Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Development ; 141(5): 1110-9, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24504339

RESUMEN

The formation of a single lumen during tubulogenesis is crucial for the development and function of many organs. Although 3D cell culture models have identified molecular mechanisms controlling lumen formation in vitro, their function during vertebrate organogenesis is poorly understood. Using light sheet microscopy and genetic approaches we have investigated single lumen formation in the zebrafish gut. Here we show that during gut development multiple lumens open and enlarge to generate a distinct intermediate, which consists of two adjacent unfused lumens separated by basolateral contacts. We observed that these lumens arise independently from each other along the length of the gut and do not share a continuous apical surface. Resolution of this intermediate into a single, continuous lumen requires the remodeling of contacts between adjacent lumens and subsequent lumen fusion. We show that lumen resolution, but not lumen opening, is impaired in smoothened (smo) mutants, indicating that fluid-driven lumen enlargement and resolution are two distinct processes. Furthermore, we show that smo mutants exhibit perturbations in the Rab11 trafficking pathway and demonstrate that Rab11-mediated trafficking is necessary for single lumen formation. Thus, lumen resolution is a distinct genetically controlled process crucial for single, continuous lumen formation in the zebrafish gut.


Asunto(s)
Embrión no Mamífero/metabolismo , Tracto Gastrointestinal/embriología , Tracto Gastrointestinal/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Proteínas de Pez Cebra/metabolismo , Pez Cebra/embriología , Pez Cebra/metabolismo , Animales , Embrión no Mamífero/citología , Mutación , Receptores Acoplados a Proteínas G/genética , Receptor Smoothened , Proteínas de Pez Cebra/genética
2.
Proc Natl Acad Sci U S A ; 105(46): 17830-5, 2008 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-19004786

RESUMEN

Organ patterning during embryonic development requires precise temporal and spatial regulation of protein activity. microRNAs (miRNAs), small noncoding RNAs that typically inhibit protein expression, are broadly important for proper development, but their individual functions during organogenesis are largely unknown. We report that miR-138 is expressed in specific domains in the zebrafish heart and is required to establish appropriate chamber-specific gene expression patterns. Disruption of miR-138 function led to ventricular expansion of gene expression normally restricted to the atrio-ventricular valve region and, ultimately, to disrupted ventricular cardiomyocyte morphology and cardiac function. Temporal-specific knockdown of miR-138 by antagomiRs showed miR-138 function was required during a discrete developmental window, 24-34 h post-fertilization (hpf). miR-138 functioned partially by repressing the retinoic acid synthesis enzyme, aldehyde dehydrogenase-1a2, in the ventricle. This activity was complemented by miR-138-mediated ventricular repression of the gene encoding versican (cspg2), which was positively regulated by retinoic-acid signaling. Our findings demonstrate that miR-138 helps establish discrete domains of gene expression during cardiac morphogenesis by targeting multiple members of a common pathway, and also establish the use of antagomiRs in fish for temporal knockdown of miRNA function.


Asunto(s)
Tipificación del Cuerpo/genética , Desarrollo Embrionario/genética , Corazón/embriología , MicroARNs/metabolismo , Pez Cebra/embriología , Pez Cebra/genética , Animales , Regulación del Desarrollo de la Expresión Génica , Ventrículos Cardíacos/citología , Ventrículos Cardíacos/embriología , Ventrículos Cardíacos/metabolismo , Ratones , MicroARNs/genética , Células 3T3 NIH , Organogénesis , Factores de Tiempo , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/metabolismo
3.
Curr Biol ; 19(12): 1034-9, 2009 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-19464178

RESUMEN

Members of the Hedgehog (Hh) family of secreted proteins function as morphogens to pattern developing tissues and control cell proliferation. The seven-transmembrane domain (7TM) protein Smoothened (Smo) is essential for the activation of all levels of Hh signaling. However, the mechanisms by which Smo differentially activates low- or high-level Hh signaling are not known. Here we show that a newly identified mutation in the extracellular domain (ECD) of zebrafish Smo attenuates Smo signaling. The Smo agonist purmorphamine induces the stabilization, ciliary translocation, and high-level signaling of wild-type Smo. In contrast, purmorphamine induces the stabilization but not the ciliary translocation or high-level signaling of the Smo ECD mutant protein. Surprisingly, a truncated form of Smo that lacks the cysteine-rich domain of the ECD localizes to the cilium but is unable to activate high-level Hh signaling. We also present evidence that cilia may be required for Hh signaling in early zebrafish embryos. These data indicate that the ECD, previously thought to be dispensable for vertebrate Smo function, both regulates Smo ciliary localization and is essential for high-level Hh signaling.


Asunto(s)
Cilios , Proteínas Hedgehog/metabolismo , Receptores de Superficie Celular/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Transducción de Señal/fisiología , Proteínas de Pez Cebra/metabolismo , Secuencia de Aminoácidos , Animales , Cilios/fisiología , Cilios/ultraestructura , Proteínas Hedgehog/genética , Datos de Secuencia Molecular , Morfolinas/metabolismo , Estructura Terciaria de Proteína , Purinas/metabolismo , Receptores de Superficie Celular/genética , Receptores Acoplados a Proteínas G/genética , Receptor Smoothened , Pez Cebra/anatomía & histología , Pez Cebra/embriología , Pez Cebra/metabolismo , Proteínas de Pez Cebra/genética
4.
Development ; 135(6): 1179-87, 2008 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-18272595

RESUMEN

Knowing how mutations disrupt the interplay between atrioventricular valve (AVV) morphogenesis and function is crucial for understanding how congenital valve defects arise. Here, we use high-speed fluorescence microscopy to investigate AVV morphogenesis in zebrafish at cellular resolution. We find that valve leaflets form directly through a process of invagination, rather than first forming endocardial cushions. There are three phases of valve function in embryonic development. First, the atrioventricular canal (AVC) is closed by the mechanical action of the myocardium, rolls together and then relaxes. The growing valve leaflets serve to block the canal during the roll and, depending on the developmental stage, either expand or hang down as a leaflet to block the canal. These steps are disrupted by the subtle morphological changes that result from inhibiting ErbB-, TGFbeta-or Cox2 (Ptgs2)-dependent signaling. Cox2 inhibition affects valve development due to its effect on myocardial cell size and shape, which changes the morphology of the ventricle and alters valve geometry. Thus, different signaling pathways regulate distinct aspects of the behavior of individual cells during valve morphogenesis, thereby influencing specific facets of valve function.


Asunto(s)
Válvulas Cardíacas/embriología , Pez Cebra/embriología , Animales , Animales Modificados Genéticamente , Secuencia de Bases , Ciclooxigenasa 2/genética , Ciclooxigenasa 2/fisiología , Inhibidores de la Ciclooxigenasa 2/farmacología , Cartilla de ADN/genética , Dinoprost/antagonistas & inhibidores , Dinoprost/genética , Dinoprost/fisiología , Válvulas Cardíacas/efectos de los fármacos , Válvulas Cardíacas/fisiología , Microscopía Fluorescente , Morfogénesis , Transducción de Señal , Tromboxano A2/antagonistas & inhibidores , Tromboxano A2/genética , Tromboxano A2/fisiología , Factor de Crecimiento Transformador beta/antagonistas & inhibidores , Factor de Crecimiento Transformador beta/genética , Factor de Crecimiento Transformador beta/fisiología , Pez Cebra/genética , Pez Cebra/fisiología , Proteínas de Pez Cebra/antagonistas & inhibidores , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/fisiología
5.
Nat Genet ; 40(4): 403-410, 2008 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-18327258

RESUMEN

Characterization of previously described intraflagellar transport (IFT) mouse mutants has led to the proposition that normal primary cilia are required for mammalian cells to respond to the sonic hedgehog (SHH) signal. Here we describe an N-ethyl-N-nitrosourea-induced mutant mouse, alien (aln), which has abnormal primary cilia and shows overactivation of the SHH pathway. The aln locus encodes a novel protein, THM1 (tetratricopeptide repeat-containing hedgehog modulator-1), which localizes to cilia. aln-mutant cilia have bulb-like structures at their tips in which IFT proteins (such as IFT88) are sequestered, characteristic of Chlamydomonas reinhardtii and Caenorhabditis elegans retrograde IFT mutants. RNA-interference knockdown of Ttc21b (which we call Thm1 and which encodes THM1) in mouse inner medullary collecting duct cells expressing an IFT88-enhanced yellow fluorescent protein fusion recapitulated the aln-mutant cilial phenotype, and live imaging of these cells revealed impaired retrograde IFT. In contrast to previously described IFT mutants, Smoothened and full-length glioblastoma (GLI) proteins localize to aln-mutant cilia. We hypothesize that the aln retrograde IFT defect causes sequestration of IFT proteins in aln-mutant cilia and leads to the overactivated SHH signaling phenotype. Specifically, the aln mutation uncouples the roles of anterograde and retrograde transport in SHH signaling, suggesting that anterograde IFT is required for GLI activation and that retrograde IFT modulates this event.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/fisiología , Cilios/metabolismo , Proteínas Hedgehog/metabolismo , Transducción de Señal , Alquilantes/toxicidad , Secuencia de Aminoácidos , Animales , Transporte Biológico , Western Blotting , Células Cultivadas , Clonación Molecular , Etilnitrosourea/toxicidad , Femenino , Fibroblastos/metabolismo , Genes Recesivos , Hibridación in Situ , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Masculino , Ratones , Ratones Noqueados , Datos de Secuencia Molecular , Mutagénesis , Proteínas Oncogénicas/genética , Proteínas Oncogénicas/metabolismo , Homología de Secuencia de Aminoácido , Médula Espinal/metabolismo , Transactivadores/genética , Transactivadores/metabolismo , Proteínas Supresoras de Tumor/genética , Proteínas Supresoras de Tumor/metabolismo , Proteína con Dedos de Zinc GLI1
6.
Dev Biol ; 308(2): 343-54, 2007 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-17610861

RESUMEN

Sonic hedgehog (Shh) is a key signal in establishing different digit fates along the anterior-posterior axis of the vertebrate limb bud. Although the anterior digits appear to be specified by differential concentrations of Shh in a traditional, morphogen-like response, recent studies have suggested that posterior digits are specified by an extended time of exposure to Shh rather than, or in addition to, a threshold concentration of Shh. This model for digit patterning depends upon continued Shh signaling in the posterior limb through mid-to-late bud stages. We find that cyclopamine, a potent antagonist of Shh signaling, can down-regulate hedgehog target genes in the posterior limb throughout the time Shh is expressed, indicating that continued active Shh signaling indeed takes place. To further explore the relative roles of time and concentration of Shh during limb development, we carried out two additional series of experiments. To test the effect of limiting the time, but not the amount of Shh produced, we treated chick embryos with the hedgehog antagonist cyclopamine at various stages of limb development. We find that short exposures to Shh result in specification of only the most anterior digits and that more posterior digits are specified sequentially with increasing times of uninterrupted Shh activity. To test the effect of limiting the level of Shh produced, but not the time of exposure, we genetically modified Shh production in mice. As previously shown, reducing both the concentration of Shh produced and the duration of Shh exposure results in a loss of posterior digits. We find that maintaining a low level of Shh production throughout the normal time frame of ZPA signaling results in a near complete restoration of the posterior-most digits. These data are consistent with, and lend additional support to, the model that concentration of Shh seen and duration of exposure both contribute to the dose-dependent specification of digit identities, but for the posterior-most digits the temporal component is the more critical parameter.


Asunto(s)
Extremidades/embriología , Proteínas Hedgehog/farmacología , Animales , Tipificación del Cuerpo/efectos de los fármacos , Tipificación del Cuerpo/genética , Tipificación del Cuerpo/fisiología , Embrión de Pollo , Femenino , Proteínas Hedgehog/deficiencia , Proteínas Hedgehog/genética , Proteínas Hedgehog/fisiología , Miembro Posterior/embriología , Deformidades Congénitas de las Extremidades/inducido químicamente , Deformidades Congénitas de las Extremidades/genética , Masculino , Ratones , Ratones Mutantes , Modelos Biológicos , Proteínas Recombinantes/farmacología , Transducción de Señal
7.
Science ; 305(5682): 396-9, 2004 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-15256670

RESUMEN

Vertebrate limb outgrowth is driven by a positive feedback loop involving Sonic Hedgehog (Shh), Gremlin, and Fgf4. By overexpressing individual components of the loop at a time after these genes are normally down-regulated in chicken embryos, we found that Shh no longer maintains Gremlin in the posterior limb. Shh-expressing cells and their descendants cannot express Gremlin. The proliferation of these descendants forms a barrier separating the Shh signal from Gremlin-expressing cells, which breaks down the Shh-Fgf4 loop and thereby affects limb size and provides a mechanism explaining regulative properties of the limb bud.


Asunto(s)
Factores de Crecimiento de Fibroblastos/metabolismo , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Esbozos de los Miembros/embriología , Mesodermo/citología , Proteínas Proto-Oncogénicas/metabolismo , Transactivadores/metabolismo , Animales , División Celular , Embrión de Pollo , Citocinas , Regulación hacia Abajo , Retroalimentación Fisiológica , Factor 4 de Crecimiento de Fibroblastos , Factor 8 de Crecimiento de Fibroblastos , Factor 9 de Crecimiento de Fibroblastos , Factores de Crecimiento de Fibroblastos/genética , Regulación del Desarrollo de la Expresión Génica , Proteínas Hedgehog , Péptidos y Proteínas de Señalización Intercelular/genética , Esbozos de los Miembros/citología , Esbozos de los Miembros/metabolismo , Mesodermo/metabolismo , Ratones , Modelos Biológicos , Proteínas Proto-Oncogénicas/genética , Transducción de Señal , Regulación hacia Arriba
8.
Cell ; 118(4): 517-28, 2004 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-15315763

RESUMEN

The zone of polarizing activity (ZPA) in the posterior limb bud produces Sonic Hedgehog (Shh) protein, which plays a critical role in establishing distinct fates along the anterior-posterior axis. This activity has been modeled as a concentration-dependent response to a diffusible morphogen. Using recombinase base mapping in the mouse, we determine the ultimate fate of the Shh-producing cells. Strikingly, the descendants of the Shh-producing cells encompass all cells in the two most posterior digits and also contribute to the middle digit. Our analysis suggests that, while specification of the anterior digits depends upon differential concentrations of Shh, the length of time of exposure to Shh is critical in the specification of the differences between the most posterior digits. Genetic studies of the effects of limiting accessibility of Shh within the limb support this model, in which the effect of the Shh morphogen is dictated by a temporal as well as a spatial gradient.


Asunto(s)
Extremidades/embriología , Regulación del Desarrollo de la Expresión Génica , Transactivadores/fisiología , Alelos , Animales , Western Blotting , Tipificación del Cuerpo , Linaje de la Célula , Proteínas de Unión al ADN/fisiología , Difusión , Genotipo , Proteínas Hedgehog , Factores de Transcripción de Tipo Kruppel , Ratones , Ratones Transgénicos , Modelos Biológicos , Proteínas del Tejido Nervioso/fisiología , Fenotipo , Estructura Terciaria de Proteína , Proteínas Recombinantes de Fusión/metabolismo , Recombinasas/metabolismo , Transducción de Señal , Temperatura , Factores de Tiempo , Transactivadores/metabolismo , Factores de Transcripción/fisiología , Proteína Gli3 con Dedos de Zinc , beta-Galactosidasa/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA