Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Front Pharmacol ; 15: 1368620, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38482060

RESUMEN

Novel antidepressants are predominantly evaluated preclinically in rodent models of chronic stress in which animals experience a single prolonged exposure to chronic stress prior to treatment. Rodent models of a single episode of chronic stress translate poorly to human depressive disorders, which are commonly marked by recurring depressive episodes. Intravenous administration of Reelin has previously been shown to resolve immobility in the forced swim test of rats exposed to a single prolonged exposure to chronic stress. To determine whether Reelin has antidepressant-like properties in a model of recurring depressive episodes, Long-Evans rats (N = 57) were exposed to multiple cycles of chronic stress and stress-free periods before the administration of a single injection of Reelin during the final cycle of chronic stress. The animals then performed in the forced swim test and open field test before the post-mortem evaluation of Reelin cell counts in the sub-granular zone of the dentate gyrus to determine the impact of treatment on hippocampal Reelin levels and spleen white pulp to evaluate the role of Reelin treatment in peripheral inflammation. The results show a single Reelin injection reversed elevated levels of immobility in the forced swim test in both male and female subjects exposed to the cyclic chronic stress model of recurring depressive episodes. Treatment with Reelin also restored Reelin-positive cell counts in the dentate gyrus sub-granular zone and reversed atrophy of spleen white pulp. The results shown here indicate that treatment with Reelin could effectively resolve alterations in forced swim test behavior caused by the cyclic corticosterone model of recurring depressive episodes and that Reelin homeostasis is important for regulating stress-related inflammation. Future preclinical antidepressant research should incorporate models of multiple depressive episodes to improve the translation of preclinical rodent research to human depressive disorders.

2.
Artículo en Inglés | MEDLINE | ID: mdl-38552775

RESUMEN

There is an urgent need for novel antidepressants, given that approximately 30% of those diagnosed with depression do not respond adequately to first-line treatment. Additionally, monoaminergic-based antidepressants have a substantial therapeutic time-lag, often taking months to reach full therapeutic effect. Ketamine, an N-methyl-d-aspartate receptor (NMDAR) antagonist is the only current effective rapid-acting antidepressant, demonstrating efficacy within hours and lasting up to two weeks with an acute dose. Reelin, an extracellular matrix glycoprotein, has demonstrated rapid-acting antidepressant-like effects at 24 h, however the exact timescale of these effects has not been investigated. To determine the short and long-term effects of reelin, female Long Evans rats (n = 120) underwent a chronic corticosterone (CORT; or vehicle) paradigm (40 mg/kg, 21 days). On day 21, rats were treated with reelin (3µg; i.v.), ketamine (10 mg/kg; i.p.), both reelin and ketamine (same doses), or vehicle (saline). Behavioural and biological effects were then evaluated at 1 h, 6 h, 12 h, and 1 week after treatment. The 1-week cohort continued CORT injections to ensure the effect of chronic stress was not lost. Individually, both reelin and ketamine significantly rescued CORT-induced behaviour and hippocampal reelin expression at all timepoints. Ketamine rescued a decrease in dendritic maturity as induced by CORT. Synergistic effects of reelin and ketamine appeared at 1-week, suggesting a potential additive effect of the antidepressant-like actions. Taken together, this study provides further support for reelin-based therapeutics to develop rapid-acting antidepressant.


Asunto(s)
Corticosterona , Ketamina , Animales , Femenino , Ratas , Antidepresivos/farmacología , Antidepresivos/uso terapéutico , Corticosterona/metabolismo , Depresión/tratamiento farmacológico , Depresión/inducido químicamente , Hipocampo/metabolismo , Ketamina/farmacología , Ketamina/uso terapéutico , Ratas Long-Evans , Proteína Reelina/farmacología , Proteína Reelina/uso terapéutico
3.
eNeuro ; 10(8)2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37550058

RESUMEN

Over the past decade, ketamine, an NMDA receptor antagonist, has demonstrated fast-acting antidepressant effects previously unseen with monoaminergic-based therapeutics. Concerns regarding psychotomimetic effects limit the use of ketamine for certain patient populations. Reelin, an extracellular matrix glycoprotein, has shown promise as a putative fast-acting antidepressant in a model of chronic stress. However, research has not yet demonstrated the changes that occur rapidly after peripheral reelin administration. To address this key gap in knowledge, male Long-Evans rats underwent a chronic corticosterone (CORT; or vehicle) paradigm (40 mg/kg, 21 d). On day 21, rats were then administered an acute dose of ketamine (10 mg/kg, i.p.), reelin (3 µg, i.v.), or vehicle. Twenty-four hours after administration, rats underwent behavioral or in vivo electrophysiological testing before killing. Immunohistochemistry was used to confirm changes in hippocampal reelin immunoreactivity. Lastly, the hippocampus was microdissected from fresh tissue to ascertain whole cell and synaptic-specific changes in protein expression through Western blotting. Chronic corticosterone induced a chronic stress phenotype in the forced swim test and sucrose preference test (SPT). Both reelin and ketamine rescued immobility and swimming, however reelin alone rescued latency to immobility. In vivo electrophysiology revealed decreases in hippocampal long-term potentiation (LTP) after chronic stress which was increased significantly by both ketamine and reelin. Reelin immunoreactivity in the dentate gyrus paralleled the behavioral and electrophysiological findings, but no significant changes were observed in synaptic-level protein expression. This exploratory research supports the putative rapid-acting antidepressant effects of an acute dose of reelin across behavioral, electrophysiological, and molecular measures.


Asunto(s)
Ketamina , Ratas , Masculino , Animales , Ketamina/farmacología , Corticosterona/farmacología , Corticosterona/metabolismo , Ratas Long-Evans , Benchmarking , Hipocampo/metabolismo , Antidepresivos/farmacología , Antidepresivos/metabolismo , Depresión
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA