports a significant role for type III interferons in the pathogenesis of pristane-induced murine autoimmunity as well as in systemic and renal inflammation. Although the absence of type III interferon receptors does not completely prevent the development of autoantibodies, type III interferon signaling accelerates the development of autoimmunity and promotes a pro-inflammatory environment in autoimmune-prone hosts.


Asunto(s)
Inmunidad Celular , Inmunidad Humoral , Interferones/inmunología , Leucocitos/inmunología , Lupus Eritematoso Sistémico , Terpenos/efectos adversos , Animales , Interferones/genética , Lupus Eritematoso Sistémico/inducido químicamente , Lupus Eritematoso Sistémico/genética , Lupus Eritematoso Sistémico/inmunología , Ratones , Ratones Noqueados , Receptores de Interferón/deficiencia , Receptores de Interferón/inmunología , Terpenos/farmacología , Interferón lambda
2.
Int J Mol Sci ; 22(3)2021 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-33572654

RESUMEN

Altered sialylation patterns play a role in chronic autoimmune diseases such as rheumatoid arthritis (RA). Recent studies have shown the pro-inflammatory activities of immunoglobulins (Igs) with desialylated sugar moieties. The role of neuraminidases (NEUs), enzymes which are responsible for the cleavage of terminal sialic acids (SA) from sialoglycoconjugates, is not fully understood in RA. We investigated the impact of zanamivir, an inhibitor of the influenza virus neuraminidase, and mammalian NEU2/3 on clinical outcomes in experimental arthritides studies. The severity of arthritis was monitored and IgG titers were measured by ELISA. (2,6)-linked SA was determined on IgG by ELISA and on cell surfaces by flow cytometry. Zanamivir at a dose of 100 mg/kg (zana-100) significantly ameliorated collagen-induced arthritis (CIA), whereas zana-100 was ineffective in serum transfer-induced arthritis. Systemic zana-100 treatment reduced the number of splenic CD138+/TACI+ plasma cells and CD19+ B cells, which was associated with lower IgG levels and an increased sialylation status of IgG compared to controls. Our data reveal the contribution of NEU2/3 in CIA. Zanamivir down-modulated the T and B cell-dependent humoral immune response and induced an anti-inflammatory milieu by inhibiting sialic acid degradation. We suggest that neuraminidases might represent a promising therapeutic target for RA and possibly also for other antibody-mediated autoimmune diseases.


Asunto(s)
Antiinflamatorios/administración & dosificación , Artritis Experimental/tratamiento farmacológico , Artritis Reumatoide/tratamiento farmacológico , Inhibidores Enzimáticos/administración & dosificación , Neuraminidasa/antagonistas & inhibidores , Zanamivir/administración & dosificación , Animales , Artritis Experimental/inducido químicamente , Colágeno/efectos adversos , Inmunoglobulina G/sangre , Ratones , Ratones Endogámicos C57BL , Orthomyxoviridae/enzimología , Ácidos Siálicos/metabolismo
3.
J Allergy Clin Immunol ; 133(5): 1410-9, 1419.e1-13, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24698316

RESUMEN

BACKGROUND: Recurrent bacterial and fungal infections, eczema, and increased serum IgE levels characterize patients with the hyper-IgE syndrome (HIES). Known genetic causes for HIES are mutations in signal transducer and activator of transcription 3 (STAT3) and dedicator of cytokinesis 8 (DOCK8), which are involved in signal transduction pathways. However, glycosylation defects have not been described in patients with HIES. One crucial enzyme in the glycosylation pathway is phosphoglucomutase 3 (PGM3), which catalyzes a key step in the synthesis of uridine diphosphate N-acetylglucosamine, which is required for the biosynthesis of N-glycans. OBJECTIVE: We sought to elucidate the genetic cause in patients with HIES who do not carry mutations in STAT3 or DOCK8. METHODS: After establishing a linkage interval by means of SNPchip genotyping and homozygosity mapping in 2 families with HIES from Tunisia, mutational analysis was performed with selector-based, high-throughput sequencing. Protein expression was analyzed by means of Western blotting, and glycosylation was profiled by using mass spectrometry. RESULTS: Mutational analysis of candidate genes in an 11.9-Mb linkage region on chromosome 6 shared by 2 multiplex families identified 2 homozygous mutations in PGM3 that segregated with disease status and followed recessive inheritance. The mutations predict amino acid changes in PGM3 (p.Glu340del and p.Leu83Ser). A third homozygous mutation (p.Asp502Tyr) and the p.Leu83Ser variant were identified in 2 other affected families, respectively. These hypomorphic mutations have an effect on the biosynthetic reactions involving uridine diphosphate N-acetylglucosamine. Glycomic analysis revealed an aberrant glycosylation pattern in leukocytes demonstrated by a reduced level of tri-antennary and tetra-antennary N-glycans. T-cell proliferation and differentiation were impaired in patients. Most patients had developmental delay, and many had psychomotor retardation. CONCLUSION: Impairment of PGM3 function leads to a novel primary (inborn) error of development and immunity because biallelic hypomorphic mutations are associated with impaired glycosylation and a hyper-IgE-like phenotype.


Asunto(s)
Cromosomas Humanos Par 6/genética , Enfermedades Genéticas Congénitas/genética , Homocigoto , Inmunidad/genética , Inmunoglobulina E , Síndrome de Job/genética , Mutación Missense , Fosfoglucomutasa/genética , Adulto , Sustitución de Aminoácidos , Proliferación Celular , Niño , Cromosomas Humanos Par 6/metabolismo , Femenino , Enfermedades Genéticas Congénitas/enzimología , Enfermedades Genéticas Congénitas/inmunología , Ligamiento Genético , Glicosilación , Humanos , Lactante , Síndrome de Job/enzimología , Síndrome de Job/inmunología , Masculino , Fosfoglucomutasa/inmunología , Fosfoglucomutasa/metabolismo , Linfocitos T/enzimología , Linfocitos T/inmunología , Túnez
4.
J Immunol Methods ; 474: 112628, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31254500

RESUMEN

Plasma cells (PCs) secrete antibodies and play an essential role in protective immunity, but also in pathogenesis of antibody-mediated diseases. Physiologically, PCs mainly reside within bone marrow and spleen. In autoimmune diseases such as systemic lupus erythematosus (SLE) autoantibody-producing PCs can also be found at sites of inflammation, e.g. in nephritic kidneys. Therefore, efficient methods are required to reliably analyze and compare PCs at different sites. Flow cytometry and ELISpot analyses are frequently employed for PC characterization and require the preparation of single cell suspensions. To that end, enzymatic digestion is commonly used to isolate immune cells from solid organs like kidneys, occasionally also from lymphoid organs. In this study we show that enzymatic digestion using collagenase may lead to a loss of certain surface markers, e.g. the PC markers CD138 and CD267 (TACI). Therefore, we established an optimized protocol for preparing renal single cells by merely applying mechanical tissue disruption. Omitting enzymatic digestion, this method enables a reliable characterization of viable renal PCs by flow cytometry and cell sorting. We further show that mechanic cell preparation is favorable for lymphocytic immune cell enrichment, while enzymatic disruption improves the yield of digitating or stroma cell populations.


Asunto(s)
Separación Celular/métodos , Disección , Citometría de Flujo , Riñón/inmunología , Células Plasmáticas/inmunología , Animales , Biomarcadores/metabolismo , Supervivencia Celular , Colagenasas/metabolismo , Femenino , Riñón/citología , Riñón/metabolismo , Ratones Endogámicos MRL lpr , Ratones Endogámicos NZB , Células Plasmáticas/metabolismo , Factores de Tiempo , Flujo de Trabajo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA