Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
J Biol Chem ; 296: 100218, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33839686

RESUMEN

Rare sequence variants in the microglial cell surface receptor TREM2 have been shown to increase the risk for Alzheimer's disease (AD). Disease-linked TREM2 mutations seem to confer a partial loss of function, and increasing TREM2 cell surface expression and thereby its function(s) might have therapeutic benefit in AD. However, druggable targets that could modulate microglial TREM2 surface expression are not known. To identify such targets, we conducted a screen of small molecule compounds with known pharmacology using human myeloid cells, searching for those that enhance TREM2 protein at the cell surface. Inhibitors of the kinases MEK1/2 displayed the strongest and most consistent increases in cell surface TREM2 protein, identifying a previously unreported pathway for TREM2 regulation. Unexpectedly, inhibitors of the downstream effector ERK kinases did not have the same effect, suggesting that noncanonical MEK signaling regulates TREM2 trafficking. In addition, siRNA knockdown experiments confirmed that decreased MEK1 and MEK2 were required for this recruitment. In iPSC-derived microglia, MEK inhibition increased cell surface TREM2 only modestly, so various cytokines were used to alter iPSC microglia phenotype, making cells more sensitive to MEK inhibitor-induced TREM2 recruitment. Of those tested, only IFN-gamma priming prior to MEK inhibitor treatment resulted in greater TREM2 recruitment. These data identify the first known mechanisms for increasing surface TREM2 protein and TREM2-regulated function in human myeloid cells and are the first to show a role for MEK1/MEK2 signaling in TREM2 activity.


Asunto(s)
Membrana Celular/metabolismo , MAP Quinasa Quinasa 1/genética , MAP Quinasa Quinasa 2/genética , Glicoproteínas de Membrana/genética , Microglía/metabolismo , Receptores Inmunológicos/genética , Bibliotecas de Moléculas Pequeñas/farmacología , Bencimidazoles/farmacología , Benzotiazoles/farmacología , Membrana Celular/efectos de los fármacos , Colchicina/farmacología , Regulación de la Expresión Génica , Ensayos Analíticos de Alto Rendimiento , Humanos , Interferón gamma/farmacología , Interleucinas/farmacología , MAP Quinasa Quinasa 1/antagonistas & inhibidores , MAP Quinasa Quinasa 1/metabolismo , MAP Quinasa Quinasa 2/antagonistas & inhibidores , MAP Quinasa Quinasa 2/metabolismo , Glicoproteínas de Membrana/metabolismo , Microglía/citología , Microglía/efectos de los fármacos , Nitrilos/farmacología , Cultivo Primario de Células , Piridonas/farmacología , Pirimidinonas/farmacología , Quinazolinas/farmacología , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Receptores Inmunológicos/metabolismo , Transducción de Señal , Células THP-1 , Factor de Crecimiento Transformador beta/farmacología , Zearalenona/análogos & derivados , Zearalenona/farmacología
2.
Proc Natl Acad Sci U S A ; 113(41): E6097-E6106, 2016 10 11.
Artículo en Inglés | MEDLINE | ID: mdl-27679849

RESUMEN

The PTEN-induced putative kinase 1 (PINK1)/Parkin pathway can tag damaged mitochondria and trigger their degradation by mitophagy. Before the onset of mitophagy, the pathway blocks mitochondrial motility by causing Miro degradation. PINK1 activates Parkin by phosphorylating both Parkin and ubiquitin. PINK1, however, has other mitochondrial substrates, including Miro (also called RhoT1 and -2), although the significance of those substrates is less clear. We show that mimicking PINK1 phosphorylation of Miro on S156 promoted the interaction of Parkin with Miro, stimulated Miro ubiquitination and degradation, recruited Parkin to the mitochondria, and via Parkin arrested axonal transport of mitochondria. Although Miro S156E promoted Parkin recruitment it was insufficient to trigger mitophagy in the absence of broader PINK1 action. In contrast, mimicking phosphorylation of Miro on T298/T299 inhibited PINK1-induced Miro ubiquitination, Parkin recruitment, and Parkin-dependent mitochondrial arrest. The effects of the T298E/T299E phosphomimetic were dominant over S156E substitution. We propose that the status of Miro phosphorylation influences the decision to undergo Parkin-dependent mitochondrial arrest, which, in the context of PINK1 action on other substrates, can restrict mitochondrial dynamics before mitophagy.


Asunto(s)
Aminoácidos/metabolismo , Mitocondrias/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Proteínas de Unión al GTP rho/química , Proteínas de Unión al GTP rho/metabolismo , Sustitución de Aminoácidos , Aminoácidos/genética , Animales , Transporte Axonal , Genes Reporteros , Células HEK293 , Células HeLa , Humanos , Ratones , Dinámicas Mitocondriales , Mitofagia/genética , Mutación , Fosforilación , Unión Proteica , Proteínas Quinasas/metabolismo , Proteolisis , Células Piramidales/metabolismo , Ratas , Ratas Transgénicas , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Ubiquitinación , Proteínas de Unión al GTP rho/genética
3.
Neurobiol Dis ; 111: 26-35, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29246723

RESUMEN

Missense mutations in the multi-domain kinase LRRK2 cause late onset familial Parkinson's disease. They most commonly with classic proteinopathy in the form of Lewy bodies and Lewy neurites comprised of insoluble α-synuclein, but in rare cases can also manifest tauopathy. The normal function of LRRK2 has remained elusive, as have the cellular consequences of its mutation. Data from LRRK2 null model organisms and LRRK2-inhibitor treated animals support a physiological role for LRRK2 in regulating lysosome function. Since idiopathic and LRRK2-linked PD are associated with the intraneuronal accumulation of protein aggregates, a series of critical questions emerge. First, how do pathogenic mutations that increase LRRK2 kinase activity affect lysosome biology in neurons? Second, are mutation-induced changes in lysosome function sufficient to alter the metabolism of α-synuclein? Lastly, are changes caused by pathogenic mutation sensitive to reversal with LRRK2 kinase inhibitors? Here, we report that mutation of LRRK2 induces modest but significant changes in lysosomal morphology and acidification, and decreased basal autophagic flux when compared to WT neurons. These changes were associated with an accumulation of detergent-insoluble α-synuclein and increased neuronal release of α-synuclein and were reversed by pharmacologic inhibition of LRRK2 kinase activity. These data demonstrate a critical and disease-relevant influence of native neuronal LRRK2 kinase activity on lysosome function and α-synuclein homeostasis. Furthermore, they also suggest that lysosome dysfunction, altered neuronal α-synuclein metabolism, and the insidious accumulation of aggregated protein over decades may contribute to pathogenesis in this late-onset form of familial PD.


Asunto(s)
Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina/genética , Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina/metabolismo , Lisosomas/metabolismo , Mutación , Neuronas/metabolismo , alfa-Sinucleína/metabolismo , Animales , Autofagia , Células Cultivadas , Humanos , Concentración de Iones de Hidrógeno , Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina/antagonistas & inhibidores , Lisosomas/patología , Ratones Transgénicos , Neuronas/patología , Enfermedad de Parkinson/genética , Enfermedad de Parkinson/metabolismo
4.
Hum Mol Genet ; 23(16): 4201-14, 2014 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-24682598

RESUMEN

Mutations in leucine-rich repeat kinase 2 (LRRK2) are the most common cause of familial and idiopathic Parkinson's disease. However, the mechanisms for activating its physiological function are not known, hindering identification of the biological role of endogenous LRRK2. The recent discovery that LRRK2 is highly expressed in cells of the innate immune system and genetic association is a risk factor for autoimmune disorders implies an important role for LRRK2 in pathology outside of the central nervous system. Thus, an examination of endogenous LRRK2 in immune cells could provide insight into the protein's function. Here, we establish that stimulation of specific Toll-like receptors results in a complex biochemical activation of endogenous LRRK2, with early phosphorylation of LRRK2 preceding its dimerization and membrane translocation. Membrane-associated LRRK2 co-localized to autophagosome membranes following either TLR4 stimulation or mTOR inhibition with rapamycin. Silencing of endogenous LRRK2 expression resulted in deficits in the induction of autophagy and clearance of a well-described macroautophagy substrate, demonstrating the critical role of endogenous LRRK2 in regulating autophagy. Inhibition of LRRK2 kinase activity also reduced autophagic degradation and suggested the importance of the kinase domain in the regulation of autophagy. Our results demonstrate a well-orchestrated series of biochemical events involved in the activation of LRRK2 important to its physiological function. With similarities observed across multiple cell types and stimuli, these findings are likely relevant in all cell types that natively express endogenous LRRK2, and provide insights into LRRK2 function and its role in human disease.


Asunto(s)
Autofagia , Membrana Celular/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Animales , Línea Celular , Técnicas de Inactivación de Genes , Inmunosupresores/farmacología , Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina , Macrófagos/metabolismo , Macrófagos/ultraestructura , Ratones , Microglía/metabolismo , Microglía/ultraestructura , Monocitos/metabolismo , Monocitos/ultraestructura , Fagocitosis/efectos de los fármacos , Fosforilación , Multimerización de Proteína , Transporte de Proteínas , Sirolimus/farmacología , Serina-Treonina Quinasas TOR/metabolismo , Receptor Toll-Like 4/metabolismo
5.
Mol Cell Neurosci ; 64: 95-103, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25553923

RESUMEN

Transcription factors are known to play multiple roles in cellular function. Investigators report that factors such as early growth response (Egr) protein and nuclear factor kappa B (NF-κB) are activated in the brain during cancer, brain injury, inflammation, and/or memory. To explore NF-κB activity further, we investigated the transcriptomes of hippocampal slices following electrical stimulation of NF-κB p50 subunit knockout mice (p50-/-) versus their controls (p50+/+). We found that the early growth response gene Egr-2 was upregulated by NF-κB activation, but only in p50+/+ hippocampal slices. We then stimulated HeLa cells and primary cortical neurons with tumor necrosis factor alpha (TNFα) to activate NF-κB and increase the expression of Egr-2. The Egr-2 promoter sequence was analyzed for NF-κB binding sites and chromatin immunoprecipitation (ChIP) assays were performed to confirm promoter occupancy in vivo. We discovered that NF-κB specifically binds to an NF-κB consensus binding site within the proximal promoter region of Egr-2. Luciferase assay demonstrated that p50 was able to transactivate the Egr-2 promoter in vitro. Small interfering RNA (siRNA)-mediated p50 knockdown corroborated other Egr-2 expression studies. We show for the first time a novel link between NF-κB activation and Egr-2 expression with Egr-2 expression directly controlled by the transcriptional activity of NF-κB.


Asunto(s)
Proteína 2 de la Respuesta de Crecimiento Precoz/metabolismo , Subunidad p50 de NF-kappa B/metabolismo , Activación Transcripcional , Animales , Proteína 2 de la Respuesta de Crecimiento Precoz/genética , Células HeLa , Hipocampo/metabolismo , Hipocampo/fisiología , Humanos , Ratones , Subunidad p50 de NF-kappa B/genética , Regiones Promotoras Genéticas , Unión Proteica
6.
Brain ; 135(Pt 6): 1751-66, 2012 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-22561641

RESUMEN

Mitochondrial dysfunction occurs in sensory neurons and may contribute to distal axonopathy in animal models of diabetic neuropathy. The adenosine monophosphate-activated protein kinase and peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α) signalling axis senses the metabolic demands of cells and regulates mitochondrial function. Studies in muscle, liver and cardiac tissues have shown that the activity of adenosine monophosphate-activated protein kinase and PGC-1α is decreased under hyperglycaemia. In this study, we tested the hypothesis that deficits in adenosine monophosphate-activated protein kinase/PGC-1α signalling in sensory neurons underlie impaired axonal plasticity, suboptimal mitochondrial function and development of neuropathy in rodent models of type 1 and type 2 diabetes. Phosphorylation and expression of adenosine monophosphate-activated protein kinase/PGC-1α and mitochondrial respiratory chain complex proteins were downregulated in dorsal root ganglia of both streptozotocin-diabetic rats and db/db mice. Adenoviral-mediated manipulation of endogenous adenosine monophosphate-activated protein kinase activity using mutant proteins modulated neurotrophin-directed neurite outgrowth in cultures of sensory neurons derived from adult rats. Addition of resveratrol to cultures of sensory neurons derived from rats after 3-5 months of streptozotocin-induced diabetes, significantly elevated adenosine monophosphate-activated protein kinase levels, enhanced neurite outgrowth and normalized mitochondrial inner membrane polarization in axons. The bioenergetics profile (maximal oxygen consumption rate, coupling efficiency, respiratory control ratio and spare respiratory capacity) was aberrant in cultured sensory neurons from streptozotocin-diabetic rats and was corrected by resveratrol treatment. Finally, resveratrol treatment for the last 2 months of a 5-month period of diabetes reversed thermal hypoalgesia and attenuated foot skin intraepidermal nerve fibre loss and reduced myelinated fibre mean axonal calibre in streptozotocin-diabetic rats. These data suggest that the development of distal axonopathy in diabetic neuropathy is linked to nutrient excess and mitochondrial dysfunction via defective signalling of the adenosine monophosphate-activated protein kinase/PGC-1α pathway.


Asunto(s)
Proteínas Quinasas Activadas por AMP/metabolismo , Ganglios Espinales/patología , Enfermedades Mitocondriales/patología , Enfermedades del Sistema Nervioso Periférico/patología , Células Receptoras Sensoriales/enzimología , Transducción de Señal/fisiología , Adenosina Trifosfato/farmacología , Análisis de Varianza , Animales , Antiinflamatorios no Esteroideos/uso terapéutico , Glucemia/efectos de los fármacos , Peso Corporal/efectos de los fármacos , Células Cultivadas , Diabetes Mellitus Experimental/complicaciones , Modelos Animales de Enfermedad , Relación Dosis-Respuesta a Droga , Regulación de la Expresión Génica/efectos de los fármacos , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Hiperalgesia/fisiopatología , Masculino , Potenciales de la Membrana/genética , Ratones , Enfermedades Mitocondriales/tratamiento farmacológico , Enfermedades Mitocondriales/etiología , Membranas Mitocondriales/efectos de los fármacos , Mutación/genética , Fibras Nerviosas Mielínicas/patología , Neuritas/patología , Consumo de Oxígeno/efectos de los fármacos , Técnicas de Placa-Clamp , Enfermedades del Sistema Nervioso Periférico/tratamiento farmacológico , Enfermedades del Sistema Nervioso Periférico/etiología , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma , Estimulación Física/efectos adversos , Proteínas de Unión al ARN/metabolismo , Ratas , Ratas Sprague-Dawley , Tiempo de Reacción/efectos de los fármacos , Tiempo de Reacción/genética , Resveratrol , Células Receptoras Sensoriales/efectos de los fármacos , Células Receptoras Sensoriales/patología , Transducción de Señal/efectos de los fármacos , Estilbenos/uso terapéutico , Factores de Transcripción/metabolismo , Transducción Genética
7.
Can J Physiol Pharmacol ; 87(10): 883-91, 2009 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-20052014

RESUMEN

Modulation of intracellular free calcium levels is the primary second messenger system of the neuronal glutamatergic system, playing a role in regulation of all major cellular processes. The protein neuregulin (NRG) beta1 acts as an extracellular signaling ligand in neurons, rapidly regulating currents through ionotropic glutamate receptors. The effect NRG may have on glutamate-induced changes in intracellular free calcium concentrations has not been examined, however. In this study, cultured embryonic rat hippocampal neurons were treated with NRGbeta1 to determine a possible effect on glutamate-induced intracellular calcium levels. Long-term (24 h), but not short-term (1 h), incubation with NRGbeta1 resulted in a significantly greater glutamate-mediated acute peak elevation of intracellular calcium levels than occurred in vehicle-treated neurons. Long-term NRGbeta1 incubation significantly enhanced calcium increase induced by specific stimulation of metabotropic glutamate receptors, but did not significantly alter the N-methyl D-aspartate (NMDA)- or KCl-induced calcium increase and paradoxically decreased the effect of alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) treatment on intracellular calcium. Metabotropic glutamate receptors cause increased intracellular free calcium via release of calcium from intracellular stores; thus this system was examined in more detail. NRGbeta1 treatment significantly (greater than 2-fold) enhanced calcium release from endoplasmic reticulum stores after stimulation of ryanodine receptors with caffeine, but did not significantly increase calcium release from endoplasmic reticulum mediated by inositol trisphosphate (IP3) receptors. In addition, ryanodine receptor inhibition with ruthenium red prevented the glutamate-induced increase in intracellular calcium levels in NRGbeta1-treated neurons. These data show that long-term NRGbeta1 treatment can enhance glutamate-induced peak intracellular calcium levels through metabotropic glutamate receptor activation by increasing endoplasmic reticulum calcium release through ryanodine receptors.


Asunto(s)
Calcio/metabolismo , Retículo Endoplásmico/metabolismo , Ácido Glutámico/farmacología , Hipocampo/metabolismo , Neurregulina-1/farmacología , Neuronas/metabolismo , Animales , Química Encefálica/efectos de los fármacos , Señalización del Calcio/efectos de los fármacos , Señalización del Calcio/fisiología , Células Cultivadas , Retículo Endoplásmico/efectos de los fármacos , Agonistas de Aminoácidos Excitadores/farmacología , Femenino , Hipocampo/citología , Hipocampo/efectos de los fármacos , Receptores de Inositol 1,4,5-Trifosfato/efectos de los fármacos , N-Metilaspartato/farmacología , Neuronas/efectos de los fármacos , Cloruro de Potasio/farmacología , Embarazo , Ratas , Ratas Sprague-Dawley , Receptores de Glutamato/efectos de los fármacos , Receptores de Glutamato/metabolismo , Rianodina/farmacología , Canal Liberador de Calcio Receptor de Rianodina/efectos de los fármacos , Sistemas de Mensajero Secundario/efectos de los fármacos , Sistemas de Mensajero Secundario/fisiología , Ácido alfa-Amino-3-hidroxi-5-metil-4-isoxazol Propiónico/farmacología
8.
Exp Neurol ; 303: 29-37, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29410317

RESUMEN

Secreted amyloid precursor protein alpha (sAPPα) is a potent neurotrophin in the CNS but a dedicated receptor has not been found. However, protein interactions involving amyloid beta (Aß), a peptide cleaved from the same parent peptide as sAPPα, indicate that insulin receptors (IRs) could be a target of amyloid peptides. In this study, in vitro analysis of cortical neuronal cultures revealed that exogenous sAPPα increased IR phosphorylation in the absence of insulin. Furthermore, in an APP overexpressing mouse model, sAPPα bound IRs in the cortex with significantly greater binding in hypoinsulinemic animals. To further examine the effects of sAPPα on the diabetic brain, we next rendered sAPPα overexpressing mice insulin depleted and found that sAPPα blocked aberrant tau phosphorylation (T231) in cortical tissue after 16 weeks diabetes. sAPPα overexpression also prevented hyperphosphorylation of AKT/GSK3 and activation of the unfolded protein response (UPR). In total, these data show sAPPα binds and activates neuronal IRs and that sAPPα has a protective effect on diabetic brain tissue.


Asunto(s)
Precursor de Proteína beta-Amiloide/metabolismo , Encefalopatías/etiología , Encefalopatías/prevención & control , Diabetes Mellitus Experimental/complicaciones , Neuronas/metabolismo , Fragmentos de Péptidos/metabolismo , Receptor de Insulina/metabolismo , Péptidos beta-Amiloides/farmacología , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/farmacología , Animales , Células Cultivadas , Modelos Animales de Enfermedad , Embrión de Mamíferos , Hemoglobina Glucada/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Mutación/genética , Neuronas/efectos de los fármacos , Fragmentos de Péptidos/genética , Fragmentos de Péptidos/farmacología , Fosforilación/fisiología , Unión Proteica/fisiología , Transducción de Señal/efectos de los fármacos , Transducción de Señal/genética , Respuesta de Proteína Desplegada/genética , Proteínas tau/metabolismo
9.
J Neurosci ; 25(7): 1682-90, 2005 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-15716404

RESUMEN

Embryonic dorsal root ganglion (DRG) neurons die after axonal damage in vivo, and cultured embryonic DRG neurons require exogenous neurotrophic factors that activate the neuroprotective transcription factor nuclear factor-kappaB (NF-kappaB) for survival. In contrast, adult DRG neurons survive permanent axotomy in vivo and in defined culture media devoid of exogenous neurotrophic factors in vitro. Peripheral axotomy in adult rats induces local accumulation of the cytokine tumor necrosis factor alpha (TNFalpha), a potent activator of NF-kappaB activity. We tested the hypothesis that activation of NF-kappaB stimulated by endogenous TNFalpha was required for survival of axotomized adult sensory neurons. Peripheral axotomy of lumbar DRG neurons by sciatic nerve crush induced a very rapid (within 2 h) and significant elevation in NF-kappaB-binding activity. This phenomenon was mimicked in cultured neurons in which there was substantial NF-kappaB nuclear translocation and a significant rise in NF-kappaB DNA-binding activity after plating. Inhibitors of NF-kappaB (SN50 or NF-kappaB decoy DNA) resulted in necrotic cell death of medium to large neurons (> or =40 microm) within 24 h (60 and 75%, respectively), whereas inhibition of p38 and mitogen-activated protein/extracellular signal-regulated kinase did not effect survival. ELISA revealed that these cultures contained TNFalpha, and exposure to an anti-TNFalpha antibody inhibited NF-kappaB DNA-binding activity by approximately 35% and killed approximately 40% of medium to large neurons within 24 h. The results show for the first time that cytokine-mediated activation of NF-kappaB is a component of the signaling pathway responsible for maintenance of adult sensory neuron survival after axon damage.


Asunto(s)
FN-kappa B/metabolismo , Neuronas Aferentes/efectos de los fármacos , Factor de Necrosis Tumoral alfa/fisiología , Animales , Comunicación Autocrina , Axotomía , Supervivencia Celular , Células Cultivadas/citología , Células Cultivadas/efectos de los fármacos , ADN/metabolismo , Ganglios Espinales/citología , Proteínas I-kappa B/genética , Sistema de Señalización de MAP Quinasas , Masculino , FN-kappa B/antagonistas & inhibidores , Compresión Nerviosa , Degeneración Nerviosa , Neuronas Aferentes/citología , Oligodesoxirribonucleótidos Antisentido/farmacología , Comunicación Paracrina , Péptidos/farmacología , Unión Proteica , Subunidades de Proteína , Ratas , Ratas Wistar , Nervio Ciático/lesiones , Transcripción Genética/efectos de los fármacos , Proteínas Quinasas p38 Activadas por Mitógenos/antagonistas & inhibidores
10.
ASN Neuro ; 4(1)2012 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-22168362

RESUMEN

Distal symmetrical sensory neuropathy in diabetes involves the dying back of axons, and the pathology equates with axonal dystrophy generated under conditions of aberrant Ca2+ signalling. Previous work has described abnormalities in Ca2+ homoeostasis in sensory and dorsal horn neurons acutely isolated from diabetic rodents. We extended this work by testing the hypothesis that sensory neurons exposed to long-term Type 1 diabetes in vivo would exhibit abnormal axonal Ca2+ homoeostasis and focused on the role of SERCA (sarcoplasmic/endoplasmic reticulum Ca2+-ATPase). DRG (dorsal root ganglia) sensory neurons from age-matched normal and 3-5-month-old STZ (streptozotocin)-diabetic rats (an experimental model of Type 1 diabetes) were cultured. At 1-2 days in vitro an array of parameters were measured to investigate Ca2+ homoeostasis including (i) axonal levels of intracellular Ca2+, (ii) Ca2+ uptake by the ER (endoplasmic reticulum), (iii) assessment of Ca2+ signalling following a long-term thapsigargin-induced blockade of SERCA and (iv) determination of expression of ER mass and stress markers using immunocytochemistry and Western blotting. KCl- and caffeine-induced Ca2+ transients in axons were 2-fold lower in cultures of diabetic neurons compared with normal neurons indicative of reduced ER calcium loading. The rate of uptake of Ca2+ into the ER was reduced by 2-fold (P<0.05) in diabetic neurons, while markers for ER mass and ER stress were unchanged. Abnormalities in Ca2+ homoeostasis in diabetic neurons could be mimicked via long-term inhibition of SERCA in normal neurons. In summary, axons of neurons from diabetic rats exhibited aberrant Ca2+ homoeostasis possibly triggered by sub-optimal SERCA activity that could contribute to the distal axonopathy observed in diabetes.


Asunto(s)
Calcio/metabolismo , Diabetes Mellitus Experimental/metabolismo , Retículo Endoplásmico/metabolismo , Células Receptoras Sensoriales/metabolismo , Animales , Western Blotting , Inmunohistoquímica , Masculino , Técnicas de Placa-Clamp , Ratas , Ratas Sprague-Dawley , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/metabolismo
11.
Life Sci ; 86(25-26): 942-50, 2010 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-20470790

RESUMEN

AIMS: Studies using transgenic mouse strains that incorporate Alzheimer's disease (AD) mutations are valuable for the identification of signaling pathways, potential drug targets, and possible mechanisms of disease that will aid in our understanding of AD. However, reports on the effects of specific AD mutations (Swedish, KM670/671NL; Indiana, V717F) on behavior (Morris water maze) and neuropathological progression have been inconsistent when comparing different genetic backgrounds in these models. Given this, investigators are compelled to more closely evaluate different background strains. The aim of the present study was to compare two commonly used TgCRND8 backgrounds, the 129SvEvTac/C57F1 strain and the C3H/C57F1 strain. MAIN METHODS: Memory function was assessed by the Morris water maze, a test for assaying hippocampal-dependent memory. We also stained with ThioflavinS in order to visualize and quantify amyloid beta (Abeta) plaques. Real time polymerase chain reaction (PCR) was used to measure insulin-degrading enzyme (IDE), an enzyme that also degrades amyloid beta. KEY FINDINGS: We found deficits in the 129SvEvTac/C57F1 strain in several parameters of the Morris water maze. In addition, amyloid plaque load expression was significantly greater in the 129SvEvTac/C57F1 as compared to the C3H/C57F1 strain as demonstrated by histochemical staining. We also observed a significant decrease in IDE, in the 129SvEvTac/C57F1 strain. SIGNIFICANCE: This study supports the notion that strain specific differences are apparent in tests of spatial memory and neuropathologic progression in AD.


Asunto(s)
Enfermedad de Alzheimer/patología , Enfermedad de Alzheimer/fisiopatología , Memoria , Sistema Nervioso/patología , Sistema Nervioso/fisiopatología , Envejecimiento/patología , Péptidos beta-Amiloides/genética , Péptidos beta-Amiloides/metabolismo , Animales , Modelos Animales de Enfermedad , Regulación de la Expresión Génica , Inmunohistoquímica , Insulisina/genética , Insulisina/metabolismo , Aprendizaje por Laberinto , Ratones , Sistema Nervioso/metabolismo , Placa Amiloide/patología , Tiempo de Reacción , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Especificidad de la Especie
12.
Exp Neurol ; 208(2): 169-76, 2007 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-17927985

RESUMEN

Mutations in presenilin which result in early-onset Alzheimer disease (AD) cause both increased calcium release from intracellular stores, primarily endoplasmic reticulum (ER), and changes in NF-kappaB activation. Some studies have also reported that neurons containing AD-linked mutant presenilins (mPS1) show increased vulnerability to various stresses, while others report no differences in neuronal death. The majority of these reports center on potential changes in ER stress, because of the enhanced ER calcium release seen in mPS1 neurons. One of the primary death effectors of ER stress is CHOP, also termed GADD153, which acts to transcriptionally inhibit protective cellular molecules such as Bcl-2 and glutathione. Because both CHOP and NF-kappaB are activated by increased intracellular calcium and stress, yet have diametrically opposite effects on neuronal vulnerability, we sought to examine this interaction in greater detail. We observed that IP3-mediated calcium release from ER, stimulated by Abeta exposure, mediated both CHOP expression and NF-kappaB DNA binding activity. Further, specific inhibition of NF-kappaB resulted in greater expression of CHOP, while activation of NF-kappaB inhibited CHOP expression. The enhanced release of calcium from IP3-mediated ER stores in mPS1 neurons stimulated increased NF-kappaB compared to normal neurons, which inhibited CHOP expression. Upon blockage of NF-kappaB, exposure to Abeta caused significantly greater Abeta-mediated CHOP expression and death in mPS1 neurons compared to normal neurons. Thus, AD-linked PS1 mutations disrupt the balance between stress-induced NF-kappaB and CHOP, resulting in greater dependence on stress-induced NF-kappaB activation in mPS1 neurons.


Asunto(s)
Enfermedad de Alzheimer/genética , Péptidos beta-Amiloides/metabolismo , Calcio/metabolismo , Retículo Endoplásmico/metabolismo , Mutación , FN-kappa B/metabolismo , Presenilina-1/genética , Factor de Transcripción CHOP/antagonistas & inhibidores , Animales , Células Cultivadas , Humanos , Ratones , Ratones Endogámicos C57BL , Presenilina-1/metabolismo , Ratas , Factor de Transcripción CHOP/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA