Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 185
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Nature ; 630(8016): 412-420, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38839950

RESUMEN

The processes that govern human haematopoietic stem cell (HSC) self-renewal and engraftment are poorly understood and challenging to recapitulate in culture to reliably expand functional HSCs1-3. Here we identify MYC target 1 (MYCT1; also known as MTLC) as a crucial human HSC regulator that moderates endocytosis and environmental sensing in HSCs. MYCT1 is selectively expressed in undifferentiated human haematopoietic stem and progenitor cells (HSPCs) and endothelial cells but becomes markedly downregulated during HSC culture. Lentivirus-mediated knockdown of MYCT1 prevented human fetal liver and cord blood (CB) HSPC expansion and engraftment. By contrast, restoring MYCT1 expression improved the expansion and engraftment of cultured CB HSPCs. Single-cell RNA sequencing of human CB HSPCs in which MYCT1 was knocked down or overexpressed revealed that MYCT1 governs important regulatory programmes and cellular properties essential for HSC stemness, such as ETS factor expression and low mitochondrial activity. MYCT1 is localized in the endosomal membrane in HSPCs and interacts with vesicle trafficking regulators and signalling machinery. MYCT1 loss in HSPCs led to excessive endocytosis and hyperactive signalling responses, whereas restoring MYCT1 expression balanced culture-induced endocytosis and dysregulated signalling. Moreover, sorting cultured CB HSPCs on the basis of lowest endocytosis rate identified HSPCs with preserved MYCT1 expression and MYCT1-regulated HSC stemness programmes. Our work identifies MYCT1-moderated endocytosis and environmental sensing as essential regulatory mechanisms required to preserve human HSC stemness. Our data also pinpoint silencing of MYCT1 as a cell-culture-induced vulnerability that compromises human HSC expansion.


Asunto(s)
Autorrenovación de las Células , Células Madre Hematopoyéticas , Proteínas Nucleares , Animales , Femenino , Humanos , Masculino , Ratones , Células Cultivadas , Endocitosis , Endosomas/metabolismo , Células Endoteliales/citología , Células Endoteliales/metabolismo , Sangre Fetal/citología , Técnicas de Silenciamiento del Gen , Células Madre Hematopoyéticas/citología , Células Madre Hematopoyéticas/metabolismo , Hígado/citología , Hígado/metabolismo , Hígado/embriología , Mitocondrias/metabolismo , Proteínas Nucleares/metabolismo , Transducción de Señal , Proteínas Proto-Oncogénicas c-ets/genética , Proteínas Proto-Oncogénicas c-ets/metabolismo , Análisis de Expresión Génica de una Sola Célula
2.
Nature ; 604(7906): 534-540, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35418685

RESUMEN

The ontogeny of human haematopoietic stem cells (HSCs) is poorly defined owing to the inability to identify HSCs as they emerge and mature at different haematopoietic sites1. Here we created a single-cell transcriptome map of human haematopoietic tissues from the first trimester to birth and found that the HSC signature RUNX1+HOXA9+MLLT3+MECOM+HLF+SPINK2+ distinguishes HSCs from progenitors throughout gestation. In addition to the aorta-gonad-mesonephros region, nascent HSCs populated the placenta and yolk sac before colonizing the liver at 6 weeks. A comparison of HSCs at different maturation stages revealed the establishment of HSC transcription factor machinery after the emergence of HSCs, whereas their surface phenotype evolved throughout development. The HSC transition to the liver marked a molecular shift evidenced by suppression of surface antigens reflecting nascent HSC identity, and acquisition of the HSC maturity markers CD133 (encoded by PROM1) and HLA-DR. HSC origin was tracked to ALDH1A1+KCNK17+ haemogenic endothelial cells, which arose from an IL33+ALDH1A1+ arterial endothelial subset termed pre-haemogenic endothelial cells. Using spatial transcriptomics and immunofluorescence, we visualized this process in ventrally located intra-aortic haematopoietic clusters. The in vivo map of human HSC ontogeny validated the generation of aorta-gonad-mesonephros-like definitive haematopoietic stem and progenitor cells from human pluripotent stem cells, and serves as a guide to improve their maturation to functional HSCs.


Asunto(s)
Células Endoteliales , Células Madre Hematopoyéticas , Diferenciación Celular , Endotelio , Femenino , Hematopoyesis , Humanos , Mesonefro , Embarazo
3.
Proc Natl Acad Sci U S A ; 118(52)2021 12 28.
Artículo en Inglés | MEDLINE | ID: mdl-34934001

RESUMEN

Biomaterial characteristics such as surface topographies have been shown to modulate macrophage phenotypes. The standard methodologies to measure macrophage response to biomaterials are marker-based and invasive. Raman microspectroscopy (RM) is a marker-independent, noninvasive technology that allows the analysis of living cells without the need for staining or processing. In the present study, we analyzed human monocyte-derived macrophages (MDMs) using RM, revealing that macrophage activation by lipopolysaccharides (LPS), interferons (IFN), or cytokines can be identified by lipid composition, which significantly differs in M0 (resting), M1 (IFN-γ/LPS), M2a (IL-4/IL-13), and M2c (IL-10) MDMs. To identify the impact of a biomaterial on MDM phenotype and polarization, we cultured macrophages on titanium disks with varying surface topographies and analyzed the adherent MDMs with RM. We detected surface topography-induced changes in MDM biochemistry and lipid composition that were not shown by less sensitive standard methods such as cytokine expression or surface antigen analysis. Our data suggest that RM may enable a more precise classification of macrophage activation and biomaterial-macrophage interaction.


Asunto(s)
Lipidómica/métodos , Activación de Macrófagos/fisiología , Macrófagos , Espectrometría Raman/métodos , Materiales Biocompatibles/farmacología , Citocinas/farmacología , Femenino , Humanos , Inmunidad Innata , Lipopolisacáridos/farmacología , Macrófagos/citología , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Masculino
4.
Am J Physiol Cell Physiol ; 325(1): C332-C343, 2023 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-37335025

RESUMEN

Cardiomyopathies are associated with fibrotic remodeling of the heart, which is characterized by the excessive accumulation of collagen type I (COL I) due to chronic inflammation and suspected epigenetic influences. Despite the severity and high mortality rate of cardiac fibrosis, current treatment options are often inadequate, underscoring the importance of gaining a deeper understanding of the disease's underlying molecular and cellular mechanisms. In this study, the extracellular matrix (ECM) and nuclei in fibrotic areas of different cardiomyopathies were molecularly characterized by Raman microspectroscopy and imaging and compared with the control myocardium. Patient samples were obtained from heart tissue affected by ischemia, hypertrophy, and dilated cardiomyopathy and analyzed for fibrosis through conventional histology and marker-independent Raman microspectroscopy (RMS). Prominent differences between control myocardium and cardiomyopathies were revealed by spectral deconvolution of COL I Raman spectra. Statistically significant differences were identified in the amide I region of spectral subpeak at 1,608 cm-1, which is a representative endogenous marker for alterations in the structural conformation of COL I fibers. Moreover, epigenetic 5mC DNA modification was identified within cell nuclei by multivariate analysis. A statistically significant increase in signal intensities of spectral features indicative of DNA methylation was detected in cardiomyopathies in accordance with immunofluorescence 5mC staining. Overall, RMS is a versatile technology in the discrimination of cardiomyopathies based on molecular evaluation of COL I and nuclei while providing insights into the pathogenesis of the diseases.NEW & NOTEWORTHY Cardiomyopathies are associated with severe fibrotic remodeling of the heart, which is characterized by the excessive accumulation of collagen type I (COL I). In this study, we used marker-independent Raman microspectroscopy (RMS) to gain a deeper understanding of the disease's underlying molecular and cellular mechanisms.


Asunto(s)
Cardiomiopatías , Metilación de ADN , Humanos , Colágeno Tipo I/metabolismo , Cardiomiopatías/patología , Epigénesis Genética , Fibrosis
5.
Clin Infect Dis ; 76(3): e240-e249, 2023 02 08.
Artículo en Inglés | MEDLINE | ID: mdl-35717657

RESUMEN

BACKGROUND: The rapid emergence of the Omicron variant and its large number of mutations led to its classification as a variant of concern (VOC) by the World Health Organization. Subsequently, Omicron evolved into distinct sublineages (eg, BA.1 and BA.2), which currently represent the majority of global infections. Initial studies of the neutralizing response toward BA.1 in convalescent and vaccinated individuals showed a substantial reduction. METHODS: We assessed antibody (immunoglobulin G [IgG]) binding, ACE2 (angiotensin-converting enzyme 2) binding inhibition, and IgG binding dynamics for the Omicron BA.1 and BA.2 variants compared to a panel of VOCs/variants of interest, in a large cohort (N = 352) of convalescent, vaccinated, and infected and subsequently vaccinated individuals. RESULTS: While Omicron was capable of efficiently binding to ACE2, antibodies elicited by infection or immunization showed reduced binding capacities and ACE2 binding inhibition compared to wild type. Whereas BA.1 exhibited less IgG binding compared to BA.2, BA.2 showed reduced inhibition of ACE2 binding. Among vaccinated samples, antibody binding to Omicron only improved after administration of a third dose. CONCLUSIONS: Omicron BA.1 and BA.2 can still efficiently bind to ACE2, while vaccine/infection-derived antibodies can bind to Omicron. The extent of the mutations within both variants prevents a strong inhibitory binding response. As a result, both Omicron variants are able to evade control by preexisting antibodies.


Asunto(s)
Enzima Convertidora de Angiotensina 2 , Inmunoglobulina G , Humanos , Inmunización , Mutación , Complicaciones Posoperatorias , Anticuerpos Antivirales , Anticuerpos Neutralizantes
6.
EMBO Rep ; 22(5): e52325, 2021 05 05.
Artículo en Inglés | MEDLINE | ID: mdl-33904225

RESUMEN

In light of the COVID-19 pandemic, there is an ongoing need for diagnostic tools to monitor the immune status of large patient cohorts and the effectiveness of vaccination campaigns. Here, we present 11 unique nanobodies (Nbs) specific for the SARS-CoV-2 spike receptor-binding domain (RBD), of which 8 Nbs potently inhibit the interaction of RBD with angiotensin-converting enzyme 2 (ACE2) as the major viral docking site. Following detailed epitope mapping and structural analysis, we select two inhibitory Nbs, one of which binds an epitope inside and one of which binds an epitope outside the RBD:ACE2 interface. Based on these, we generate a biparatopic nanobody (bipNb) with viral neutralization efficacy in the picomolar range. Using bipNb as a surrogate, we establish a competitive multiplex binding assay ("NeutrobodyPlex") for detailed analysis of the presence and performance of neutralizing RBD-binding antibodies in serum of convalescent or vaccinated patients. We demonstrate that NeutrobodyPlex enables high-throughput screening and detailed analysis of neutralizing immune responses in infected or vaccinated individuals, to monitor immune status or to guide vaccine design.


Asunto(s)
COVID-19 , Anticuerpos de Dominio Único , Anticuerpos Antivirales/metabolismo , Humanos , Inmunidad , Pandemias , Unión Proteica , SARS-CoV-2 , Anticuerpos de Dominio Único/metabolismo , Glicoproteína de la Espiga del Coronavirus/metabolismo
7.
Int J Mol Sci ; 24(4)2023 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-36835168

RESUMEN

Synthetic bone substitute materials (BSMs) are becoming the general trend, replacing autologous grafting for bone tissue engineering (BTE) in orthopedic research and clinical practice. As the main component of bone matrix, collagen type I has played a critical role in the construction of ideal synthetic BSMs for decades. Significant strides have been made in the field of collagen research, including the exploration of various collagen types, structures, and sources, the optimization of preparation techniques, modification technologies, and the manufacture of various collagen-based materials. However, the poor mechanical properties, fast degradation, and lack of osteoconductive activity of collagen-based materials caused inefficient bone replacement and limited their translation into clinical reality. In the area of BTE, so far, attempts have focused on the preparation of collagen-based biomimetic BSMs, along with other inorganic materials and bioactive substances. By reviewing the approved products on the market, this manuscript updates the latest applications of collagen-based materials in bone regeneration and highlights the potential for further development in the field of BTE over the next ten years.


Asunto(s)
Materiales Biomiméticos , Sustitutos de Huesos , Ingeniería de Tejidos/métodos , Andamios del Tejido/química , Huesos , Colágeno/química , Materiales Biomiméticos/química , Regeneración Ósea , Sustitutos de Huesos/química , Materiales Biocompatibles/química
8.
Int J Mol Sci ; 23(13)2022 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-35805961

RESUMEN

Three-dimensional (3D) organoid culture recapitulating patient-specific histopathological and molecular diversity offers great promise for precision medicine in cancer. In this study, we established label-free imaging procedures, including Raman microspectroscopy (RMS) and fluorescence lifetime imaging microscopy (FLIM), for in situ cellular analysis and metabolic monitoring of drug treatment efficacy. Primary tumor and urine specimens were utilized to generate bladder cancer organoids, which were further treated with various concentrations of pharmaceutical agents relevant for the treatment of bladder cancer (i.e., cisplatin, venetoclax). Direct cellular response upon drug treatment was monitored by RMS. Raman spectra of treated and untreated bladder cancer organoids were compared using multivariate data analysis to monitor the impact of drugs on subcellular structures such as nuclei and mitochondria based on shifts and intensity changes of specific molecular vibrations. The effects of different drugs on cell metabolism were assessed by the local autofluorophore environment of NADH and FAD, determined by multiexponential fitting of lifetime decays. Data-driven neural network and data validation analyses (k-means clustering) were performed to retrieve additional and non-biased biomarkers for the classification of drug-specific responsiveness. Together, FLIM and RMS allowed for non-invasive and molecular-sensitive monitoring of tumor-drug interactions, providing the potential to determine and optimize patient-specific treatment efficacy.


Asunto(s)
Organoides , Neoplasias de la Vejiga Urinaria , Biomarcadores/metabolismo , Cisplatino/farmacología , Humanos , Organoides/metabolismo , Medicina de Precisión , Neoplasias de la Vejiga Urinaria/metabolismo
9.
Anal Chem ; 91(3): 2266-2272, 2019 02 05.
Artículo en Inglés | MEDLINE | ID: mdl-30601652

RESUMEN

Cryomedium toxicity is a major safety concern when transplanting cryopreserved organs. Therefore, thorough removal of potentially toxic cryoprotective agents (CPAs) is required before transplantation. CPAs such as dimethyl-sulfoxide (DMSO), propylene glycol (PG), and formamide (FMD), routinely employed in ice-free cryopreservation (IFC), have advantages in long-term preservation of tissue structures compared with conventional cryopreservation employing lower CPA concentrations. This study evaluated the impact of potential residual CPAs on human cardiac valves. Raman microspectroscopy and Raman imaging were established as nondestructive marker-independent techniques for in situ quantitative assessment of CPA residues in IFC valve tissues. In detail, IFC valve leaflets and supernatants of the washing solutions were analyzed to determine the washing efficiency. A calibration model was developed according to the CPA's characteristic Raman signals to quantify DMSO, PG and FMD concentrations in the supernatants. Single point Raman measurements were performed on the intact tissues to analyze penetration properties. In addition, Raman imaging was utilized to visualize potential CPA residues. Our data showed that washing decreased the CPA concentration in the final washing solution by 99%, and no residues could be detected in the washed tissues, validating the multistep CPA removal protocol routinely used for IFC valves. Raman analysis of unwashed tissues showed different permeation characteristics depending on each CPA and their concentration. Our results demonstrate a great potential of Raman microspectroscopy and Raman imaging as marker-independent in situ tissue quality control tools with the ability to assess the presence and concentration of different chemical agents or drugs in preimplantation tissues.


Asunto(s)
Crioprotectores/análisis , Dimetilsulfóxido/análisis , Formamidas/análisis , Propilenglicol/análisis , Válvula Pulmonar/química , Animales , Criopreservación , Ovinos
10.
Development ; 143(3): 473-82, 2016 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-26674310

RESUMEN

The elucidation of mechanisms in semilunar valve development might enable the development of new therapies for congenital heart disorders. Here, we found differences in proliferation-associated genes and genes repressed by VEGF between human semilunar valve leaflets from first and second trimester hearts. The proliferation of valve interstitial cells and ventricular valve endothelial cells (VECs) and cellular density declined from the first to the second trimester. Cytoplasmic expression of NFATC1 was detected in VECs (4 weeks) and, later, cells in the leaflet/annulus junction mesenchyme expressing inactive NFATC1 (5.5-9 weeks) were detected, indicative of endocardial-to-mesenchymal transformation (EndMT) in valvulogenesis. At this leaflet/annulus junction, CD44(+) cells clustered during elongation (11 weeks), extending toward the tip along the fibrosal layer in second trimester leaflets. Differing patterns of maturation in the fibrosa and ventricularis were detected via increased fibrosal periostin content, which tracked the presence of the CD44(+) cells in the second trimester. We revealed that spatiotemporal NFATC1 expression actively regulates EndMT during human valvulogenesis, as early as 4 weeks. Additionally, CD44(+) cells play a role in leaflet maturation toward the trilaminar structure, possibly via migration of VECs undergoing EndMT, which subsequently ascend from the leaflet/annulus junction.


Asunto(s)
Endocardio/embriología , Válvulas Cardíacas/citología , Válvulas Cardíacas/embriología , Mesodermo/citología , Mesodermo/embriología , Moléculas de Adhesión Celular/metabolismo , Recuento de Células , Diferenciación Celular , Proliferación Celular , Células Endoteliales/metabolismo , Femenino , Regulación del Desarrollo de la Expresión Génica , Humanos , Receptores de Hialuranos/metabolismo , Factores de Transcripción NFATC/genética , Factores de Transcripción NFATC/metabolismo , Embarazo , Segundo Trimestre del Embarazo , Análisis Espacio-Temporal , Factores de Tiempo , Factor A de Crecimiento Endotelial Vascular/metabolismo
11.
Cell Physiol Biochem ; 51(3): 1193-1206, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30541004

RESUMEN

BACKGROUND/AIMS: Periosteal tissue is a valuable source of multipotent stem cells for bone tissue engineering. To characterize these cells in detail, we generated an immortalized human cranial periosteal cell line and observed an increased MSCA-1 and CD146 expression, as well as an earlier and stronger mineralization compared to the parental cells. Further, we detected a higher osteogenic potential of MSCA-1high compared to MSCA-1low cranial periosteal cell (CPC) fractions. In the present study, a possible synergism of MSCA-1 and CD146 for periosteal cell mineralization was investigated. METHODS: MSCA-1/CD146 positive and negative CPCs were magnetically isolated (MACS) or sorted by flow cytometry (FACS) and subjected to osteogenic differentiation. The expression of osteogenic marker genes in the four subpopulations was analyzed by quantitative real-time PCR. Furthermore, the co-expression of osteogenic markers/antigens was analyzed by multispectral imaging flow cytometry (ImageStream, AMNIS). The mineralization potential was assessed by the quantification of alizarin stainings. RESULTS: While the total cell yield after separation was higher using MACS compared to the FACS approach, the isolation of MSCA-1+/- and CD146+/- subpopulations was more efficient with the FACS separation. The accuracy of the FACS separation of the four distinguished cell subpopulations was confirmed by multispectral imaging flow cytometry. Further, we detected increasing levels of MSCA-1 and CD146 during in vitro differentiation in all subpopulations. However, MSCA-1 expression was significantly higher in the MSCA-1+/CD146+ and MSCA-1+/ CD146- subpopulations, while CD146 expression remained clearly lower in these fractions. Significantly higher gene expression levels of osteogenic markers, ALP and RUNX2, were detected in MSCA-1+ compared to MSCA-1- CPCs at different time points during in vitro differentiation. Staining and quantification of calcium phosphate precipitates revealed a significantly higher mineralization potential of MACS separated MSCA-1+ and CD146- CPCs, compared to their respective counterparts. FACS sorted CPCs displayed earlier mineralization in both MSCA-1+ fractions (d13), while later (d28) only the CD146+/MSCA-1- fraction had a significantly lower calcium phosphate concentration compared to all other fractions. CONCLUSION: Our results demonstrate, that MSCA-1+ cells isolated from CPCs represent a subpopulation with a higher osteogenic potential. In contrast, we found a lower osteogenic potential in CD146+ CPCs. In conclusion, only MSCA-1, but not CD146, is a suitable marker for the isolation of osteoprogenitors from CPCs.


Asunto(s)
Antígenos de Superficie/análisis , Antígeno CD146/análisis , Osteogénesis , Periostio/citología , Células Madre/citología , Diferenciación Celular , Separación Celular , Células Cultivadas , Citometría de Flujo , Humanos , Ingeniería de Tejidos
12.
J Immunol ; 196(3): 1284-92, 2016 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-26729806

RESUMEN

The challenging human pathogen Staphylococcus aureus has highly efficient immune evasion strategies for causing a wide range of diseases, from skin and soft tissue to life-threatening infections. Phenol-soluble modulin (PSM) peptides are major pathogenicity factors of community-associated methicillin-resistant S. aureus strains. In previous work, we demonstrated that PSMs in combination with TLR2 ligand from S. aureus induce tolerogenic dendritic cells (DCs) characterized by the production of high amounts of IL-10, but no proinflammatory cytokines. This in turn promotes the activation of regulatory T cells while impairing Th1 response; however, the signaling pathways modulated by PSMs remain elusive. In this study, we analyzed the effects of PSMs on signaling pathway modulation downstream of TLR2. TLR2 stimulation in combination with PSMα3 led to increased and prolonged phosphorylation of NF-κB, ERK, p38, and CREB in mouse bone marrow-derived DCs compared with single TLR2 activation. Furthermore, inhibition of p38 and downstream MSK1 prevented IL-10 production, which in turn reduced the capacity of DCs to activate regulatory T cells. Interestingly, the modulation of the signaling pathways by PSMs was independent of the known receptor for PSMs, as shown by experiments with DCs lacking the formyl peptide receptor 2. Instead, PSMs penetrate the cell membrane most likely by transient pore formation. Moreover, colocalization of PSMs and p38 was observed near the plasma membrane in the cytosol, indicating a direct interaction. Thus, PSMs from S. aureus directly modulate the signaling pathway p38-CREB in DCs, thereby impairing cytokine production and in consequence T cell priming to increase the tolerance toward the pathogen.


Asunto(s)
Toxinas Bacterianas/inmunología , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/inmunología , Células Dendríticas/inmunología , Sistema de Señalización de MAP Quinasas/inmunología , Infecciones Estafilocócicas/inmunología , Linfocitos T/inmunología , Animales , Citocinas/biosíntesis , Modelos Animales de Enfermedad , Femenino , Citometría de Flujo , Evasión Inmune/inmunología , Activación de Linfocitos/inmunología , Ratones , Ratones Endogámicos C57BL , Péptidos/inmunología , Staphylococcus aureus/inmunología
13.
Brain ; 140(9): 2444-2459, 2017 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-29050400

RESUMEN

The mitochondrial proteins TRAP1 and HTRA2 have previously been shown to be phosphorylated in the presence of the Parkinson's disease kinase PINK1 but the downstream signalling is unknown. HTRA2 and PINK1 loss of function causes parkinsonism in humans and animals. Here, we identified TRAP1 as an interactor of HTRA2 using an unbiased mass spectrometry approach. In our human cell models, TRAP1 overexpression is protective, rescuing HTRA2 and PINK1-associated mitochondrial dysfunction and suggesting that TRAP1 acts downstream of HTRA2 and PINK1. HTRA2 regulates TRAP1 protein levels, but TRAP1 is not a direct target of HTRA2 protease activity. Following genetic screening of Parkinson's disease patients and healthy controls, we also report the first TRAP1 mutation leading to complete loss of functional protein in a patient with late onset Parkinson's disease. Analysis of fibroblasts derived from the patient reveal that oxygen consumption, ATP output and reactive oxygen species are increased compared to healthy individuals. This is coupled with an increased pool of free NADH, increased mitochondrial biogenesis, triggering of the mitochondrial unfolded protein response, loss of mitochondrial membrane potential and sensitivity to mitochondrial removal and apoptosis. These data highlight the role of TRAP1 in the regulation of energy metabolism and mitochondrial quality control. Interestingly, the diabetes drug metformin reverses mutation-associated alterations on energy metabolism, mitochondrial biogenesis and restores mitochondrial membrane potential. In summary, our data show that TRAP1 acts downstream of PINK1 and HTRA2 for mitochondrial fine tuning, whereas TRAP1 loss of function leads to reduced control of energy metabolism, ultimately impacting mitochondrial membrane potential. These findings offer new insight into mitochondrial pathologies in Parkinson's disease and provide new prospects for targeted therapies.


Asunto(s)
Proteínas HSP90 de Choque Térmico/genética , Metformina/uso terapéutico , Mitocondrias/efectos de los fármacos , Enfermedad de Parkinson/tratamiento farmacológico , Enfermedad de Parkinson/metabolismo , Adenosina Trifosfato/metabolismo , Apoptosis/efectos de los fármacos , Estudios de Casos y Controles , Células Cultivadas , Fibroblastos/metabolismo , Proteínas HSP90 de Choque Térmico/biosíntesis , Serina Peptidasa A2 que Requiere Temperaturas Altas , Humanos , Potencial de la Membrana Mitocondrial/fisiología , Mitocondrias/genética , Mitocondrias/metabolismo , Proteínas Mitocondriales/metabolismo , Mutación , NAD/metabolismo , Biogénesis de Organelos , Consumo de Oxígeno , Enfermedad de Parkinson/genética , Proteínas Quinasas/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Serina Endopeptidasas/metabolismo
14.
Development ; 140(11): 2345-53, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23637335

RESUMEN

Semilunar valve leaflets have a well-described trilaminar histoarchitecture, with a sophisticated elastic fiber network. It was previously proposed that elastin-containing fibers play a subordinate role in early human cardiac valve development; however, this assumption was based on data obtained from mouse models and human second and third trimester tissues. Here, we systematically analyzed tissues from human fetal first (4-12 weeks) and second (13-18 weeks) trimester, adolescent (14-19 years) and adult (50-55 years) hearts to monitor the temporal and spatial distribution of elastic fibers, focusing on semilunar valves. Global expression analyses revealed that the transcription of genes essential for elastic fiber formation starts early within the first trimester. These data were confirmed by quantitative PCR and immunohistochemistry employing antibodies that recognize fibronectin, fibrillin 1, 2 and 3, EMILIN1 and fibulin 4 and 5, which were all expressed at the onset of cardiac cushion formation (~week 4 of development). Tropoelastin/elastin protein expression was first detectable in leaflets of 7-week hearts. We revealed that immature elastic fibers are organized in early human cardiovascular development and that mature elastin-containing fibers first evolve in semilunar valves when blood pressure and heartbeat accelerate. Our findings provide a conceptual framework with the potential to offer novel insights into human cardiac valve development and disease.


Asunto(s)
Elastina/metabolismo , Regulación del Desarrollo de la Expresión Génica , Válvulas Cardíacas/embriología , Adolescente , Elasticidad , Elastina/biosíntesis , Femenino , Perfilación de la Expresión Génica , Humanos , Persona de Mediana Edad , Embarazo , Primer Trimestre del Embarazo , Segundo Trimestre del Embarazo , Factores de Tiempo , Tropoelastina/biosíntesis , Tropoelastina/metabolismo , Adulto Joven
15.
Int J Med Microbiol ; 306(6): 357-66, 2016 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-27107739

RESUMEN

Enteropathogenic Yersinia enterocolitica (Ye) enters the host via contaminated food. After colonisation of the small intestine Ye invades the Peyer's patches (PPs) via M cells and disseminates to the mesenteric lymph nodes (MLNs), spleen and liver. Whether Ye uses other invasion routes and which pathogenicity factors are required remains elusive. Oral infection of lymphotoxin-ß-receptor deficient mice lacking PPs and MLNs with Ye revealed similar bacterial load in the spleen 1h post infection as wild-type mice, demonstrating a PP-independent dissemination route for Ye. Immunohistological analysis of the small intestine revealed Ye in close contact with mononuclear phagocytes (MPs), specifically CX3CR1(+) monocyte-derived cells (MCs) as well as CD103(+) dendritic cells (DCs). This finding was confirmed by flow cytometry and imaging flow cytometry analysis of lamina propria (LP) leukocytes showing CD103(+) DCs and MCs with intracellular Ye. Uptake of Ye by LP CD103(+) DCs and MCs was dependent on the pathogenicity factor invasin, whereas the adhesin YadA was dispensable as demonstrated by Ye deletion mutants. Furthermore, Ye were found exclusively associated with CD103(+) DCs in the MLNs from wild-type mice, but not from CCR7(-/-) mice, demonstrating a CCR7 dependent transport of Ye by CD103(+) DCs from LP to the MLNs. In contrast, dissemination of Ye to the spleen was dependent on MCs as significantly less Ye could be recovered from the spleen of CX3CR1(GFP/GFP) mice compared to wild-type mice. Altogether, MCs and CD103(+) DCs contribute to immediate invasion and dissemination of Ye. This together with data from other bacteria suggests MPs as general pathogenic entry site in the intestine.


Asunto(s)
Interacciones Huésped-Patógeno , Intestino Delgado/patología , Fagocitos/microbiología , Yersiniosis/patología , Yersinia enterocolitica/inmunología , Yersinia enterocolitica/fisiología , Animales , Carga Bacteriana , Femenino , Citometría de Flujo , Inmunohistoquímica , Intestino Delgado/inmunología , Intestino Delgado/microbiología , Hígado/microbiología , Ganglios Linfáticos/inmunología , Ganglios Linfáticos/microbiología , Ratones Endogámicos C57BL , Ganglios Linfáticos Agregados/inmunología , Ganglios Linfáticos Agregados/microbiología , Bazo/microbiología , Factores de Tiempo , Yersiniosis/inmunología , Yersiniosis/microbiología
16.
J Anat ; 227(6): 781-5, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26173979

RESUMEN

Novel regenerative strategies, stem cell-based therapies or the development of advanced human cell-based in vitro-manufactured preclinical test systems offer great potential to generate advances in clinical practice in the field of women's health. This review aims to provide a brief overview of the current advances in the field.


Asunto(s)
Medicina Regenerativa/métodos , Medicina Regenerativa/tendencias , Ingeniería de Tejidos/métodos , Ingeniería de Tejidos/tendencias , Salud de la Mujer , Trastornos del Desarrollo Sexual 46, XX/cirugía , Tratamiento Basado en Trasplante de Células y Tejidos/métodos , Anomalías Congénitas/cirugía , Endometriosis/terapia , Femenino , Humanos , Conductos Paramesonéfricos/anomalías , Conductos Paramesonéfricos/cirugía , Investigación con Células Madre , Andamios del Tejido
17.
Mol Ther ; 22(4): 786-96, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24402185

RESUMEN

Directing appropriate extracellular matrix remodeling is a key aim of regenerative medicine strategies. Thus, antifibrotic interfering RNA (RNAi) therapy with exogenous microRNA (miR)-29B was proposed as a method to modulate extracellular matrix remodeling following cutaneous injury. It was hypothesized that delivery of miR-29B from a collagen scaffold will efficiently modulate the extracellular matrix remodeling response and reduce maladaptive remodeling such as aggressive deposition of collagen type I after injury. The release of RNA from the scaffold was assessed and its ability to silence collagen type I and collagen type III expression was evaluated in vitro. When primary fibroblasts were cultured with scaffolds doped with miR-29B, reduced levels of collagen type I and collagen type III mRNA expression were observed for up to 2 weeks of culture. When the scaffolds were applied to full thickness wounds in vivo, reduced wound contraction, improved collagen type III/I ratios and a significantly higher matrix metalloproteinase (MMP)-8: tissue inhibitor of metalloproteinase (TIMP)-1 ratio were detected when the scaffolds were functionalized with miR-29B. Furthermore, these effects were significantly influenced by the dose of miR-29B in the collagen scaffold (0.5 versus 5 µg). This study shows a potential of combining exogenous miRs with collagen scaffolds to improve extracellular matrix remodeling following injury.


Asunto(s)
Matriz Extracelular/genética , MicroARNs/genética , Medicina Regenerativa , Andamios del Tejido , Animales , Colágeno Tipo I/biosíntesis , Colágeno Tipo I/genética , Colágeno Tipo III/biosíntesis , Colágeno Tipo III/genética , Matriz Extracelular/patología , Fibroblastos/citología , Fibroblastos/metabolismo , Humanos , Metaloproteinasa 8 de la Matriz/genética , Metaloproteinasa 8 de la Matriz/metabolismo , MicroARNs/administración & dosificación , Cultivo Primario de Células , ARN Mensajero/biosíntesis , ARN Mensajero/genética , Ratas
18.
Sci Rep ; 14(1): 13608, 2024 06 13.
Artículo en Inglés | MEDLINE | ID: mdl-38871849

RESUMEN

Transplantation of stem cell-derived ß-cells is a promising therapeutic advancement in the treatment of type 1 diabetes mellitus. A current limitation of this approach is the long differentiation timeline that generates a heterogeneous population of pancreatic endocrine cells. To address this limitation, an inducible lentiviral overexpression system of mature ß-cell markers was introduced into human induced-pluripotent stem cells (hiPSCs). Following the selection of the successfully transduced hiPSCs, the cells were treated with doxycycline in the pancreatic progenitor induction medium to support their transition toward the pancreatic lineage. Cells cultured with doxycycline presented the markers of interest, NGN3, PDX1, and MAFA, after five days of culture, and glucose-stimulated insulin secretion assays demonstrated that the cells were glucose-responsive in a monolayer culture. When cultured as a spheroid, the markers of interest and insulin secretion in a static glucose-stimulated insulin secretion assay were maintained; however, insulin secretion upon consecutive glucose challenges was limited. Comparison to human fetal and adult donor tissues identified that although the hiPSC-derived spheroids present similar markers to adult insulin-producing cells, they are functionally representative of fetal development. Together, these results suggest that with optimization of the temporal expression of these markers, forward programming of hiPSCs towards insulin-producing cells could be a possible alternative for islet transplantation.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico , Diferenciación Celular , Proteínas de Homeodominio , Células Madre Pluripotentes Inducidas , Células Secretoras de Insulina , Factores de Transcripción Maf de Gran Tamaño , Proteínas del Tejido Nervioso , Transactivadores , Humanos , Células Secretoras de Insulina/metabolismo , Células Secretoras de Insulina/citología , Proteínas de Homeodominio/metabolismo , Proteínas de Homeodominio/genética , Transactivadores/metabolismo , Transactivadores/genética , Células Madre Pluripotentes Inducidas/metabolismo , Células Madre Pluripotentes Inducidas/citología , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Proteínas del Tejido Nervioso/metabolismo , Proteínas del Tejido Nervioso/genética , Factores de Transcripción Maf de Gran Tamaño/metabolismo , Factores de Transcripción Maf de Gran Tamaño/genética , Insulina/metabolismo , Glucosa/metabolismo , Glucosa/farmacología , Secreción de Insulina/efectos de los fármacos , Células Cultivadas , Doxiciclina/farmacología
19.
Lab Chip ; 24(7): 2080-2093, 2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38441218

RESUMEN

Pancreatic in vitro research is of major importance to advance mechanistic understanding and development of treatment options for diseases such as diabetes mellitus. We present a thermoplastic-based microphysiological system aiming to model the complex microphysiological structure and function of the endocrine pancreas with concurrent real-time read-out capabilities. The specifically tailored platform enables self-guided trapping of single islets at defined locations: ß-cells are assembled to pseudo-islets and injected into the tissue chamber using hydrostatic pressure-driven flow. The pseudo-islets can further be embedded in an ECM-like hydrogel mimicking the native microenvironment of pancreatic islets in vivo. Non-invasive real-time monitoring of the oxygen levels on-chip is realized by the integration of luminescence-based optical sensors to the platform. To monitor insulin secretion kinetics in response to glucose stimulation in a time-resolved manner, an automated cycling of different glucose conditions is implemented. The model's response to glucose stimulation can be monitored via offline analysis of insulin secretion and via specific changes in oxygen consumption due to higher metabolic activity of pseudo-islets at high glucose levels. To demonstrate applicability for drug testing, the effects of antidiabetic medications are assessed and changes in dynamic insulin secretion are observed in line with the respective mechanism of action. Finally, by integrating human pancreatic islet microtissues, we highlight the flexibility of the platform and demonstrate the preservation of long-term functionality of human endocrine pancreatic tissue.


Asunto(s)
Insulina , Islotes Pancreáticos , Humanos , Insulina/metabolismo , Páncreas , Glucosa/análisis , Secreción de Insulina
20.
Sci Transl Med ; 16(728): eadg3840, 2024 01 03.
Artículo en Inglés | MEDLINE | ID: mdl-38170791

RESUMEN

The extracellular matrix (ECM) is essential for cell support during homeostasis and plays a critical role in cancer. Although research often concentrates on the tumor's cellular aspect, attention is growing for the importance of the cancer-associated ECM. Biochemical and physical ECM signals affect tumor formation, invasion, metastasis, and therapy resistance. Examining the tumor microenvironment uncovers intricate ECM dysregulation and interactions with cancer and stromal cells. Anticancer therapies targeting ECM sensors and remodelers, including integrins and matrix metalloproteinases, and ECM-remodeling cells, have seen limited success. This review explores the ECM's role in cancer and discusses potential therapeutic strategies for cell-ECM interactions.


Asunto(s)
Neoplasias , Humanos , Fenómenos Biomecánicos , Neoplasias/patología , Matriz Extracelular , Integrinas , Microambiente Tumoral
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA