Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
1.
Nature ; 620(7973): 351-357, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37495700

RESUMEN

Wildlife trade is a multibillion-dollar industry1 targeting a hyperdiversity of species2 and can contribute to major declines in abundance3. A key question is understanding the global hotspots of wildlife trade for phylogenetic (PD) and functional (FD) diversity, which underpin the conservation of evolutionary history4, ecological functions5 and ecosystem services benefiting humankind6. Using a global dataset of traded bird and mammal species, we identify that the highest levels of traded PD and FD are from tropical regions, where high numbers of evolutionary distinct and globally endangered species in trade occur. The standardized effect size (ses) of traded PD and FD also shows strong tropical epicentres, with additional hotspots of mammalian ses.PD in the eastern United States and ses.FD in Europe. Large-bodied, frugivorous and canopy-dwelling birds and large-bodied mammals are more likely to be traded whereas insectivorous birds and diurnally foraging mammals are less likely. Where trade drives localized extinctions3, our results suggest substantial losses of unique evolutionary lineages and functional traits, with possible cascading effects for communities and ecosystems5,7. Avoiding unsustainable exploitation and lost community integrity requires targeted conservation efforts, especially in hotspots of traded phylogenetic and functional diversity.


Asunto(s)
Biodiversidad , Aves , Comercio , Conservación de los Recursos Naturales , Mamíferos , Filogenia , Animales , Conservación de los Recursos Naturales/métodos , Conservación de los Recursos Naturales/tendencias , Conjuntos de Datos como Asunto , Especies en Peligro de Extinción , Europa (Continente) , Extinción Biológica , Mapeo Geográfico , Clima Tropical , Estados Unidos , Comercio/estadística & datos numéricos
2.
Glob Chang Biol ; 30(4): e17271, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38613240

RESUMEN

Ecological and evolutionary theories have proposed that species traits should be important in mediating species responses to contemporary climate change; yet, empirical evidence has so far provided mixed evidence for the role of behavioral, life history, or ecological characteristics in facilitating or hindering species range shifts. As such, the utility of trait-based approaches to predict species redistribution under climate change has been called into question. We develop the perspective, supported by evidence, that trait variation, if used carefully can have high potential utility, but that past analyses have in many cases failed to identify an explanatory value for traits by not fully embracing the complexity of species range shifts. First, we discuss the relevant theory linking species traits to range shift processes at the leading (expansion) and trailing (contraction) edges of species distributions and highlight the need to clarify the mechanistic basis of trait-based approaches. Second, we provide a brief overview of range shift-trait studies and identify new opportunities for trait integration that consider range-specific processes and intraspecific variability. Third, we explore the circumstances under which environmental and biotic context dependencies are likely to affect our ability to identify the contribution of species traits to range shift processes. Finally, we propose that revealing the role of traits in shaping species redistribution may likely require accounting for methodological variation arising from the range shift estimation process as well as addressing existing functional, geographical, and phylogenetic biases. We provide a series of considerations for more effectively integrating traits as well as extrinsic and methodological factors into species redistribution research. Together, these analytical approaches promise stronger mechanistic and predictive understanding that can help society mitigate and adapt to the effects of climate change on biodiversity.


Asunto(s)
Biodiversidad , Cambio Climático , Filogenia , Geografía , Fenotipo
3.
J Anim Ecol ; 92(4): 875-888, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36872563

RESUMEN

While biotic-abiotic interactions are increasingly documented in nature, a process-based understanding of how such interactions influence community assembly is lacking in the ecological literature. Perhaps the most emblematic and pervasive example of such interactions is the synergistic threat to biodiversity posed by climate change and invasive species. Invasive species often out-compete or prey on native species. Despite this long-standing and widespread issue, little is known about how abiotic conditions, such as climate change, will influence the frequency and severity of negative biotic interactions that threaten the persistence of native fauna. Treefrogs are a globally diverse group of amphibians that climb to complete life-cycle processes, such as foraging and reproduction, as well as to evade predators and competitors, resulting in frog communities that are vertically partitioned. Furthermore, treefrogs adjust their vertical position to maintain optimal body temperature and hydration in response to environmental change. Here, utilizing this model group, we designed a novel experiment to determine how extrinsic abiotic and biotic factors (changes to water availability and an introduced predator, respectively) interact with intrinsic biological traits, such as individual physiology and behaviour, to influence treefrogs' vertical niche. Our study found that treefrogs adjusted their vertical niche through displacement behaviours in accordance with abiotic resources. However, biotic interactions resulted in native treefrogs distancing themselves from abiotic resources to avoid the non-native species. Importantly, under altered abiotic conditions, both native species avoided the non-native species 33 %- 70 % more than they avoided their native counterpart. Additionally, exposure to the non-native species resulted in native species altering their tree climbing behaviours by 56 % - 78 % and becoming more vertically dynamic to avoid the non-native antagonist. Our experiment determined that vertical niche selection and community interactions were most accurately represented by a biotic-abiotic interaction model, rather than a model that considers these factors to operate in an isolated (singular) or even additive manner. Our study provides evidence that native species may be resilient to interacting disturbances via physiological adaptations to local climate and plasticity in space-use behaviours that mediate the impact of the introduced predator.


Asunto(s)
Biodiversidad , Cambio Climático , Animales , Especies Introducidas , Anuros
4.
J Anim Ecol ; 92(3): 538-551, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36622247

RESUMEN

Climatic gradients such as latitude and elevation are considered primary drivers of global biogeography. Yet, alongside these macro-gradients, the vertical space and structure generated by terrestrial plants form comparable climatic gradients but at a fraction of the distance. These vertical gradients provide a spectrum of ecological space for species to occur and coexist, increasing biodiversity. Furthermore, vertical gradients can serve as pathways for evolutionary adaptation of species traits, leading to a range of ecological specialisations. In this review, we explore the ecological evidence supporting the proposition that the vertical gradient serves as an engine driving the ecology and evolution of species and shaping larger biogeographical patterns in space and time akin to elevation and latitude. Focusing on vertebrate and invertebrate taxa, we synthesised how ecological patterns within the vertical dimension shape species composition, distribution and biotic interactions. We identify three key ecological mechanisms associated with species traits that facilitate persistence within the vertical environment and draw on empirical examples from the literature to explore these processes. Looking forward, we propose that the vertical dimension provides an excellent study template to explore timely ecological and evolutionary questions. We encourage future research to also consider how the vertical dimension will influence the resilience and response of animal taxa to global change.


Asunto(s)
Biodiversidad , Ecosistema , Animales , Dimensión Vertical , Plantas , Aclimatación
5.
Conserv Biol ; 37(4): e14076, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37144474

RESUMEN

The wildlife trade is a billion-dollar global business, involving millions of people, thousands of species, and hundreds of millions of individual organisms. Unravelling whether trade targets reproductively distinct species and whether this preference varies between captive- and wild-sourced species is a crucial question. We used a comprehensive list of all bird species traded, trade listings and records kept in compliance with the Convention on International Trade in Endangered Species (CITES), and a suite of avian reproductive parameters to examine whether wildlife trade is associated with particular facets of life history and to examine the association between life-history traits and captive- and wild-sourced traded volumes over time. Across all trade, CITES listing, and CITES trade, large birds were more likely to be traded and listed, but their longevity and age at maturity were not associated with CITES listing or trade. We found species across almost the full range of trait values in both captive and wild trade between 2000 and 2020. Captive trade volumes clearly associated with relatively longer lived and early-maturing species; these associations remained stable and largely unchanged over time. Trait-volume associations in wild-sourced trade were more uncertain. Only body mass had a clear association, and it varied from negative to positive over time. Although reproductive traits were important in captive-sourced trade, species-level variation dominated trade, with even congeneric species varying greatly in volume despite similar traits. The collection and incorporation of trait data into sustainability assessments of captive breeding facilities are crucial to ensure accurate quotas and guard against laundering.


Asociación entre los rasgos reproductivos de aves en cautiverio versus las de origen silvestre comercializadas Resumen El mercado de fauna es un negocio mundial de miles de millones de dólares que involucra a millares de personas, miles de especies y cientos de millones de organismos individuales. Por ello es necesario resolver la cuestión de si el mercado se enfoca en especies con distinciones reproductivas y si esta preferencia varía entre las especies de origen silvestre y en cautiverio. Usamos una lista completa de todas las especies de aves comercializadas, listados y registros comerciales conforme a la Convención sobre el Comercio Internacional de Especies Amenazadas (CITES) y un conjunto de parámetros de reproducción de aves para analizar si el mercado de fauna está asociado con facetas particulares de la historia de vida. También analizamos la asociación entre los rasgos de la historia de vida y el volumen comercializado de origen silvestre y de cautiverio a lo largo del tiempo. En todos los mercados, listas de CITES y mercados CITES, las aves de mayor tamaño tuvieron mayor probabilidad de ser comercializadas y estar enlistadas, pero su longevidad y edad a la madurez no se asoció con el mercado o la lista e CITES. Detectamos especies en casi toda la gama de rasgos tanto en el comercio de cautiverio como el silvestre entre 2000 y 2020. El volumen comercial de cautiverio mostró una asociación clara con las especies relativamente más longevas y de madurez temprana; esta relación fue estable y casi no cambió con el tiempo. La asociación del volumen en las especies de origen silvestre fue más incierta; sólo la masa corporal tuvo una relación clara y ésta varió entre positiva y negativa con el tiempo. Aunque los rasgos reproductivos fueron importantes para el mercado con origen en cautiverio, la variación a nivel de especies dominó el mercado, incluso mostrando una enorme variación del volumen entre las especies congéneres a pesar de tener rasgos similares. La recolección e incorporación de datos sobre los rasgos dentro de los análisis de sustentabilidad de las instalaciones para la cría en cautiverio es crucial para asegurar las cuotas adecuadas y prevenir blanqueo de capitales.


Asunto(s)
Comercio , Conservación de los Recursos Naturales , Humanos , Animales , Internacionalidad , Animales Salvajes , Especies en Peligro de Extinción , Aves
6.
Glob Chang Biol ; 28(9): 3110-3144, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-34967074

RESUMEN

Research in global change ecology relies heavily on global climatic grids derived from estimates of air temperature in open areas at around 2 m above the ground. These climatic grids do not reflect conditions below vegetation canopies and near the ground surface, where critical ecosystem functions occur and most terrestrial species reside. Here, we provide global maps of soil temperature and bioclimatic variables at a 1-km2 resolution for 0-5 and 5-15 cm soil depth. These maps were created by calculating the difference (i.e. offset) between in situ soil temperature measurements, based on time series from over 1200 1-km2 pixels (summarized from 8519 unique temperature sensors) across all the world's major terrestrial biomes, and coarse-grained air temperature estimates from ERA5-Land (an atmospheric reanalysis by the European Centre for Medium-Range Weather Forecasts). We show that mean annual soil temperature differs markedly from the corresponding gridded air temperature, by up to 10°C (mean = 3.0 ± 2.1°C), with substantial variation across biomes and seasons. Over the year, soils in cold and/or dry biomes are substantially warmer (+3.6 ± 2.3°C) than gridded air temperature, whereas soils in warm and humid environments are on average slightly cooler (-0.7 ± 2.3°C). The observed substantial and biome-specific offsets emphasize that the projected impacts of climate and climate change on near-surface biodiversity and ecosystem functioning are inaccurately assessed when air rather than soil temperature is used, especially in cold environments. The global soil-related bioclimatic variables provided here are an important step forward for any application in ecology and related disciplines. Nevertheless, we highlight the need to fill remaining geographic gaps by collecting more in situ measurements of microclimate conditions to further enhance the spatiotemporal resolution of global soil temperature products for ecological applications.


Asunto(s)
Ecosistema , Suelo , Cambio Climático , Microclima , Temperatura
7.
Oecologia ; 198(1): 1-10, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34617142

RESUMEN

Native species can coexist with invasive congeners by partitioning niche space; however, impacts from invasive species often occur alongside other disturbances. Native species' responses to the interactions of multiple disturbances remain poorly understood. Here we study the impacts of urbanization and an invasive congener on a native species. Using abundance (catch-per-unit effort) and vertical distribution of native green anoles (Anolis carolinensis) and invasive brown anoles (Anolis sagrei) across a gradient of natural-to-urban forests, we ask if niche shifting (lability) is occurring, and if it can mitigate impacts from one or both disturbances. We use generalized linear models to relate species abundances across the landscape to urbanization, forest structural complexity, and congener abundances (i.e., A. sagrei); and test for an interaction between urbanization and congener abundance. Our data show that A. sagrei presence results in a 17-fold upward shift in vertical niche of A. carolinensis-an 8.3 m shift in median perch height, and models reveal urbanization also drives an increase in A. carolinensis perch height. A. carolinensis and A. sagrei abundances negatively and positively correlate with urbanization, respectively, and neither species' abundance correlate with congener abundance. Despite a positive correlation between A. sagrei abundance and urbanization, our results do not show evidence of this interaction affecting A. carolinensis. Instead, niche lability appears to enable the native species to mitigate the impact of one driver of decline (invasive competition) while our data suggest it declines with the second (urbanization).


Asunto(s)
Lagartos , Urbanización , Animales , Bosques , Especies Introducidas
8.
Oecologia ; 199(2): 257-269, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35112173

RESUMEN

In tropical forests, large, old trees (LOTs) can be considered keystone structures for provisioning unique habitats such as decaying wood, roots, cavities, and epiphytes, including those that hold water (phytotelmata). These habitats may also be stratified in vertical space, for example, root structures occur at ground level and below, whereas epiphytes occur above-ground. Canopy habitat is utilized by a diversity of amphibians, but canopy habitat may only be viable in the wet season when epiphytes and surfaces are sufficiently saturated. Here, we examine how the provisioning of microhabitats and structures by LOTs influence the horizontal, vertical, and seasonal distribution patterns of phytotelmata-breeding poison frogs. We conducted ground-to-canopy surveys over 4 years, constituting 6 seasons, in Panama and used mark-recapture techniques on a population of the yellow-bellied poison frog, Andinobates fulguritus. We found that A. fulguritus migrated vertically, tracking seasonal rainfall, and displayed strong philopatry to individual trees. Furthermore, A. fulguritus almost exclusively inhabited the largest trees at the study location, which provided disproportionately high-quality microhabitats and epiphytes compared to other trees. LOTs, and specifically Anacardium excelsum at our site, appear to serve as keystone structures with high conservation value due to their provisioning of unique habitats. We conclude that the distribution of A. fulguritus is defined vertically by the stratification of arboreal microhabitat resources, horizontally by the presence of LOTs providing the resources, and temporally by the seasonal viability of the resources.


Asunto(s)
Venenos , Árboles , Animales , Anuros , Ecosistema , Fitomejoramiento , Estaciones del Año , Clima Tropical
9.
Am Nat ; 197(1): 75-92, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33417520

RESUMEN

AbstractAn extension of the climate variability hypothesis is that relatively stable climate, such as that of the tropics, induces distinct thermal bands across elevation that render dispersal over tropical mountains difficult compared with temperate mountains. Yet ecosystems are not thermally static in space-time, especially at small scales, which might render some mountains greater thermal isolators than others. Here we provide an extensive investigation of temperature drivers from fine to coarse scales, and we demonstrate that the degree of similarity in temperatures at high and low elevations on mountains is driven by more than just absolute mountain height and latitude. We compiled a database of 29 mountains spanning six continents to characterize thermal overlap by vertically stratified microhabitats and biomes and owing to seasonal changes in foliage, demonstrating via mixed effects modeling that micro- and mesogeography more strongly influence thermal overlap than macrogeography. Impressively, an increase of 1 m of vertical microhabitat height generates an increase in overlap equivalent to a 5.26° change in latitude. In addition, forested mountains have reduced thermal overlap-149% lower-relative to nonforested mountains. We provide evidence in support of a climate hypothesis that emphasizes microgeography as a determinant of dispersal, demographics, and behavior, thereby refining the classical theory of macroclimate variability as a prominent driver of biogeography.


Asunto(s)
Altitud , Clima , Ecosistema , Geografía , Microclima , Temperatura
10.
Glob Chang Biol ; 27(11): 2279-2297, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33725415

RESUMEN

Forest microclimates contrast strongly with the climate outside forests. To fully understand and better predict how forests' biodiversity and functions relate to climate and climate change, microclimates need to be integrated into ecological research. Despite the potentially broad impact of microclimates on the response of forest ecosystems to global change, our understanding of how microclimates within and below tree canopies modulate biotic responses to global change at the species, community and ecosystem level is still limited. Here, we review how spatial and temporal variation in forest microclimates result from an interplay of forest features, local water balance, topography and landscape composition. We first stress and exemplify the importance of considering forest microclimates to understand variation in biodiversity and ecosystem functions across forest landscapes. Next, we explain how macroclimate warming (of the free atmosphere) can affect microclimates, and vice versa, via interactions with land-use changes across different biomes. Finally, we perform a priority ranking of future research avenues at the interface of microclimate ecology and global change biology, with a specific focus on three key themes: (1) disentangling the abiotic and biotic drivers and feedbacks of forest microclimates; (2) global and regional mapping and predictions of forest microclimates; and (3) the impacts of microclimate on forest biodiversity and ecosystem functioning in the face of climate change. The availability of microclimatic data will significantly increase in the coming decades, characterizing climate variability at unprecedented spatial and temporal scales relevant to biological processes in forests. This will revolutionize our understanding of the dynamics, drivers and implications of forest microclimates on biodiversity and ecological functions, and the impacts of global changes. In order to support the sustainable use of forests and to secure their biodiversity and ecosystem services for future generations, microclimates cannot be ignored.


Asunto(s)
Cambio Climático , Microclima , Biodiversidad , Ecosistema , Bosques , Árboles
11.
J Therm Biol ; 97: 102866, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33863430

RESUMEN

Organisms with complex ecologies and life-cycle processes may shift physiologically (acclimation in tolerance), developmentally, and/or behaviorally (thermoregulation) in response to changes in climate. As such, climate change may trigger multiple, interacting phenotypic responses, which underscores the nuances of characterizing a species capacity to adapt and respond to climate change. In this study, we use a model frog species, Bufo gargarizans, to examine how three phenotypes, thermal tolerance limits (critical thermal minimum, CTmin and critical thermal maximum, CTmax), ontogeny, and behavioral preferences in temperature (Tpref) respond to different levels of thermal exposure (i.e., acclimation ranging from 10 °C to 30 °C). Acclimation temperature had little effect on Tpref of tadpoles, yet behaviorally they showed strong signs of thermal selection towards an optimum. Both CTmin and CTmax increased with acclimation temperature with an approximate 10% increase in tolerance limits per 1 °C increase in exposure. Development and body size both responded to acclimation temperature, both of which also influenced lower but not upper thermal limits. Our study highlights the idiosyncrasies of estimating climate vulnerability, where multiple phenotypes can respond to shifts in temperature-a complexity that is especially apparent in species with complex life-cycles.


Asunto(s)
Aclimatación , Anuros/fisiología , Conducta Animal , Regulación de la Temperatura Corporal , Temperatura , Animales , Cambio Climático , Larva/fisiología , Fenotipo
12.
J Anim Ecol ; 89(11): 2451-2460, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32745275

RESUMEN

Global warming is having impacts across the Tree of Life. Understanding species' physiological sensitivity to temperature change and how they relate to local temperature variation in their habitats is crucial to determining vulnerability to global warming. We ask how species' vulnerability varies across habitats and elevations, and how climatically buffered microhabitats can contribute to reduce their vulnerability. We measured thermal sensitivity (critical thermal maximum-CTmax ) of 14 species of Pristimantis frogs inhabiting young and old secondary, and primary forests in the Colombian Andes. Exposure to temperature stress was measured by recording temperature in the understorey and across five microhabitats. We determined frogs' current vulnerability across habitats, elevations and microhabitats accounting for phylogeny and then ask how vulnerability varies under four warming scenarios: +1.5, +2, +3 and +5°C. We found that CTmax was constant across species regardless of habitat and elevation. However, species in young secondary forests are expected to become more vulnerable because of increased exposure to higher temperatures. Microhabitat variation could enable species to persist within their thermal temperature range as long as regional temperatures do not surpass +2°C. The effectiveness of microhabitat buffering decreases with a 2-3°C increase, and is almost null under a 5°C temperature increase. Microhabitats will provide thermal protection to Andean frog communities from climate change by enabling tracking of suitable climates through short distance movement. Conservation strategies, such as managing landscapes by preserving primary forests and allowing regrowth and reconnection of secondary forest would offer thermally buffered microhabitats and aid in the survival of this group.


Para determinar la vulnerabilidad de las especies al calentamiento global es indispensable considerar la tolerancia fisiológica de las especies al cambio de temperatura y las condiciones ambientales a las que están expuestas. En este estudio exploramos la vulnerabilidad de especies a través de diferentes hábitats y altitudes y examinamos si ciertos microhábitats contribuyen a reducir la vulnerabilidad al calentamiento global. Medimos la tolerancia térmica (CTmax ) de catorce especies de ranas Pristimantis en bosques secundarios jóvenes y viejos, y bosques primarios en los Andes tropicales. Registramos la temperatura a la que estas especies están expuestas en el sotobosque así como dentro de cinco microhábitats. Usando CTmax y las temperaturas a las que están expuestas, determinamos la vulnerabilidad de las especies en diferentes hábitats, elevaciones y microhábitats. También preguntamos cómo cambiará esta vulnerabilidad si la temperatura incrementa: 1.5°C, 2°C, 3°C y 5°C. CTmax fue constante en todos los hábitats y elevaciones. Las especies de bosques secundarios jóvenes son más vulnerables pues están expuestas a temperaturas más altas. Al utilizar microhábitats, las especies estarán protegidas si el aumento de temperatura no supera los + 2°C. Todos los microhábitats seguirán proporcionando refugio térmico si la temperatura aumenta 1.5°C, pero esta protección térmica disminuirá si la temperatura aumenta 2-3°C y será casi nula con un aumento de temperatura de 5°C. Los microhábitats proporcionarán protección térmica a la comunidad de ranas de los Andes contra el cambio climático. Estrategias de conservación, como la regeneración natural y la reconexión de bosques secundarios y la preservación de bosques primarios, ayudaría a la supervivencia de las ranas al tener microhábitats que ofrecen refugio térmico.


Asunto(s)
Anuros , Cambio Climático , Animales , Ecosistema , Bosques , Temperatura
13.
Oecologia ; 192(2): 297-309, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-31823001

RESUMEN

In tropical forests, epiphytes increase habitat complexity and provision services rare to canopy environments, such as water retention, nutrient cycling, and microclimate refuge. These services facilitate species diversity and coexistence in terrestrial ecosystems, and while their utility in forest ecosystems is appreciated for the Bromeliaceae of the Neotropics, fewer studies have examined the role of Paleotropic epiphytes in ecological niche theory. Here, we compare herpetofaunal presence, abundance, and diversity of in bird's nest fern (Asplenium nidus complex; BNF) to other microhabitats in Madagascar and the Philippines. We measure BNF fern microclimates, examine temporal use of canopy microhabitats, and test models of fern characteristics hypothesized to predict herpetofaunal use. In both countries, one in five BNFs were occupied by herpetofauna, mostly amphibians, and species using BNFs were highly dissimilar from those in other microhabitats. Herpetofaunal presence and abundance were greater in BNFs than in other canopy microhabitats and were most commonly used during the day when fern temperatures were highly buffered. Finally, BNF area was the best predictor of herpetofaunal presence and abundance, compared to canopy cover and BNF height. Importantly, these patterns remained consistent despite the distinct phylogenetic histories of our two communities (Asian versus African). Our results suggests that BNFs and their microclimate services play a critical role in the ecology of two Paleotropic forests, and facilitate the use of canopy habitats by climate-sensitive species. However, future studies are needed to assess the consistency of BNFs' utility as a microclimate refuge across their large range.


Asunto(s)
Ecosistema , Helechos , Animales , Aves , Bosques , Filogenia , Clima Tropical
14.
J Anim Ecol ; 88(1): 114-124, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30146776

RESUMEN

Assemblage similarity decays with geographic distance-a pattern known as the distance-decay relationship. While this pattern has been investigated for a wide range of organisms, ecosystems and geographical gradients, whether these changes vary more cryptically across different forest strata (from ground to canopy) remains elusive. Here, we investigated the influence of ground vs. arboreal assemblages to the general distance-decay relationship observed in forests. We seek to explain differences in distance-decay relationships between strata in the context of the vertical stratification of assemblage composition, richness and abundance. We surveyed for a climate-sensitive model organism, amphibians, across vertical rainforest strata in Madagascar. For each tree, we defined assemblages of ground-dwelling, understory, or canopy species. We calculated horizontal distance-decay in similarity across all trees, and across assemblages of species found in different forest strata (ground, understory and canopy). We demonstrate that within stratum comparisons exhibit a classic distance-decay relationship for canopy and understory communities but no distance-decay relationships for ground communities. We suggest that differences in horizontal turnover between strata may be due to local scale habitat and resource heterogeneity in the canopy, or the influence of arboreal traits on species dispersal and distribution. Synthesis. Biodiversity patterns in horizontal space were not consistent across vertical space, suggesting that canopy fauna may not play by the same set of "rules" as their conspecifics living below them on the ground. Our study provides compelling evidence that the above-ground amphibian assemblage of tropical rainforests is the primary driver of the classical distance-decay relationship.


Asunto(s)
Ecosistema , Bosque Lluvioso , Animales , Biodiversidad , Bosques , Madagascar , Árboles , Clima Tropical
17.
Glob Chang Biol ; 20(2): 495-503, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24132984

RESUMEN

Extreme weather events, such as unusually hot or dry conditions, can cause death by exceeding physiological limits, and so cause loss of population. Survival will depend on whether or not susceptible organisms can find refuges that buffer extreme conditions. Microhabitats offer different microclimates to those found within the wider ecosystem, but do these microhabitats effectively buffer extreme climate events relative to the physiological requirements of the animals that frequent them? We collected temperature data from four common microhabitats (soil, tree holes, epiphytes, and vegetation) located from the ground to canopy in primary rainforests in the Philippines. Ambient temperatures were monitored from outside of each microhabitat and from the upper forest canopy, which represent our macrohabitat controls. We measured the critical thermal maxima (CTmax ) of frog and lizard species, which are thermally sensitive and inhabit our microhabitats. Microhabitats reduced mean temperature by 1-2 °C and reduced the duration of extreme temperature exposure by 14-31 times. Microhabitat temperatures were below the CTmax of inhabitant frogs and lizards, whereas macrohabitats consistently contained lethal temperatures. Microhabitat temperatures increased by 0.11-0.66 °C for every 1 °C increase in macrohabitat temperature, and this nonuniformity in temperature change influenced our forecasts of vulnerability for animal communities under climate change. Assuming uniform increases of 6 °C, microhabitats decreased the vulnerability of communities by up to 32-fold, whereas under nonuniform increases of 0.66 to 3.96 °C, microhabitats decreased the vulnerability of communities by up to 108-fold. Microhabitats have extraordinary potential to buffer climate and likely reduce mortality during extreme climate events. These results suggest that predicted changes in distribution due to mortality and habitat shifts that are derived from macroclimatic samples and that assume uniform changes in microclimates relative to macroclimates may be overly pessimistic. Nevertheless, even nonuniform temperature increases within buffered microhabitats would still threaten frogs and lizards.


Asunto(s)
Anuros/fisiología , Calor , Lagartos/fisiología , Microclima , Animales , Cambio Climático , Ecosistema , Filipinas
18.
Biol Lett ; 10(12): 20140819, 2014 12.
Artículo en Inglés | MEDLINE | ID: mdl-25540160

RESUMEN

Vegetated habitats contain a variety of fine-scale features that can ameliorate temperate extremes. These buffered microhabitats may be used by species to evade extreme weather and novel climates in the future. Yet, the magnitude and extent of this buffering on a global scale remains unknown. Across all tropical continents and using 36 published studies, we assessed temperature buffering from within microhabitats across various habitat strata and structures (e.g. soil, logs, epiphytes and tree holes) and compared them to non-buffered macro-scale ambient temperatures (the thermal control). Microhabitats buffered temperature by 3.9 °C and reduced maximum temperatures by 3.5 °C. Buffering was most pronounced in tropical lowlands where temperatures were most variable. With the expected increase in extreme weather events, microhabitats should provide species with a local layer of protection that is not captured by traditional climate assessments, which are typically derived from macro-scale temperatures (e.g. satellites). Our data illustrate the need for a next generation of predictive models that account for species' ability to move within microhabitats to exploit favourable buffered microclimates.


Asunto(s)
Ecosistema , Temperatura , Clima Tropical
19.
Proc Biol Sci ; 280(1770): 20131581, 2013 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-24026817

RESUMEN

Biodiversity is spatially organized by climatic gradients across elevation and latitude. But do other gradients exist that might drive biogeographic patterns? Here, we show that rainforest's vertical strata provide climatic gradients much steeper than those offered by elevation and latitude, and biodiversity of arboreal species is organized along this gradient. In Philippine and Singaporean rainforests, we demonstrate that rainforest frogs tend to shift up in the rainforest strata as altitude increases. Moreover, a Philippine-wide dataset of frog distributions shows that frog assemblages become increasingly arboreal at higher elevations. Thus, increased arboreality with elevation at broad biogeographic scales mirrors patterns we observed at local scales. Our proposed 'arboreality hypothesis' suggests that the ability to exploit arboreal habitats confers the potential for larger geographical distributions because species can shift their location in the rainforest strata to compensate for shifts in temperature associated with elevation and latitude. This novel finding may help explain patterns of species richness and abundance wherever vegetation produces a vertical microclimatic gradient. Our results further suggest that global warming will 'flatten' the biodiversity in rainforests by pushing arboreal species towards the cooler and wetter ground. This 'flattening' could potentially have serious impacts on forest functioning and species survival.


Asunto(s)
Anuros/fisiología , Biodiversidad , Ambiente , Animales , Clima , Geografía , Filipinas , Singapur , Clima Tropical
20.
Biol Rev Camb Philos Soc ; 98(3): 775-791, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36572536

RESUMEN

Wildlife trade is a key driver of extinction risk, affecting at least 24% of terrestrial vertebrates. The persistent removal of species can have profound impacts on species extinction risk and selection within populations. We draw together the first review of characteristics known to drive species use - identifying species with larger body sizes, greater abundance, increased rarity or certain morphological traits valued by consumers as being particularly prevalent in trade. We then review the ecological implications of this trade-driven selection, revealing direct effects of trade on natural selection and populations for traded species, which includes selection against desirable traits. Additionally, there exists a positive feedback loop between rarity and trade and depleted populations tend to have easy human access points, which can result in species being harvested to extinction and has the potential to alter source-sink dynamics. Wider cascading ecosystem repercussions from trade-induced declines include altered seed dispersal networks, trophic cascades, long-term compositional changes in plant communities, altered forest carbon stocks, and the introduction of harmful invasive species. Because it occurs across multiple scales with diverse drivers, wildlife trade requires multi-faceted conservation actions to maintain biodiversity and ecological function, including regulatory and enforcement approaches, bottom-up and community-based interventions, captive breeding or wildlife farming, and conservation translocations and trophic rewilding. We highlight three emergent research themes at the intersection of trade and community ecology: (1) functional impacts of trade; (2) altered provisioning of ecosystem services; and (3) prevalence of trade-dispersed diseases. Outside of the primary objective that exploitation is sustainable for traded species, we must urgently incorporate consideration of the broader consequences for other species and ecosystem processes when quantifying sustainability.


Asunto(s)
Conservación de los Recursos Naturales , Ecosistema , Animales , Humanos , Comercio de Vida Silvestre , Animales Salvajes , Biodiversidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA