Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 134
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 120(50): e2311564120, 2023 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-38048468

RESUMEN

Soils are common sources of metal(loid) contaminant exposure globally. Lead (Pb) and arsenic (As) are of paramount concern due to detrimental neurological and carcinogenic health effects, respectively. Pb and/or As contaminated soils require remediation, typically leading to excavation, a costly and environmentally damaging practice of removing soil to a central location (e.g., hazardous landfill) that may not be a viable option in low-income countries. Chemical remediation techniques may allow for in situ conversion of soil contaminants to phases that are not easily mobilized upon ingestion; however, effective chemical remediation options are limited. Here, we have successfully tested a soil remediation technology using potted soils that relies on converting soil Pb and As into jarosite-group minerals, such as plumbojarosite (PLJ) and beudantite, possessing exceptionally low bioaccessibility [i.e., solubility at gastric pH conditions (pH 1.5 to 3)]. Across all experiments conducted, all new treatment methods successfully promoted PLJ and/or beudantite conversion, resulting in a proportional decrease in Pb and As bioaccessibility. Increasing temperature resulted in increased conversion to jarosite-group minerals, but addition of potassium (K) jarosite was most critical to Pb and As bioaccessibility decreases. Our methods of K-jarosite treatment yielded <10% Pb and As bioaccessibility compared to unamended soil values of approximately 70% and 60%, respectively. The proposed treatment is a rare dual remediation option that effectively treats soil Pb and As such that potential exposure is considerably reduced. Research presented here lays the foundation for ongoing field application.


Asunto(s)
Arsénico , Contaminantes del Suelo , Arsénico/análisis , Potasio , Suelo , Plomo , Contaminantes del Suelo/análisis , Minerales , Disponibilidad Biológica
2.
Proc Natl Acad Sci U S A ; 118(3)2021 01 19.
Artículo en Inglés | MEDLINE | ID: mdl-33431689

RESUMEN

Exposure to lead (Pb) during early life has persistent adverse health effects. During childhood, ingestion of bioavailable Pb in contaminated soils can be a major route of Pb absorption. Remediation to alter physiochemical properties of soil-borne Pb can reduce Pb bioavailability. Our laboratory-based approach for soil Pb remediation uses addition of iron (Fe) sulfate and application of heat to promote formation of plumbojarosite (PLJ), a sparingly soluble Pb-Fe hydroxysulfate mineral. We treated two soils with anthropogenic Pb contamination and samples of clean topsoil spiked with various Pb compounds (i.e., carbonate, chloride, phosphate [P], or sulfate) to convert native Pb species to PLJ and used a mouse assay to assess relative bioavailability (RBA) of Pb in untreated (U) and remediated soils. Bone and blood Pb levels were significantly lower (P < 0.001, Student's t test) in mice that consumed diets amended with remediated soils than with U soils. Estimated RBA for Pb in both remediated natural soils and Pb-mineral spiked soils were reduced by >90% relative to Pb RBA for U soils, which is substantially more effective than other soil amendments, including P. X-ray absorption spectroscopy showed that >90% of all Pb species in remediated soils were converted to PLJ, and ingested PLJ was not chemically transformed during gastrointestinal tract transit. Post treatment neutralization of soil pH did not affect PLJ stability, indicating the feasibility in field conditions. These results suggest that formation of PLJ in contaminated soils can reduce the RBA of Pb and minimize this medium's role as a source of Pb exposure for young children.


Asunto(s)
Biodegradación Ambiental , Tracto Gastrointestinal/efectos de los fármacos , Hierro/química , Plomo/toxicidad , Contaminantes del Suelo/química , Animales , Disponibilidad Biológica , Contaminación Ambiental , Humanos , Plomo/química , Ratones , Minerales/química , Fosfatos/química , Suelo/química , Contaminantes del Suelo/toxicidad , Sulfatos/química , Espectroscopía de Absorción de Rayos X
3.
Environ Sci Technol ; 56(22): 15718-15727, 2022 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-36239028

RESUMEN

Methods promoting lead (Pb) phase transformation in soils are essential for decreasing Pb bioaccessibility/bioavailability and may offer an in situ, cost-efficient process for mitigating contaminant exposure. Recent plumbojarosite (PLJ) conversion methods have shown the greatest potential to reduce soil Pb bioaccessibility, an in vitro bioaccessibility assay measurement of the proportion of Pb solubilized under gastric chemical conditions. Soils tested utilizing the recent PLJ method were found to have a Pb bioaccessibility of <1%, compared to original soils possessing bioaccessibility of >70%. However, this technique requires heat (95-100 °C) to promote mineral transformation. Jarosite-group minerals may incorporate multiple interlayer cations; therefore, we probed the potential for jarosite to remediate Pb via intercalation by reacting presynthesized potassium (K)-jarosite with aqueous Pb and/or Pb-contaminated soil at room temperature. Both K-jarosite and heated PLJ-treated samples were investigated by pairing bioaccessibility analyses with advanced bulk and spatially resolved X-ray absorption spectroscopy analyses. Samples treated with K-jarosite promoted Pb transformation to low-bioaccessibility (<10%) PLJ, with soil being converted to 100% PLJ using both heated and nonheated techniques. µ-X-ray fluorescence (µ-XRF) and µ-X-ray absorption near-edge structure (µ-XANES) showcase significant differences between elemental interactions for heated and nonheated PLJ-treated samples with anglesite impurities being found on the microscale. Although further development is necessary to accommodate for suitable field conditions, results indicate, for the first time, that K-jarosite may successfully convert soil Pb to PLJ without high-temperature conditions. The newfound utility of K-jarosite is expected to be key to future jarosite-based soil Pb remediation method development.


Asunto(s)
Contaminantes del Suelo , Contaminantes del Suelo/química , Plomo/análisis , Potasio/análisis , Temperatura , Suelo/química , Disponibilidad Biológica , Minerales/química
4.
Environ Sci Technol ; 55(23): 15950-15960, 2021 12 07.
Artículo en Inglés | MEDLINE | ID: mdl-34806356

RESUMEN

Lead (Pb) contamination of soils is of global concern due to the devastating impacts of Pb exposure in children. Because early-life exposure to Pb has long-lasting health effects, reducing exposure in children is a critical public health goal that has intensified research on the conversion of soil Pb to low bioavailability phases. Recently, plumbojarosite (PLJ) conversion of highly available soil Pb was found to decrease Pb relative bioavailability (RBA <10%). However, there is sparse information concerning interactions between Pb and other elements when contaminated soil, pre- and post-remediation, is ingested and moves through the gastrointestinal tract (GIT). Addressing this may inform drivers of effective chemical remediation strategies. Here, we utilize bulk and micro-focused Pb X-ray absorption spectroscopy to probe elemental interactions and Pb speciation in mouse diet, cecum, and feces samples following ingestion of contaminated soils pre- and post-PLJ treatment. RBA of treated soils was less than 1% with PLJ phases transiting the GIT with little absorption. In contrast, Pb associated with organics was predominantly found in the cecum. These results are consistent with transit of insoluble PLJ to feces following ingestion. The expanded understanding of Pb interactions during GIT transit complements our knowledge of elemental interactions with Pb that occur at higher levels of biological organization.


Asunto(s)
Contaminantes del Suelo , Suelo , Animales , Disponibilidad Biológica , Contaminación Ambiental , Ratones , Contaminantes del Suelo/análisis , Espectroscopía de Absorción de Rayos X
5.
Environ Sci Technol ; 55(1): 402-411, 2021 01 05.
Artículo en Inglés | MEDLINE | ID: mdl-33307690

RESUMEN

House dust and soils can be major sources of lead (Pb) exposure for children. The American Healthy Homes Survey (AHHS) was developed to estimate Pb exposure from house dust and soil, in addition to other potential household contaminants and allergens. We have combined X-ray absorption spectroscopic (XAS) fingerprinting and in vivo mouse relative bioavailability (RBA) measurements for a subset of house dust and residential soils collected in the AHHS, with the primary objective of gaining a better understanding of determinants of house dust Pb bioavailability. Lead speciation was well related to variations in RBA results and revealed that highly bioavailable Pb (hydroxy)carbonate (indicative of Pb-based paint) was the major Pb species present in house dusts. Measured Pb RBA was up to 100% and is likely driven by paint Pb. To our knowledge, this is the first report of in vivo Pb RBA for U.S. house dust contaminated in situ with paint Pb and corroborates results from a previous study that demonstrated high RBA of paint Pb added to soil. We also report a relatively low RBA (23%) in a residential soil where the major Pb species was found to be plumbojarosite, consistent with a previous report that plumbojarosite lowers Pb RBA in soils.


Asunto(s)
Polvo , Contaminantes del Suelo , Animales , Disponibilidad Biológica , Polvo/análisis , Ratones , Pintura , Suelo , Contaminantes del Suelo/análisis
6.
Chem Eng J ; 4052021 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-33424420

RESUMEN

Metal-free electrocatalysts have been widely used as cathodes for the reduction of hexavalent chromium [Cr(VI)] in microbial fuel cells (MFCs). The electrocatalytic activity of such system needs to be increased due to the low anodic potential provided by bacteria. In this study, graphite paper (GP) was treated by liquid nitrogen to form three-dimensional graphite foam (3DGF), improving the Cr(VI) reduction by 17% and the total Cr removal by 81% at 30 h in MFCs. X-ray absorption spectroscopy confirmed the Cr(VI) reduction product as Cr(OH)3. Through the spectroscopy characterizations, electrochemical measurements, and density functional theory calculations, the porous structures, edges, and O-doped defects on the 3DGF surface resulted in a higher electroconducting rate and a lower mass transfer rate, which provide more active sites for the Cr(VI) reduction. Additionally, the scrolled graphene-like carbon nanosheets and porous structures on the 3DGF surface might limit the OH- diffusion and result in a high local pH, which accelerated the Cr(OH)3 formation. The results of this study are expected to provide a simple method to manipulate the carbon materials and insights into mechanisms of Cr(VI) reduction in MFCs by the 3DGF with in situ exfoliated edges and O-functionalized graphene.

7.
Ann Bot ; 125(1): 185-193, 2020 01 08.
Artículo en Inglés | MEDLINE | ID: mdl-31678993

RESUMEN

BACKGROUND AND AIMS: Understanding the speciation of Zn in edible portions of crops helps identify the most effective biofortification strategies to increase the supply of nutrients for improving the health and nutrition of consumers. METHODS: Kernels of 12 sweetcorn and three maize (Zea mays) varieties were analysed for Zn concentration and content. The speciation of the Zn in the embryos, endosperms and whole kernels at 21, 28 and 56 days after pollination (DAP) was then examined for one maize and one sweetcorn variety using synchrotron-based X-ray absorption spectroscopy (XAS). KEY RESULTS: Averaged across all sweetcorn and maize varieties at 21 DAP, the embryo contributed 27-29% of the whole kernel Zn whilst the endosperm contributed 71-73 %. While sweetcorn embryos contributed a lower proportion to the total kernel Zn than those of maize, the proportion of total Zn in the embryo increased as kernels aged for both varieties, reaching 33 % for sweetcorn and 49% for maize at 28 DAP. Using XAS, it was predicted that an average of 90 % of the Zn in the embryos was present as Zn-phytate, while in the endosperm the Zn was primarily complexed with an N-containing ligand such as histidine and to a lesser extent with phytate. However, in maize endosperms, it was also observed that the proportion of Zn present as Zn-phytate increased as the kernel matured, thereby also probably decreasing its bioavailability in these mature maize kernels. CONCLUSIONS: The apparent low bioavailability of Zn supplied in maize at its consumption stage (i.e. mature kernels) probably undermines the effectiveness of biofortification of this crop. Conversely, successful biofortification of Zn in sweetcorn and green maize consumed as immature kernels could potentially provide a good source of bioavailable Zn in human diets.


Asunto(s)
Endospermo , Zea mays , Disponibilidad Biológica , Humanos , Ácido Fítico , Zinc
8.
J Soils Sediments ; 20: 3712-3721, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35250383

RESUMEN

PURPOSE: Coastal orchards, with greater humidity and precipitation, are favorable for fruit production, as well as mildew fungi development, thus becoming hot spots of Cu concentrations in soils due to the use of copper-based fungicides. However, little is known on the variation tendencies of Cu availability and mobility from these soils. This study aims to investigate the accumulation, spatial-temporal distribution, and chemical fractions of soil Cu in one of the largest coastal apple-producing area with over 40-year intensive cultivation in China. MATERIALS AND METHODS: A total of 104 orchard and 31 farmland topsoil samples were collected from Jiaodong Peninsula, Shandong Province. The total Cu concentration (T-Cu) and major element components (MnO, TiO2, SiO2, Fe2O3, and Al2O3) in the soil were determined by X-ray fluorescence spectroscopy. Available Cu concentration (A-Cu) was extracted with HCl or DTPA. Chemical fractionations of Cu were determined via sequential extraction method. The variation tendencies of T-Cu, A-Cu, Cu available ratio (AR), and chemical fractions with planting duration in the orchards were explored while a cokriging method was selected to predict their spatial distributions. Moreover, Pearson's correlation and multiple linear stepwise regressions were constructed to distinguish the vital factors in controlling Cu availability and mobility from these soils. RESULTS AND DISCUSSION: The results showed that long-term application of Cu-containing fungicides had increased Cu concentrations in orchard soils (85.77 mg kg-1) 3.5 times higher than the background value (24.0 mg kg-1) of local agricultural soils, in which 23.8% existed in the available form. Cu in the weak acid-soluble fraction (F1, 5.0 ± 3.5 %), reducible fraction (F2, 24.7 ± 6.6%), and oxidizable fraction (F3, 18.5 ± 7.8%) in orchard soils increased significantly with increasing planting durations whereas the residual fraction (F4, 51.7 ± 15.4%) exhibited a reverse trend. Total content, available content, and chemical fractions of Cu showed strong spatial heterogeneity. The availability and mobility of Cu in orchard soils were mainly controlled by total Cu content, pH, and soil organic carbon. CONCLUSIONS: Coastal orchards under warm and humid climate condition in China exhibited higher Cu input, along with acidification and rapid organic carbon turnover in the soils, eventually leading to large accumulation and high mobility of Cu in the soils.

9.
Environ Sci Technol ; 53(20): 11684-11693, 2019 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-31525045

RESUMEN

Arsenic toxicity and mobility in groundwater depend on its aqueous speciation. Uncertainty about the methods used for measuring arsenic speciation in sulfate-reducing environments hampers transport and fate analyses and the development of in situ remediation approaches for treating impacted aquifers. New anion-exchange chromatography methods linked to inductively coupled plasma mass spectrometry (ICP-MS) are presented that allow for sample/eluent pH matching. Sample/eluent pH matching is advantageous to prevent thioarsenic species transformation during chromatographic separation because species protonation states remain unaffected, hydroxyl-for-bisulfide ligand substitution is avoided, and oxidation of reduced arsenic species is minimized. We characterized model and natural solutions containing mixtures of arsenic oxyanions with dissolved sulfide and solutions derived from the dissolution of thioarsenite and thioarsenate solids. In sulfidic solutions containing arsenite, two thioarsenic species with S/As ratios of 2:1 and 3:1 were important over the pH range from 5.5 to 8.5. The 3:1 thioarsenic species dominated when disordered As2S3 dissolved into sulfide-containing solution at pH 5.4. Together with the preferential formation of arsenite following sample dilution, these data provide evidence for the formation and detection of thioarsenite species. This study helps resolve inconsistencies between spectroscopic and chromatographic evidence regarding the nature of arsenic in sulfidic waters.


Asunto(s)
Arsénico , Agua Subterránea , Arsenamida , Sulfatos , Sulfuros
10.
Environ Sci Technol ; 53(21): 12556-12564, 2019 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-31557437

RESUMEN

Effects of dietary P level on the oral bioavailability of Pb present in soil were examined in a mouse model. Adult female C57BL/6 mice had free access to AIN-93G purified rodent diet amended with Pb as a soluble salt, Pb acetate, or in a soil matrix (NIST SRM 2710a). In these studies, the basal diet contained P at a nutritionally sufficient level (0.3% w/w) and the modified diets contained P at a lower (0.15%) or a higher (1.2%) level. For either dietary Pb source (Pb acetate or NIST SRM 2710a), low dietary P level markedly increased accumulation of Pb in bone, blood, and kidney. Tissue Pb levels in mice fed a high P in diet were not different from mice fed the basal P diet. Dietary P and Pb interacted to affect body weight change and feed efficiency in mice. The relative contribution of different Pb species in diet and feces was also affected by dietary P level. Differences in Pb species between diet and feces indicated that transformation of Pb species can occur during gastrointestinal tract transit. These interactions between Pb and P that alter Pb speciation may be important determinants of the bioavailability of Pb ingested in soil.


Asunto(s)
Contaminantes del Suelo , Suelo , Animales , Disponibilidad Biológica , Femenino , Ratones , Ratones Endogámicos C57BL , Fosfatos
11.
Environ Sci Technol ; 53(17): 10329-10341, 2019 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-31356748

RESUMEN

This study compared lead (Pb) immobilization efficacies in mining/smelting impacted soil using phosphate and iron amendments via ingestion and inhalation pathways using in vitro and in vivo assays, in conjunction with investigating the dynamics of dust particles in the lungs and gastro-intestinal tract via X-ray fluorescence (XRF) microscopy. Phosphate amendments [phosphoric acid (PA), hydroxyapatite, monoammonium phosphate (MAP), triple super phosphate (TSP), and bone meal biochar] and hematite were applied at a molar ratio of Pb:Fe/P = 1:5. Pb phosphate formation was investigated in the soil/post-in vitro bioaccessibility (IVBA) residuals and in mouse lung via extended X-ray absorption fine structure (EXAFS) and X-ray absorption near edge structures (XANES) spectroscopy, respectively. EXAFS analysis revealed that anglesite was the dominant phase in the ingestible (<250 µm) and inhalable (<10 µm) particle fractions. Pb IVBA was significantly reduced (p < 0.05) by phosphate amendments in the <250 µm fraction (solubility bioaccessibility research consortium assay) and by PA, MAP, and TSP in the <10 µm fraction (inhalation-ingestion bioaccessibility assay). A 21.1% reduction in Pb RBA (<250 µm fraction) and 56.4% reduction in blood Pb concentration (<10 µm fraction) were observed via the ingestion and inhalation pathways, respectively. XRF microscopy detected Pb in the stomach within 4 h, presumably via mucociliary clearance.


Asunto(s)
Contaminantes del Suelo , Animales , Disponibilidad Biológica , Hierro , Ratones , Fosfatos , Suelo
12.
Environ Sci Technol ; 53(19): 11486-11495, 2019 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-31460750

RESUMEN

Lead (Pb) exposure from household dust is a major childhood health concern because of its adverse impact on cognitive development. This study investigated the absorption kinetics of Pb from indoor dust following a single dose instillation into C57BL/6 mice. Blood Pb concentration (PbB) was assessed over 24 h, and the dynamics of particles in the lung and gastro-intestinal (GI) tract were visualized using X-ray fluorescence (XRF) microscopy. The influence of mineralogy on Pb absorption and particle retention was investigated using X-ray absorption near-edge structure spectroscopy. A rapid rise in PbB was observed between 0.25 and 4 h after instillation, peaking at 8 h and slowly declining during a period of 24 h. Following clearance from the lungs, Pb particles were detected in the stomach and small intestine at 4 and 8 h, respectively. Analysis of Pb mineralogy in the residual particles in tissues at 8 h showed that mineral-sorbed Pb and Pb-phosphates dominated the lung, while organic-bound Pb and galena were the main phases in the small intestines. This is the first study to visualize Pb dynamics in the lung and GI tract using XRF microscopy and link the inhalation and ingestion pathways for metal exposure assessment from dust.


Asunto(s)
Polvo , Animales , Disponibilidad Biológica , Ratones , Ratones Endogámicos C57BL , Espectroscopía de Absorción de Rayos X , Rayos X
13.
Ecotoxicol Environ Saf ; 175: 192-200, 2019 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-30901636

RESUMEN

Windowsill particulate matter (PM) samples were collected from an area near large lead-smelting facilities in Jiyuan (JP), the urban area of Jiyuan (JU) and the peri-urban area of Mianchi (MC) in Henan, China to investigate the concentration and inhalation bioaccessibility of Cd, Cu, Pb and Zn. The <10 µm portions of the samples were extracted with simulated lung fluid to assess the in vitro inhalation bioaccessibility. Lower concentrations of heavy metals were found in the MC samples than in the JP and the JU samples. The average concentrations of Pb, Cd and Cu in the portions of the same size are in the order of JP samples > JU samples > MC samples. For Pb, Cd and Zn, the maximum inhalation bioaccessibility fraction values are all found in the MC samples, which ranged 3.87-8.79%, while those of the JP and the JU samples are <2%. The Pb speciation analysis with X-ray absorption spectrometry indicate mineral bound Pb, PbS and Pb3(PO4)2 are the predominant Pb species in the JP samples; for the JU sample, organic bound Pb is the predominant Pb species in the 45-125 µm portion, while mineral bound Pb is the predominant Pb species in the 10-45 µm portion; for the MC samples, organic bound Pb is the predominant Pb species, followed by PbS. The results indicate that there is significant accumulation of Pb, Cd, Cu and Zn associated with PM in the area near the lead smelter and in the urban area of Jiyuan, especially Pb and Cd, however, the inhalation bioaccessibility of these metals in samples from the lead smelting impacted area is low, this may be due to the higher proportion of less soluble species of the metals in the samples from this area. However, organic matter bound Pb found in some samples has higher bioaccessibility than other Pb species.


Asunto(s)
Cadmio/análisis , Cobre/análisis , Contaminación Ambiental/análisis , Exposición por Inhalación/análisis , Plomo/análisis , Material Particulado/análisis , Zinc/análisis , Disponibilidad Biológica , China , Pulmón/química , Modelos Biológicos , Tamaño de la Partícula
14.
Environ Monit Assess ; 191(2): 115, 2019 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-30697651

RESUMEN

This work was conducted to explore heavy metal pollution in soils in an area near lead smelters in Jiyuan City, which is one of the main lead production areas in China. Altogether, 88 topsoil samples (0-20 cm) were collected from farmlands near the Yuguang lead smelting facilities; the sampling sites were 1570 to 6388 m to the main stack of the Yuguang. Analysis of the samples indicated that (i) the ranges of total Cd and Pb concentrations were 0.81-4.30 and 64.5-435 mg kg-1, respectively, mean pollution indices (concentration in soil/background value, PI) were 32.8 and 9.11, respectively, and the concentrations of total Cu, Zn, and Ni were slightly higher than the background values. Mean concentrations of DTPA-extractable Cd and Pb were 0.752 and 58.7 mg kg-1, respectively. (ii) The total concentrations of Cd, Pb and Pb/Cd ratios of samples decreased as the distance to the main stack of the Yuguang increased. Abnormal variations of these trends suggested these parameters of certain samples were affected by pollution sources other than the Yuguang. (iii) Judged by the results of this work, the area of the heavy metal-polluted land in Jiyuan was much greater than 115 km2, a value reported by an earlier investigation. These results indicate that the soil in the study area was polluted by Cd and Pb emissions from more than one polluting sources, the variation of Cd, Pb concentration and Pb/Cd ratios of samples to the distance of the pollution source can be potentially used for pollution source identification.


Asunto(s)
Monitoreo del Ambiente/métodos , Metales Pesados/análisis , Contaminantes del Suelo/análisis , China , Ciudades , Granjas , Suelo/química
15.
J Exp Bot ; 69(18): 4469-4481, 2018 08 14.
Artículo en Inglés | MEDLINE | ID: mdl-29931117

RESUMEN

Foliar application of zinc (Zn) to crops is an effective way to increase the grain concentration of Zn. However, the development of more efficient foliar Zn fertilizers is limited by a lack of knowledge regarding the distribution, mobility, and speciation of Zn in leaves once it is taken up by the plant. We performed an experiment using radiolabelled Zn (65Zn), and in situ time-resolved elemental imaging using synchrotron X-ray fluorescence microscopy (XFM), to investigate the behaviour of two commonly used Zn foliar fertilizers (Zn sulphate and ZnEDTA) in wheat (Triticum aestivum) leaves. Both experiments showed that Zn had limited mobility in leaves, moving <25 mm from the application point after 24 h. Although limited, the translocation of Zn occurred quickly for both treatments; moving more between 3 h and 12 h after application than between 12 h and 24 h. Speciation analysis using synchrotron-based X-ray absorption near-edge structure (XANES) showed that ZnEDTA was in fact taken up in chelated form and not as ionic Zn (Zn2+). The XANES data also showed that Zn, from both treatments, was then complexed by ligands in the leaf (e.g. phytate and citrate), potentially in response to localized Zn toxicity. The results of the present study provide important insights into the behaviour of commonly used foliar-applied Zn fertilizers, and can be used to optimize current fertilization strategies and contribute to the development of more efficient foliar Zn fertilizers.


Asunto(s)
Ácido Edético/farmacocinética , Fertilizantes/análisis , Hojas de la Planta/metabolismo , Triticum/efectos de los fármacos , Sulfato de Zinc/farmacocinética , Zinc/farmacocinética , Transporte Biológico , Grano Comestible/química , Grano Comestible/efectos de los fármacos , Hojas de la Planta/efectos de los fármacos , Triticum/metabolismo , Espectroscopía de Absorción de Rayos X
16.
Environ Sci Technol ; 52(23): 13908-13913, 2018 12 04.
Artículo en Inglés | MEDLINE | ID: mdl-30358995

RESUMEN

Effects of different treatments on the bioavailability of lead (Pb) in soil from a smelter emission contaminated site in Joplin, Missouri, were evaluated in a mouse model. Similar estimates of relative bioavailability for Pb in untreated or treated soil were obtained in mice and in the well-established juvenile swine model. In the mouse model, treatments that used phosphate (phosphoric acid or triple superphosphate) combined with iron oxide or biosolids compost significantly reduced soil Pb bioavailability. Notably, effects of these remediation procedures were persistent, given that up to 16 years had elapsed between soil treatment and sample collection. Remediation of soils was associated with changes in Pb species present in soil. Differences in Pb species in ingested soil and in feces from treated mice indicated that changes in Pb speciation occurred during transit through the gastrointestinal tract. Use of the mouse model facilitates evaluation of remediation procedures and allows monitoring of the performance of procedures under laboratory and field conditions.


Asunto(s)
Contaminantes del Suelo , Suelo , Animales , Disponibilidad Biológica , Ratones , Missouri , Fosfatos , Porcinos
17.
J Environ Qual ; 47(5): 1232-1241, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-30272772

RESUMEN

Stormwater filters are a structural best management practice designed to reduce dissolved P losses from runoff. Various industrial byproducts are suitable for use as P sorbing materials (PSMs) for the treatment of drainage water; P sorption by PSMs varies with material physical and chemical properties. Previously, P removal capacity by PSMs was estimated using chemical extractions. We determined the speciation of P when reacted with various PSMs using X-ray absorption near edge structure (XANES) spectroscopy. Twelve PSMs were reacted with P solution in the laboratory under batch or flow-through conditions. In addition, three slag materials were collected from working stormwater filtration structures. Phosphorus K-edge XANES spectra were collected on each reacted PSM and compared with spectra of 22 known P standards using linear combination fitting in Athena. We found evidence of formation of a variety of Ca-, Al-, and/or Fe-phosphate minerals and sorbed phases on the reacted PSMs, with the exact speciation influenced by the chemical properties of the original unreacted PSMs. We grouped PSMs into three general categories based on the dominant P removal mechanism: (i) Fe- and Al-mediated removal [i.e., adsorption of P to Fe- or Al-(hydro-)oxide minerals and/or precipitation of Fe- or Al-phosphate minerals]; (ii) Ca-mediated removal (i.e., precipitation of Ca-phosphate mineral); and (iii) both mechanisms. We recommend the use of Fe/Al sorbing PSMs for use in stormwater filtration structures where stormwater retention time is limited because reaction of P with Fe or Al generally occurs more quickly than Ca-P precipitation.


Asunto(s)
Fósforo/análisis , Eliminación de Residuos Líquidos/métodos , Contaminantes Químicos del Agua/análisis , Adsorción , Filtración , Contaminación Química del Agua/prevención & control , Contaminación Química del Agua/estadística & datos numéricos
18.
Geoderma ; 332: 190-197, 2018 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-30504969

RESUMEN

In this study, different dosages of calcium polysulphide (CaSx) were used as an amendment to investigate effects on the immobilizing of Cd in a wetland soil by pot experiment. In addition to chemical analysis (pH and bioavailable Cd concentration), changes in soil enzyme activities, microbial carbon utilization capacity, metabolic and community diversity were examined to assess dynamic impacts on soil environmental quality and toxicity of Cd resulting from ameliorant dosing. Soil pH increased immediately upon CaSx amendment compared to the unamended control (CK), and then declined slowly to a level lower than CK. Diethylenetriamine pentaacetic acid (DTPA) extractable Cd concentration was determined to characterize the bioavailability of Cd in the soil. The CaSx dose-dependent effect observed that with increasing CaSx dosage, the immobilizing efficiency decreased. Soil urease and catalase activity assays and Biolog EcoPlate assay indicated that early stage addition of CaSx significantly inhibited soil microbial activities. However, mid and late stage time periods showed the inhibition effects were alleviated, and the microbial activities could be recovered in 1% and 2% CaSx treatments. Moreover, with increasing incubation time, microbial community diversity and richness were significantly recovered in 1% and 2% CaSx treatments compared to the CK. No considerable changes were observed in the 5% CaSx treatment. Conclusively, the 1% CaSx amendment was an efficient and safe dosage for the stabilization of Cd contaminated wetland soil. This study contributes to the development of in situ remediation ameliorants and technologies for heavy metal polluted wetland soils.

19.
Crit Rev Toxicol ; 47(9): 767-810, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28661217

RESUMEN

Engineered nanomaterials (ENM) are a growing aspect of the global economy, and their safe and sustainable development, use, and eventual disposal requires the capability to forecast and avoid potential problems. This review provides a framework to evaluate the health and safety implications of ENM releases into the environment, including purposeful releases such as for antimicrobial sprays or nano-enabled pesticides, and inadvertent releases as a consequence of other intended applications. Considerations encompass product life cycles, environmental media, exposed populations, and possible adverse outcomes. This framework is presented as a series of compartmental flow diagrams that serve as a basis to help derive future quantitative predictive models, guide research, and support development of tools for making risk-based decisions. After use, ENM are not expected to remain in their original form due to reactivity and/or propensity for hetero-agglomeration in environmental media. Therefore, emphasis is placed on characterizing ENM as they occur in environmental or biological matrices. In addition, predicting the activity of ENM in the environment is difficult due to the multiple dynamic interactions between the physical/chemical aspects of ENM and similarly complex environmental conditions. Others have proposed the use of simple predictive functional assays as an intermediate step to address the challenge of using physical/chemical properties to predict environmental fate and behavior of ENM. The nodes and interactions of the framework presented here reflect phase transitions that could be targets for development of such assays to estimate kinetic reaction rates and simplify model predictions. Application, refinement, and demonstration of this framework, along with an associated knowledgebase that includes targeted functional assay data, will allow better de novo predictions of potential exposures and adverse outcomes.


Asunto(s)
Ecotoxicología/métodos , Salud Ambiental , Contaminantes Ambientales/toxicidad , Nanoestructuras/toxicidad , Humanos , Modelos Teóricos , Medición de Riesgo , Seguridad
20.
Environ Sci Technol ; 51(24): 14330-14341, 2017 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-29151341

RESUMEN

Uranium(VI) exhibits little adsorption onto sediment minerals in acidic, alkaline or high ionic-strength aqueous media that often occur in U mining or contaminated sites, which makes U(VI) very mobile and difficult to sequester. In this work, magnetic mesoporous silica nanoparticles (MMSNs) were functionalized with several organic ligands. The functionalized MMSNs were highly effective and had large binding capacity for U sequestration from high salt water (HSW) simulant (54 mg U/g sorbent). The functionalized MMSNs, after U exposure in HSW simulant, pH 3.5 and 9.6 artificial groundwater (AGW), were characterized by a host of spectroscopic methods. Among the key novel findings in this work was that in the HSW simulant or high pH AGW, the dominant U species bound to the functionalized MMSNs were uranyl or uranyl hydroxide, rather than uranyl carbonates as expected. The surface functional groups appear to be out-competing the carbonate ligands associated with the aqueous U species. The uranyl-like species were bound with N ligand as η2 bound motifs or phosphonate ligand as a monodentate, as well as on tetrahedral Si sites as an edge-sharing bidentate. The N and phosphonate ligand-functionalized MMSNs hold promise as effective sorbents for sequestering U from acidic, alkaline or high ionic-strength contaminated aqueous media.


Asunto(s)
Nanopartículas , Dióxido de Silicio , Adsorción , Uranio , Agua
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA