Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 95
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Arch Insect Biochem Physiol ; 111(2): e21918, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35650514

RESUMEN

Tergal glands are found in many insect species and contain constituents such as pheromones, sugars, proteins, and so forth. Preliminary studies have revealed that tergal gland secretions in the German cockroach (Blattella germanica L.) contain the human allergen Bla g 2 (B. germanica allergen 2), an inactive aspartic protease. Although Bla g 2 protein expression has been detected previously in various German cockroach body parts, including male tergal glands, studies that link protein expression in various life stages and tissues with mRNA and protein abundance have not been conducted. Therefore, the goal of this study was to measure the relative abundances of Bla g 2 protein and mRNA in different tissues and life stages of B. germanica using immunoblotting, quantitative PCR, and liquid chromatography-tandem mass spectrometry (LC-MS/MS)-based quantitative profiling. We found that Bla g 2 protein was detected in every sampled tissue, including the male tergal glands. Protein abundance was relatively high in adult males and their tergal glands in comparison to nymphs and virgin females. Similarly, Bla g 2 mRNA transcript levels were also comparatively higher in male tergal glands and adult males. In conclusion, this study provides new information on the relative abundance and distribution of Bla g 2 allergen, a medically significant protein, in different tissues and developmental stages of the German cockroach and lays the foundation for future studies that aim to determine the function of this protein in B. germanica development.


Asunto(s)
Alérgenos , Blattellidae , Alérgenos/genética , Alérgenos/metabolismo , Animales , Ácido Aspártico Endopeptidasas/genética , Ácido Aspártico Endopeptidasas/metabolismo , Blattellidae/genética , Blattellidae/metabolismo , Cromatografía Liquida , Femenino , Masculino , ARN Mensajero/genética , ARN Mensajero/metabolismo , Espectrometría de Masas en Tándem
2.
Pestic Biochem Physiol ; 188: 105234, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36464351

RESUMEN

The German cockroach (Blattella germanica L.) is a major urban pest worldwide and is notorious for its ability to detoxify and resist insecticides. German cockroaches have generalist feeding habits that expose them to a range of potential hazardous substances and host a wide variety of unique microbial species, which may potentially facilitate unique detoxification capabilities. Since field German cockroach populations are routinely exposed to both bait and spray insecticide treatments, we hypothesized whether these unique gut microbes might play roles in toxicological processes of the host insect. The goals of this research were to understand the metabolic processes inside the German cockroach gut after treatment with kanamycin, a broad-ranging antibiotic, and indoxacarb, an oxadiazine pro-insecticide used in cockroach bait products. In these experiments, two resistant cockroach strains were obtained from field populations in Danville, IL and compared to a susceptible laboratory strain that had no previous exposure to insecticides (J-wax). Roaches provided kanamycin-infused water had lower median mortality to indoxacarb compared to the control treatment in feeding bioassays regardless of strain, but in vial (surface contact) bioassays, only susceptible cockroaches experienced a shift in mortality apparently due to their greater susceptibility. When frass extracts of indoxacarb-fed cockroaches were analyzed, less of the active, hydrolytic metabolite DCJW (N-decarbomethoxyllated JW062) was produced relative to the parent compound indoxacarb with the antibiotic KAN. This result was further corroborated by hydrolase activity assays of whole homogenized cockroach guts. Taken together these results provide novel evidence of microbe-mediated pro-insecticide activation in the cockroach gut.


Asunto(s)
Blattellidae , Insecticidas , Animales , Insecticidas/farmacología , Kanamicina , Antibacterianos
3.
Pestic Biochem Physiol ; 184: 105123, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35715061

RESUMEN

Despite insecticide resistance issues, pyrethroids and fipronil have continued to be used extensively to control the German cockroach, Blattella germanica (L.) (Blattodea: Ectobiidae) for more than two decades. We evaluated the physiological insecticide resistance in five German cockroach populations collected from 2018 to 2020 and measured the extent of metabolic detoxification and target-site insensitivity resistance mechanisms. Topically applied doses of the 3 x LD95 of deltamethrin, fipronil, DDT, or dieldrin of a susceptible strain (UCR, Diagnostic Dose) failed to cause >23% mortality, and the 10 x LD95 of deltamethrin or fipronil failed to cause >53% mortality. All field-collected strains possessed a combination of metabolic and target-site insensitivity mechanisms that cause reduced susceptibility. Elevated activities of esterase and glutathione S-transferase were measured, and the synergists piperonyl butoxide or S,S,S-tributyl phosphorotrithioate increased topical mortality up to 100% for deltamethrin and 93% for fipronil 10 x LD95. The target-site mutations L993F of the para-homologous sodium channel and A302S of the GABA-gated chloride channel associated with pyrethroid and fipronil resistance, respectively, were found at ~80-100% frequency in field populations. Pyrethroid and fipronil spray formulations also were ineffective in a choice box assay against field-collected strains suggesting that these treatments would fail to control cockroaches under field conditions.


Asunto(s)
Blattellidae , Cucarachas , Insecticidas , Piretrinas , Animales , Resistencia a los Insecticidas , Insecticidas/farmacología , Nitrilos , Pirazoles , Piretrinas/farmacología
4.
Annu Rev Entomol ; 66: 23-43, 2021 01 07.
Artículo en Inglés | MEDLINE | ID: mdl-33417825

RESUMEN

Termites have long been studied for their symbiotic associations with gut microbes. In the late nineteenth century, this relationship was poorly understood and captured the interest of parasitologists such as Joseph Leidy; this research led to that of twentieth-century biologists and entomologists including Cleveland, Hungate, Trager, and Lüscher. Early insights came via microscopy, organismal, and defaunation studies, which led to descriptions of microbes present, descriptions of the roles of symbionts in lignocellulose digestion, and early insights into energy gas utilization by the host termite. Focus then progressed to culture-dependent microbiology and biochemical studies of host-symbiont complementarity, which revealed specific microhabitat requirements for symbionts and noncellulosic mechanisms of symbiosis (e.g., N2 fixation). Today, knowledge on termite symbiosis has accrued exponentially thanks to omic technologies that reveal symbiont identities, functions, and interdependence, as well as intricacies of host-symbiont complementarity. Moving forward, the merging of classical twentieth-century approaches with evolving omic tools should provide even deeper insights into host-symbiont interplay.


Asunto(s)
Entomología/historia , Isópteros/parasitología , Microbiota , Simbiosis , Animales , Genómica , Historia del Siglo XIX , Historia del Siglo XX , Historia del Siglo XXI , Isópteros/genética , Isópteros/microbiología
5.
J Exp Biol ; 224(19)2021 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-34515310

RESUMEN

Termites are eusocial insects that host a range of prokaryotic and eukaryotic gut symbionts and can differentiate into a range of caste phenotypes. Soldier caste differentiation from termite workers follows two successive molts (worker-presoldier-soldier) that are driven at the endocrine level by juvenile hormone (JH). Although physiological and eusocial mechanisms tied to JH signaling have been studied, the role of gut symbionts in the caste differentiation process is poorly understood. Here, we used the JH analog methoprene in combination with the antibiotic kanamycin to manipulate caste differentiation and gut bacterial loads in Reticulitermes flavipes termites via four bioassay treatments: kanamycin, methoprene, kanamycin+methoprene, and an untreated (negative) control. Bioassay results demonstrated a significantly higher number of presoldiers in the methoprene treatment, highest mortality in kanamycin+methoprene treatment, and significantly reduced protist numbers in all treatments except the untreated control. Bacterial 16S rRNA gene sequencing provided alpha and beta diversity results that mirrored bioassay findings. From ANCOM analysis, we found that several bacterial genera were differentially abundant among treatments. Finally, follow-up experiments showed that if methoprene and kanamycin or untreated termites are placed together, zero or rescued presoldier initiation, respectively, occurs. These findings reveal that endogenous JH selects for symbiont compositions required to successfully complete presoldier differentiation. However, if the gut is voided before the influx of JH, it cannot select for the necessary symbionts that are crucial for molting. Based on these results, we are able to provide a novel example of linkages between gut microbial communities and host phenotypic plasticity.


Asunto(s)
Isópteros , Adaptación Fisiológica , Animales , Humanos , Isópteros/genética , Hormonas Juveniles , Muda , ARN Ribosómico 16S/genética
6.
Pestic Biochem Physiol ; 175: 104829, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33993977

RESUMEN

Plant essential oils (EOs) are secondary metabolites derived from aromatic plants that are composed of complex mixtures of chemical constituents. EOs have been proposed as one of the alternative methods for bed bug (Cimex lectularius L.) control. In insecticide resistant mosquitoes and tobacco cutworm, EOs synergize pyrethroid toxicity by inhibiting detoxification enzymes. However, whether EOs and their constituents enhance pyrethroid toxicity in C. lectularius has remained unknown. Therefore, this study was designed to (i) determine the effects of binary mixtures of deltamethrin (a pyrethroid insecticide) with EOs or EO constituents or EcoRaider® (an EO-based product) on mortality of insecticide resistant and susceptible bed bugs, and (ii) evaluate the effects of EO constituent pre-treatment on detoxification enzyme activities of resistant and susceptible populations. Topical bioassays with binary mixtures of deltamethrin and individual EOs (e.g., thyme, oregano, clove, geranium or coriander oils) or their major constituents (e.g., thymol, carvacrol, eugenol, geraniol or linalool) or EcoRaider® at doses that kill approximately 25% of bed bugs caused significant increases in mortality of resistant bed bugs. However, in the susceptible population, only coriander oil, EcoRaider®, thymol, and carvacrol significantly increased the toxicity of deltamethrin. Detoxification enzyme assays with protein extracts from bed bugs pre-treated with EO constituents suggested selective inhibition of cytochrome P450 activity in the resistant population, but no impacts were observed on esterase and glutathione transferase activities in either population. Inhibition of P450 activity by EO constituents thus appears to be one of the mechanisms of deltamethrin toxicity enhancement in resistant bed bugs.


Asunto(s)
Chinches , Insecticidas , Aceites Volátiles , Piretrinas , Animales , Sistema Enzimático del Citocromo P-450 , Resistencia a los Insecticidas , Insecticidas/toxicidad , Nitrilos , Aceites Volátiles/toxicidad , Piretrinas/toxicidad
7.
Pestic Biochem Physiol ; 169: 104667, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32828373

RESUMEN

Pyrethroid resistance has been a major hurdle limiting the effective control of bed bugs (Cimex lectularius L.). Alternative approaches that include the use of plant essential oils (EOs) have been proposed for effective management of bed bugs. However, EO resistance level comparisons between pyrethroid susceptible and resistant bed bug populations have not been previously conducted. The goal of this study was twofold: (i) determine deltamethrin resistance levels and associated resistance mechanisms in the field-collected Knoxville strain and (ii) quantify resistance levels of the Knoxville strain to five EOs (thyme, oregano, clove, geranium and coriander), their major insecticidal constituents (thymol, carvacrol, eugenol, geraniol and linalool) and an EO-based product (EcoRaider®). First, we found that the Knoxville strain was 72,893 and 291,626 fold more resistant to topically applied deltamethrin in comparison to the susceptible Harlan strain at the LD25 and LD50 lethal dose levels, respectively. Synergist bioassays and detoxification enzyme assays revealed significantly higher activity of cytochrome P450 and esterase enzymes in the resistant Knoxville strain. Further, Sanger sequencing revealed the presence of the L925I mutation in the voltage-sensitive sodium channel α subunit gene. The Knoxville strain that possesses both enzymatic and target site deltamethrin resistance, however, did not show any resistance to EOs, their major insecticidal constituents and EcoRaider® in topical bioassays (resistance ratio of ~1). In conclusion, this study demonstrated that a deltamethrin-resistant strain of bed bugs is susceptible to EOs and their insecticidal constituents.


Asunto(s)
Chinches/efectos de los fármacos , Insecticidas/farmacología , Aceites Volátiles , Piretrinas , Animales , Resistencia a los Insecticidas/efectos de los fármacos , Nitrilos
8.
BMC Genomics ; 17(1): 772, 2016 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-27716053

RESUMEN

BACKGROUND: Symbioses throughout the animal kingdom are known to extend physiological and ecological capabilities to hosts. Insect-microbe associations are extremely common and are often related to novel niche exploitation, fitness advantages, and even speciation events. These phenomena include expansions in host diet, detoxification of insecticides and toxins, and increased defense against pathogens. However, dissecting the contributions of individual groups of symbionts at the molecular level is often underexplored due to methodological and analytical limitations. Termites are one of the best studied systems for physiological collaborations between host and symbiota; however, most work in lower termites (those with bacterial and protist symbionts) focuses on the eukaryotic members of this symbiotic consortium. Here we present a metatranscriptomic analysis which provides novel insights into bacterial contributions to the holobiont of the eastern subterranean termite, Reticulitermes flavipes, in the presence and absence of a fungal pathogen. RESULTS: Using a customized ribodepletion strategy, a metatranscriptome assembly was obtained representing the host termite as well as bacterial and protist symbiota. Sequence data provide new insights into biosynthesis, catabolism, and transport of major organic molecules and ions by the gut consortium, and corroborate previous findings suggesting that bacteria play direct roles in nitrogen fixation, amino acid biosynthesis, and lignocellulose digestion. With regard to fungal pathogen challenge, a total of 563 differentially expressed candidate host and symbiont contigs were identified (162 up- and 401 downregulated; α/FDR = 0.05) including an upregulated bacterial amidohydrolase. CONCLUSIONS: This study presents the most complete bacterial metatranscriptome from a lower termite and provides a framework on which to build a more complete model of termite-symbiont interactions including, but not limited to, digestion and pathogen defense.


Asunto(s)
Bacterias/genética , Isópteros/inmunología , Isópteros/microbiología , Metagenoma , Metagenómica , Simbiosis , Transcriptoma , Amidohidrolasas/genética , Amidohidrolasas/metabolismo , Animales , Antibiosis , Biología Computacional/métodos , Hongos/fisiología , Perfilación de la Expresión Génica , Genes de ARNr , Glutatión Transferasa/metabolismo , Isópteros/metabolismo , Metagenómica/métodos , Estrés Oxidativo , Especies Reactivas de Oxígeno/metabolismo , Reproducibilidad de los Resultados
9.
Arch Insect Biochem Physiol ; 92(2): 127-42, 2016 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-27087028

RESUMEN

The peritrophic matrix (PM) is an acellular structure that lines the gut of most insects. It is an attractive target for pest management strategies because of its close involvement in digestive processes and role as a barrier against pathogens and toxins. The purpose of this study was to identify and characterize the genes that translate for principal components of the Reticulitermes flavipes PM. Genes encoding a gut chitin synthase (CHS), two proteins with peritrophin-A domains, and a chitin deacetylase were identified from an R. flavipes symbiont-free gut cDNA library, a pyrosequencing study of termite lignocellulose digestion, and a metatranscriptomic analysis of R. flavipes fed on agricultural biomass. Quantitative expression analysis of the identified genes, in the termite digestive tract, revealed that the transcripts coding for a CHS (RfCHSB) and the proteins with peritrophin-A domains (RfPPAD1 and RfPPAD2) were predominantly expressed in the midgut, suggesting an association with the PM. The peritrophin identity of the RfPPAD2 gene was confirmed by immunodetection of its translated peptide in the midgut and PM. The discovery and characterization of PM components of R. flavipes provides a basis for further investigation of the viability of this structure as a target for candidate termiticides.


Asunto(s)
Quitina Sintasa/genética , Expresión Génica , Proteínas de Insectos/genética , Isópteros/genética , Animales , Quitina Sintasa/metabolismo , ADN Complementario/genética , ADN Complementario/metabolismo , Tracto Gastrointestinal/metabolismo , Proteínas de Insectos/metabolismo , Isópteros/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
10.
Pestic Biochem Physiol ; 134: 14-23, 2016 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-27914535

RESUMEN

Insecticides that are used for pest control undergo physical and biological (enzymatic) degradation. Indoxacarb is an oxadiazine class sodium channel blocker insecticide used for German cockroach (Blattella germanica L.) control. At present, no information is available on enzymatic biotransformation or metabolism of indoxacarb in this important urban pest. We studied the biotransformation pathways of indoxacarb in one susceptible and three field strains with varying susceptibility levels using liquid chromatography and high-resolution mass spectrometry. As shown in other insect species we found evidence for hydrolase-based bioactivation of indoxacarb to a toxic decarbomethoxylated metabolite, DCJW. In addition, both indoxacarb and DCJW were further metabolized to hydroxy, oxadiazine ring-opened and hydroxylated ring-opened metabolites. In general, higher indoxacarb disappearance, increased formation of DCJW and the above-mentioned metabolites were observed in the three field strains. In vitro biotransformation studies showed that hydroxylated and oxadiazine ring-opened metabolite formation is NADPH/cytochrome P450-dependent. Bioassays and in vivo metabolism experiments using the enzyme-inhibiting insecticide synergists, piperonyl butoxide (PBO) and S,S,S,-tributyl phosphorotrithioate (DEF), provided insights into potential indoxacarb resistance mechanisms that may proliferate in German cockroach field strains following unchecked selection pressures. The information presented here is an essential step toward developing indoxacarb resistance management programs and also reveals mechanisms of secondary/tertiary indoxacarb toxicity.


Asunto(s)
Blattellidae/metabolismo , Insecticidas/farmacocinética , Oxazinas/farmacocinética , Animales , Biotransformación , Inhibidores Enzimáticos del Citocromo P-450/farmacología , Masculino , Organotiofosfatos/farmacología , Sinergistas de Plaguicidas/farmacología , Butóxido de Piperonilo/farmacología
11.
J Econ Entomol ; 109(2): 982-6, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26896534

RESUMEN

Termites are highly effective digesters of wood lignocellulose, which is a central factor contributing to their global status as pests of wooden structures. For the same reason, termite baits that combine cellulosic matrices with slow-acting insecticides are both effective and popular as a reduced-risk approach for termite control. This study took a novel approach for assessing digestibility of termite bait matrices and matrix components to gain potentially new insights into bait attractiveness and efficacy. The rationale behind this study is that termite baits that are more digestible should have more nutritional value to termites and thus encourage maximal feeding and trophallactic transfer of active ingredients through termite colonies. Studies were done using in vitro digestion assays with termite gut protein extracts followed by colorimetric detection of released glucose and pentose monosaccharides from test substrates. The substrates tested included two commercial bait matrices (Recruit IV and Recruit II HD), two matrix components (compressed and toasted compressed cellulose), and two natural pine woods as positive controls (southern yellow and northern pine). Overall results show equal or greater monosaccharide availability for some commercial matrices than standard pine lignocelluloses, suggesting sufficient nutritional value for the proprietary matrices. Another more prominent trend was significant intercolony variation in digestibility across substrates, possibly resulting from differences in microbiota composition, long-term diet adaptation, or both. These findings thus illuminate new nutrition-based factors that can potentially impact bait feeding, trophallactic exchange, and efficacy.


Asunto(s)
Celulosa/metabolismo , Digestión , Control de Insectos/instrumentación , Isópteros/metabolismo , Animales , Glucosa/análisis , Pentosas/análisis
12.
Annu Rev Entomol ; 60: 77-102, 2015 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-25341102

RESUMEN

Termites have many unique evolutionary adaptations associated with their eusocial lifestyles. Recent omics research has created a wealth of new information in numerous areas of termite biology (e.g., caste polyphenism, lignocellulose digestion, and microbial symbiosis) with wide-ranging applications in diverse biotechnological niches. Termite biotechnology falls into two categories: (a) termite-targeted biotechnology for pest management purposes, and (b) termite-modeled biotechnology for use in various industrial applications. The first category includes several candidate termiticidal modes of action such as RNA interference, digestive inhibition, pathogen enhancement, antimicrobials, endocrine disruption, and primer pheromone mimicry. In the second category, termite digestomes are deep resources for host and symbiont lignocellulases and other enzymes with applications in a variety of biomass, industrial, and processing applications. Moving forward, one of the most important approaches for accelerating advances in both termite-targeted and termite-modeled biotechnology will be to consider host and symbiont together as a single functional unit.


Asunto(s)
Biotecnología/métodos , Control de Insectos/métodos , Isópteros/fisiología , Animales , Biomasa
13.
BMC Genomics ; 16: 332, 2015 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-25896921

RESUMEN

BACKGROUND: Second generation lignocellulosic feedstocks are being considered as an alternative to first generation biofuels that are derived from grain starches and sugars. However, the current pre-treatment methods for second generation biofuel production are inefficient and expensive due to the recalcitrant nature of lignocellulose. In this study, we used the lower termite Reticulitermes flavipes (Kollar), as a model to identify potential pretreatment genes/enzymes specifically adapted for use against agricultural feedstocks. RESULTS: Metatranscriptomic profiling was performed on worker termite guts after feeding on corn stover (CS), soybean residue (SR), or 98% pure cellulose (paper) to identify (i) microbial community, (ii) pathway level and (iii) gene-level responses. Microbial community profiles after CS and SR feeding were different from the paper feeding profile, and protist symbiont abundance decreased significantly in termites feeding on SR and CS relative to paper. Functional profiles after CS feeding were similar to paper and SR; whereas paper and SR showed different profiles. Amino acid and carbohydrate metabolism pathways were downregulated in termites feeding on SR relative to paper and CS. Gene expression analyses showed more significant down regulation of genes after SR feeding relative to paper and CS. Stereotypical lignocellulase genes/enzymes were not differentially expressed, but rather were among the most abundant/constitutively-expressed genes. CONCLUSIONS: These results suggest that the effect of CS and SR feeding on termite gut lignocellulase composition is minimal and thus, the most abundantly expressed enzymes appear to encode the best candidate catalysts for use in saccharification of these and related second-generation feedstocks. Further, based on these findings we hypothesize that the most abundantly expressed lignocellulases, rather than those that are differentially expressed have the best potential as pretreatment enzymes for CS and SR feedstocks.


Asunto(s)
Celulasa/genética , Isópteros/genética , Lignina/metabolismo , Transcriptoma/genética , Animales , Regulación de la Expresión Génica/efectos de los fármacos , Isópteros/enzimología , Lignina/química , Glycine max/química , Glycine max/metabolismo , Zea mays/química , Zea mays/metabolismo
14.
Arch Insect Biochem Physiol ; 90(2): 89-103, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25980379

RESUMEN

Termites have recently drawn much attention as models for biomass processing, mainly due to their lignocellulose digestion capabilities and mutualisms with cellulolytic gut symbionts. This research used the lower termite Reticulitermes flavipes to investigate gut enzyme activity changes in response to feeding on five diverse lignocellulosic diets (cellulose filter paper [FP], pine wood [PW], beech wood xylan [X], corn stover [CS], and soybean residue [SB]). Our objectives were to compare whole-gut digestive enzyme activity and host versus symbiont contributions to enzyme activity after feeding on these diets. Our hypothesis was that enzyme activities would vary among diets as an adaptive mechanism enabling termites and symbiota to optimally utilize variable resources. Results support our "diet-adaptation" hypothesis and further indicate that, in most cases, host contributions are greater than those of symbionts with respect to the enzymes and activities studied. The results obtained thus provide indications as to which types of transcriptomic resources, termite or symbiont, are most relevant for developing recombinant enzyme cocktails tailored to specific feedstocks. With regard to the agricultural feedstocks tested (CS and SB), our results suggest endoglucanase and exoglucanase (cellobiohydrolase) activities are most relevant for CS breakdown; whereas endoglucanase and xylosidase activities are relevant for SB breakdown. However, other unexplored activities than those tested may also be important for breakdown of these two feedstocks. These findings provide new protein-level insights into diet adaptation by termites, and also complement host-symbiont metatranscriptomic studies that have been completed for R. flavipes after FP, PW, CS, and SB feeding.


Asunto(s)
Enzimas/metabolismo , Tracto Gastrointestinal/enzimología , Isópteros/fisiología , Lignina , Animales , Electroforesis en Gel de Poliacrilamida , Esterasas/metabolismo , Conducta Alimentaria , Microbioma Gastrointestinal/fisiología , Tracto Gastrointestinal/microbiología , Isópteros/enzimología , Glycine max/química , Madera , Zea mays/química
15.
J Econ Entomol ; 108(4): 1479-85, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-26470286

RESUMEN

Turmeric is an important spice crop with documented human health benefits associated with chemicals called curcuminoids. In this study, the termite Reticulitermes flavipes (Kollar) was exposed to different solvent extracts of turmeric to investigate potential termiticidal properties. Treating termites with hexane extracts of purified lab-grade curcuminoids had no effect on termites. However, in continuous exposure assays, the LC(50) for hexane extracts of crude turmeric powder was 9.6 mg, or 1.0 mg starting material per square centimeter of filter paper substrate. These active components were soluble in a range of polar and apolar solvents, but only hexane could selectively fractionate active components away from the inactive curcuminoids. The active constituents of turmeric separated by thin layer chromatography (TLC) fluoresced in short-wave UV light but were not visible in long-wave UV light. By re-extracting TLC-separated bands in hexane and performing bioassays and gas chromatography-mass spectrometry, we demonstrated that termiticidal components of turmeric are extractable as a blend containing mainly ar-turmerone, turmerone, and curlone. This determination is consistent with findings of preceding work by other researchers that investigated insecticidal properties of turmeric in other pest insects.


Asunto(s)
Curcuma , Insecticidas , Isópteros , Extractos Vegetales , Animales , Dosificación Letal Mediana
16.
Curr Opin Insect Sci ; 62: 101161, 2024 04.
Artículo en Inglés | MEDLINE | ID: mdl-38237732

RESUMEN

Insecticide resistance is an evolved ability to survive insecticide exposure. Compared with nonsocial insects, eusocial insects have lower numbers of documented cases of resistance. Eusocial insects include beneficial and pest species that can be incidentally or purposely targeted with insecticides. The central goal of this review is to explore factors that either limit resistance or the ability to detect it in eusocial insects. We surveyed the literature and found that resistance has been documented in bees, but in other pest groups such as ants and termites, the evidence is more sparse. We suggest the path forward for better understanding eusocial resistance should include more tractable experimental models, comprehensive geographic sampling, and targeted testing of the impacts of social, symbiont, genetic, and ecological factors.


Asunto(s)
Hormigas , Insecticidas , Isópteros , Abejas , Animales , Resistencia a los Insecticidas , Insectos , Insecticidas/farmacología
17.
Environ Entomol ; 53(3): 406-416, 2024 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-38555565

RESUMEN

Termite hindguts are inhabited by symbionts that help with numerous processes, but changes in the gut microbiome due to season can potentially impact the physiology of termites. This study investigated the impact of seasonal changes on the composition of bacteria and protozoa in the termite gut. Termites were obtained monthly from May to October 2020 at a location in the central United States that typically experiences seasonal air temperatures ranging from < 0 to > 30 °C. The guts of 10 termites per biological replication were dissected and frozen within 1 day after collections. DNA was extracted from the frozen gut tissues and used for termite 16S rRNA mitochondrial gene analysis and bacterial 16S rRNA gene sequence surveys. Phylogenetic analysis of termite 16S rRNA gene sequences verified that the same colony was sampled across all time points. On processing bacterial 16S sequences, we observed alpha (observed features, Pielou's evenness, and Shannon diversity) and beta diversity (unweighted Unifrac, Bray-Curtis, and Jaccard) metrics to vary significantly across months. Based on the analysis of the composition of microbiomes with bias correction (ANCOM-BC) at the genus level, we found several significant bacterial taxa over collection months. In addition, Spearman correlation analysis demonstrated that 41 bacterial taxa were significantly correlated (positively and negatively) with average soil temperature. These results from a single termite colony suggest termite microbial communities go through seasonal changes in relative abundance related to temperature, although other seasonal effects cannot be excluded. Further investigations are required to conclusively define the consistency of microbial variation among different colonies with season.


Asunto(s)
Bacterias , Microbioma Gastrointestinal , Isópteros , ARN Ribosómico 16S , Estaciones del Año , Animales , Isópteros/microbiología , ARN Ribosómico 16S/análisis , Bacterias/clasificación , Bacterias/genética , Bacterias/aislamiento & purificación
18.
BMC Genomics ; 14: 491, 2013 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-23870282

RESUMEN

BACKGROUND: Termites are highly eusocial insects and show a division of labor whereby morphologically distinct individuals specialize in distinct tasks. In the lower termite Reticulitermes flavipes (Rhinotermitidae), non-reproducing individuals form the worker and soldier castes, which specialize in helping (e.g., brood care, cleaning, foraging) and defense behaviors, respectively. Workers are totipotent juveniles that can either undergo status quo molts or develop into soldiers or neotenic reproductives. This caste differentiation can be regulated by juvenile hormone (JH) and primer pheromones contained in soldier head extracts (SHE). Here we offered worker termites a cellulose diet treated with JH or SHE for 24-hr, or held them with live soldiers (LS) or live neotenic reproductives (LR). We then determined gene expression profiles of the host termite gut and protozoan symbionts concurrently using custom cDNA oligo-microarrays containing 10,990 individual ESTs. RESULTS: JH was the most influential treatment (501 total ESTs affected), followed by LS (24 ESTs), LR (12 ESTs) and SHE treatments (6 ESTs). The majority of JH up- and downregulated ESTs were of host and symbiont origin, respectively; in contrast, SHE, LR and LS treatments had more uniform impacts on host and symbiont gene expression. Repeat "follow-up" bioassays investigating combined JH + SHE impacts in relation to individual JH and SHE treatments on a subset of array-positive genes revealed (i) JH and SHE treatments had opposite impacts on gene expression and (ii) JH + SHE impacts on gene expression were generally intermediate between JH and SHE. CONCLUSIONS: Our results show that JH impacts hundreds of termite and symbiont genes within 24-hr, strongly suggesting a role for the termite gut in JH-dependent caste determination. Additionally, differential impacts of SHE and LS treatments were observed that are in strong agreement with previous studies that specifically investigated soldier caste regulation. However, it is likely that gene expression outside the gut may be of equal or greater importance than gut gene expression.


Asunto(s)
Mucosa Intestinal , Isópteros , Hormonas Juveniles , Fenotipo , Simbiosis , Transcriptoma , Animales , Femenino , Secuencia de Aminoácidos , Bioensayo , ADN Complementario/genética , Cabeza , Proteínas de Insectos/biosíntesis , Proteínas de Insectos/química , Proteínas de Insectos/genética , Mucosa Intestinal/metabolismo , Isópteros/genética , Isópteros/metabolismo , Isópteros/fisiología , Hormonas Juveniles/metabolismo , Anotación de Secuencia Molecular , Datos de Secuencia Molecular , Biosíntesis de Proteínas , ARN Mensajero/genética , ARN Mensajero/metabolismo
19.
Mol Ecol ; 22(7): 1836-53, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23379767

RESUMEN

Reticulitermes flavipes (Isoptera: Rhinotermitidae) is a highly eusocial insect that thrives on recalcitrant lignocellulosic diets through nutritional symbioses with gut-dwelling prokaryotes and eukaryotes. In the R. flavipes hindgut, there are up to 12 eukaryotic protozoan symbionts; the number of prokaryotic symbionts has been estimated in the hundreds. Despite its biological relevance, this diverse community, to date, has been investigated only by culture- and cloning-dependent methods. Moreover, it is unclear how termite gut microbiomes respond to diet changes and what roles they play in lignocellulose digestion. This study utilized high-throughput 454 pyrosequencing of 16S V5-V6 amplicons to sample the hindgut lumen prokaryotic microbiota of R. flavipes and to examine compositional changes in response to lignin-rich and lignin-poor cellulose diets after a 7-day feeding period. Of the ~475,000 high-quality reads that were obtained, 99.9% were annotated as bacteria and 0.11% as archaea. Major bacterial phyla included Spirochaetes (24.9%), Elusimicrobia (19.8%), Firmicutes (17.8%), Bacteroidetes (14.1%), Proteobacteria (11.4%), Fibrobacteres (5.8%), Verrucomicrobia (2.0%), Actinobacteria (1.4%) and Tenericutes (1.3%). The R. flavipes hindgut lumen prokaryotic microbiota was found to contain over 4761 species-level phylotypes. However, diet-dependent shifts were not statistically significant or uniform across colonies, suggesting significant environmental and/or host genetic impacts on colony-level microbiome composition. These results provide insights into termite gut microbiome diversity and suggest that (i) the prokaryotic gut microbiota is much more complex than previously estimated, and (ii) environment, founding reproductive pair effects and/or host genetics influence microbiome composition.


Asunto(s)
Isópteros/microbiología , Lignina/administración & dosificación , Metagenoma , Animales , Archaea/aislamiento & purificación , Bacterias/aislamiento & purificación , Celulosa/administración & dosificación , ADN de Archaea/aislamiento & purificación , ADN Bacteriano/aislamiento & purificación , Tracto Gastrointestinal/microbiología , ARN Ribosómico 16S/aislamiento & purificación , Análisis de Secuencia de ADN , Simbiosis
20.
Arch Insect Biochem Physiol ; 84(4): 175-93, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24186432

RESUMEN

Termites and their gut microbial symbionts efficiently degrade lignocellulose into fermentable monosaccharides. This study examined three glycosyl hydrolase family 7 (GHF7) cellulases from protist symbionts of the termite Reticulitermes flavipes. We tested the hypotheses that three GHF7 cellulases (GHF7-3, GHF7-5, and GHF7-6) can function synergistically with three host digestive enzymes and a fungal cellulase preparation. Full-length cDNA sequences of the three GHF7s were assembled and their protist origins confirmed through a combination of quantitative PCR and cellobiohydrolase (CBH) activity assays. Recombinant versions of the three GHF7s were generated using a baculovirus-insect expression system and their activity toward several model substrates compared with and without metallic cofactors. GHF7-3 was the most active of the three cellulases; it exhibited a combination of CBH, endoglucanase (EGase), and ß-glucosidase activities that were optimal around pH 7 and 30°C, and enhanced by calcium chloride and zinc sulfate. Lignocellulose saccharification assays were then done using various combinations of the three GHF7s along with a host EGase (Cell-1), beta-glucosidase (ß-glu), and laccase (LacA). GHF7-3 was the only GHF7 to enhance glucose release by Cell-1 and ß-glu. Finally, GHF7-3, Cell-1, and ß-glu were individually tested with a commercial fungal cellulase preparation in lignocellulose saccharification assays, but only ß-glu appreciably enhanced glucose release. Our hypothesis that protist GHF7 cellulases are capable of synergistic interactions with host termite digestive enzymes is supported only in the case of GHF7-3. These findings suggest that not all protist cellulases will enhance saccharification by cocktails of other termite or fungal lignocellulases.


Asunto(s)
Celulasas/metabolismo , Eucariontes/enzimología , Isópteros/enzimología , Isópteros/parasitología , Lignina/metabolismo , Secuencia de Aminoácidos , Animales , Celulasas/química , Celulasas/genética , Eucariontes/genética , Proteínas Fúngicas/metabolismo , Tracto Gastrointestinal/enzimología , Tracto Gastrointestinal/parasitología , Regulación Enzimológica de la Expresión Génica , Datos de Secuencia Molecular , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Alineación de Secuencia , Transcriptoma
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA