Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
J Infect Dis ; 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38836471

RESUMEN

BACKGROUND: We determined the relationships between cytokine expression in sputum and clinical data to characterise and understand Chronic Obstructive Pulmonary Disease (COPD) exacerbations in COPD patients. METHODS: We measured 30 cytokines in 936 sputum samples, collected at stable state (ST) and exacerbation (EX) visits from 99 participants in the Acute Exacerbation and Respiratory InfectionS in COPD (AERIS) study (NCT01360398, www.clinicaltrials.gov). We determined their longitudinal expression and examined differential expression based on disease status or exacerbation type. RESULTS: Of the cytokines, 17 were suitable for analysis. As for disease states, in EX sputum samples, IL-17A, TNF-α, IL-1ß, and IL-10 were significantly increased compared to ST sputum samples, but a logistic mixed model could not predict disease state. As for exacerbation types, bacteria-associated exacerbations showed higher expression of IL-17A, TNF-α, IL-1ß, and IL-1α. IL-1α, IL-1ß, and TNF-α were identified as suitable biomarkers for bacteria-associated exacerbation. Bacteria-associated exacerbations also formed a cluster separate from other exacerbation types in principal component analysis. CONCLUSIONS: Measurement of cytokines in sputum from COPD patients could help identify bacteria-associated exacerbations based on increased concentrations of IL-1α, IL-1ß, or TNF-α. This finding may provide a point-of-care assessment to distinguish a bacterial exacerbation of COPD from other exacerbation types.

2.
Int J Mol Sci ; 25(2)2024 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-38256189

RESUMEN

Shigellosis, an acute gastroenteritis infection caused by Shigella species, remains a public health burden in developing countries. Recently, many outbreaks due to Shigella sonnei multidrug-resistant strains have been reported in high-income countries, and the lack of an effective vaccine represents a major hurdle to counteract this bacterial pathogen. Vaccine candidates against Shigella sonnei are under clinical development, including a Generalized Modules for Membrane Antigens (GMMA)-based vaccine. The mechanisms by which GMMA-based vaccines interact and activate human immune cells remain elusive. Our previous study provided the first evidence that both adaptive and innate immune cells are targeted and functionally shaped by the GMMA-based vaccine. Here, flow cytometry and confocal microscopy analysis allowed us to identify monocytes as the main target population interacting with the S. sonnei 1790-GMMA vaccine on human peripheral blood. In addition, transcriptomic analysis of this cell population revealed a molecular signature induced by 1790-GMMA mostly correlated with the inflammatory response and cytokine-induced processes. This also impacts the expression of genes associated with macrophages' differentiation and T cell regulation, suggesting a dual function for this vaccine platform both as an antigen carrier and as a regulator of immune cell activation and differentiation.


Asunto(s)
Antígenos de Grupos Sanguíneos , Gastroenteritis , Metilmetacrilatos , Vacunas , Humanos , Monocitos , Shigella sonnei/genética , Antígenos Bacterianos/genética
3.
Int J Mol Sci ; 22(9)2021 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-34066555

RESUMEN

Traditional antimicrobial treatments consist of drugs which target different essential functions in pathogens. Nevertheless, bacteria continue to evolve new mechanisms to evade this drug-mediated killing with surprising speed on the deployment of each new drug and antibiotic worldwide, a phenomenon called antimicrobial resistance (AMR). Nowadays, AMR represents a critical health threat, for which new medical interventions are urgently needed. By 2050, it is estimated that the leading cause of death will be through untreatable AMR pathogens. Although antibiotics remain a first-line treatment, non-antibiotic therapies such as prophylactic vaccines and therapeutic monoclonal antibodies (mAbs) are increasingly interesting alternatives to limit the spread of such antibiotic resistant microorganisms. For the discovery of new vaccines and mAbs, the search for effective antigens that are able to raise protective immune responses is a challenging undertaking. In this context, outer membrane vesicles (OMV) represent a promising approach, as they recapitulate the complete antigen repertoire that occurs on the surface of Gram-negative bacteria. In this review, we present Escherichia coli and Pseudomonas aeruginosa as specific examples of key AMR threats caused by Gram-negative bacteria and we discuss the current status of mAbs and vaccine approaches under development as well as how knowledge on OMV could benefit antigen discovery strategies.


Asunto(s)
Farmacorresistencia Bacteriana , Escherichia coli/fisiología , Pseudomonas aeruginosa/fisiología , Animales , Vacunas Bacterianas/inmunología , Infecciones por Escherichia coli/epidemiología , Infecciones por Escherichia coli/inmunología , Infecciones por Escherichia coli/microbiología , Humanos , Infecciones por Pseudomonas/epidemiología , Infecciones por Pseudomonas/inmunología , Infecciones por Pseudomonas/microbiología
4.
Immunol Cell Biol ; 94(9): 849-860, 2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-27192938

RESUMEN

Human cytomegalovirus (HCMV) is known to exert suppressive effects on the host immune system through expression of various viral genes, thus directly and indirectly affecting antiviral immunity of the infected individuals. We report here that HCMV UL10 encodes a protein (pUL10) with immunosuppressive properties. UL10 has been classified as a member of the HCMV RL11 gene family. Although pUL10 is known to be dispensable for viral replication in cultured cells, its amino-acid sequence is well conserved among different HCMV isolates, suggesting that the protein has a crucial role in viral survival in the host environment. We show that pUL10 is cleaved from the cell surface of fibroblasts as well as epithelial cells and interacts with a cellular receptor ubiquitously expressed on the surface of human leukocytes, demonstrated by ex vivo cell-based assays and flow cytometric analyses on both lymphoid cell lines and primary blood cells. Furthermore, preincubation of peripheral blood mononuclear cells with purified pUL10 ectodomain results in significantly impaired proliferation and substantially reduced pro-inflammatory cytokine production, in particular in CD4+ T cells upon in vitro T-cell stimulation. The inhibitory effect of pUL10 is also observed on antigen receptor-mediated intracellular tyrosine phosphorylation in a T-cell line. Based on these observations, we suggest that pUL10 is a newly identified immunomodulatory protein encoded by HCMV. Further elucidation of interactions between pUL10 and the host immune system during HCMV may contribute to finding ways towards new therapies for HCMV infection.


Asunto(s)
Proteínas de la Cápside/metabolismo , Activación de Linfocitos/inmunología , Receptores de Antígenos de Linfocitos T/metabolismo , Linfocitos T/metabolismo , Secuencia de Aminoácidos , Linfocitos T CD4-Positivos/metabolismo , Linfocitos T CD8-positivos/metabolismo , Proteínas de la Cápside/química , Línea Celular , Membrana Celular/metabolismo , Proliferación Celular , Citocinas/biosíntesis , Glicosilación , Células HEK293 , Humanos , Proteínas de la Membrana/metabolismo , Proteínas Recombinantes/metabolismo , Transducción de Señal
5.
Front Immunol ; 14: 1294929, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38090568

RESUMEN

With the deepening of our understanding of adaptive immunity at the cellular and molecular level, targeting antigens directly to immune cells has proven to be a successful strategy to develop innovative and potent vaccines. Indeed, it offers the potential to increase vaccine potency and/or modulate immune response quality while reducing off-target effects. With mRNA-vaccines establishing themselves as a versatile technology for future applications, in the last years several approaches have been explored to target nanoparticles-enabled mRNA-delivery systems to immune cells, with a focus on dendritic cells. Dendritic cells (DCs) are the most potent antigen presenting cells and key mediators of B- and T-cell immunity, and therefore considered as an ideal target for cell-specific antigen delivery. Indeed, improved potency of DC-targeted vaccines has been proved in vitro and in vivo. This review discusses the potential specific targets for immune system-directed mRNA delivery, as well as the different targeting ligand classes and delivery systems used for this purpose.


Asunto(s)
Células Dendríticas , Vacunas , Inmunidad Adaptativa , Linfocitos T , Antígenos
6.
Vaccine ; 41(3): 724-734, 2023 01 16.
Artículo en Inglés | MEDLINE | ID: mdl-36564274

RESUMEN

The candidate Adjuvant System AS37 contains a synthetic toll-like receptor agonist (TLR7a) adsorbed to alum. In a phase I study (NCT02639351), healthy adults were randomised to receive one dose of licensed alum-adjuvanted meningococcal serogroup C (MenC-CRM197) conjugate vaccine (control) or MenC-CRM197 conjugate vaccine adjuvanted with AS37 (TLR7a dose 12.5, 25, 50 or 100 µg). A subset of 66 participants consented to characterisation of peripheral whole blood transcriptomic responses, systemic cytokine/chemokine responses and multiple myeloid and lymphoid cell responses as exploratory study endpoints. Blood samples were collected pre-vaccination, 6 and 24 h post-vaccination, and 3, 7, 28 and 180 days post-vaccination. The gene expression profile in whole blood showed an early, AS37-specific transcriptome response that peaked at 24 h, increased with TLR7a dose up to 50 µg and generally resolved within one week. Five clusters of differentially expressed genes were identified, including those involved in the interferon-mediated antiviral response. Evaluation of 30 cytokines/chemokines by multiplex assay showed an increased level of interferon-induced chemokine CXCL10 (IP-10) at 24 h and 3 days post-vaccination in the AS37-adjuvanted vaccine groups. Increases in activated plasmacytoid dendritic cells (pDC) and intermediate monocytes were detected 3 days post-vaccination in the AS37-adjuvanted vaccine groups. T follicular helper (Tfh) cells increased 7 days post-vaccination and were maintained at 28 days post-vaccination, particularly in the AS37-adjuvanted vaccine groups. Moreover, most of the subjects that received vaccine containing 25, 50 and 100 µg TLR7a showed an increased MenC-specific memory B cell responses versus baseline. These data show that the adsorption of TLR7a to alum promotes an immune signature consistent with TLR7 engagement, with up-regulation of interferon-inducible genes, cytokines and frequency of activated pDC, intermediate monocytes, MenC-specific memory B cells and Tfh cells. TLR7a 25-50 µg can be considered the optimal dose for AS37, particularly for the adjuvanted MenC-CRM197 conjugate vaccine.


Asunto(s)
Hidróxido de Aluminio , Vacunas Meningococicas , Adulto , Humanos , Interferones , Receptor Toll-Like 7 , Antivirales , Vacunas Conjugadas , Adyuvantes Inmunológicos , Citocinas , Análisis de Sistemas
7.
Front Cell Infect Microbiol ; 12: 767153, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35186786

RESUMEN

Generalized Modules for Membrane Antigens (GMMA) are outer membrane exosomes purified from Gram-negative bacteria genetically mutated to increase blebbing and reduce risk of reactogenicity. This is commonly achieved through modification of the lipid A portion of lipopolysaccharide. GMMA faithfully resemble the bacterial outer membrane surface, and therefore represent a powerful and flexible platform for vaccine development. Although GMMA-based vaccines have been demonstrated to induce a strong and functional antibody response in animals and humans maintaining an acceptable reactogenicity profile, the overall impact on immune cells and their mode of action are still poorly understood. To characterize the GMMA-induced immune response, we stimulated human peripheral blood mononuclear cells (hPBMCs) with GMMA from Shigella sonnei. We studied GMMA both with wild-type hexa-acylated lipid A and with the corresponding less reactogenic penta-acylated form. Using multicolor flow cytometry, we assessed the activation of immune cell subsets and we profiled intracellular cytokine production after GMMA stimulation. Moreover, we measured the secretion of thirty cytokines/chemokines in the cell culture supernatants. Our data indicated activation of monocytes, dendritic, NK, B, and γδ T cells. Comparison of the cytokine responses showed that, although the two GMMA have qualitatively similar profiles, GMMA with modified penta-acylated lipid A induced a lower production of pro-inflammatory cytokines/chemokines compared to GMMA with wild-type lipid A. Intracellular cytokine staining indicated monocytes and dendritic cells as the main source of the cytokines produced. Overall, these data provide new insights into the activation of key immune cells potentially targeted by GMMA-based vaccines.


Asunto(s)
Leucocitos Mononucleares , Shigella sonnei , Animales , Antígenos Bacterianos , Humanos , Inmunidad , Metilmetacrilatos
8.
J Exp Med ; 201(2): 241-8, 2005 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-15657293

RESUMEN

After vaccination of melanoma patients with MAGE antigens, we observed that even in the few patients showing tumor regression, the frequency of anti-vaccine T cells in the blood was often either undetectable or <10(-5) of CD8 T cells. This frequency being arguably too low for these cells to be sole effectors of rejection, we reexamined the contribution of T cells recognizing other tumor antigens. The presence of such antitumor T cells in melanoma patients has been widely reported. To begin assessing their contribution to vaccine-induced rejection, we evaluated their blood frequency in five vaccinated patients. The antitumor cytotoxic T lymphocyte (CTL) precursors ranged from 10(-4) to 3 x 10(-3), which is 10-10,000 times higher than the anti-vaccine CTL in the same patient. High frequencies were also observed before vaccination. In a patient showing nearly complete regression after vaccination with a MAGE-3 antigen, we observed a remarkably focused antitumoral response. A majority of CTL precursors (CTLp's) recognized antigens encoded by MAGE-C2, another cancer-germline gene. Others recognized gp100 antigens. CTLp's recognizing MAGE-C2 and gp100 antigens were already present before vaccination, but new clonotypes appeared afterwards. These results suggest that a spontaneous antitumor T cell response, which has become ineffective, can be reawakened by vaccination and contribute to tumor rejection. This notion is reinforced by the frequencies of anti-vaccine and antitumor CTLs observed inside metastases, as presented by Lurquin et al. (Lurquin, C., B. Lethe, V. Corbiere, I. Theate, N. van Baren, P.G. Coulie, and T. Boon. 2004. J. Exp. Med. 201:249-257).


Asunto(s)
Antígenos de Neoplasias/uso terapéutico , Vacunas contra el Cáncer/uso terapéutico , Melanoma/sangre , Melanoma/terapia , Linfocitos T Citotóxicos/inmunología , Linfocitos T/inmunología , Antígenos de Neoplasias/inmunología , Vacunas contra el Cáncer/inmunología , Recuento de Células , Citotoxicidad Inmunológica , Humanos , Melanoma/inmunología , Glicoproteínas de Membrana/inmunología , Proteínas de Neoplasias/inmunología , Proteínas de Neoplasias/uso terapéutico , Linfocitos T Citotóxicos/patología , Resultado del Tratamiento , Antígeno gp100 del Melanoma
9.
J Immunol ; 183(10): 6186-97, 2009 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-19864596

RESUMEN

Adjuvant System 04 (AS04) combines the TLR4 agonist MPL (3-O-desacyl-4'-monophosphoryl lipid A) and aluminum salt. It is a new generation TLR-based adjuvant licensed for use in human vaccines. One of these vaccines, the human papillomavirus (HPV) vaccine Cervarix, is used in this study to elucidate the mechanism of action of AS04 in human cells and in mice. The adjuvant activity of AS04 was found to be strictly dependent on AS04 and the HPV Ags being injected at the same i.m. site within 24 h of each other. During this period, AS04 transiently induced local NF-kappaB activity and cytokine production. This led to an increased number of activated Ag-loaded dendritic cells and monocytes in the lymph node draining the injection site, which further increased the activation of Ag-specific T cells. AS04 was also found to directly stimulate those APCs in vitro but not directly stimulate CD4(+) T or B lymphocytes. These AS04-induced innate responses were primarily due to MPL. Aluminum salt appeared not to synergize with or inhibit MPL, but rather it prolonged the cytokine responses to MPL at the injection site. Altogether these results support a model in which the addition of MPL to aluminum salt enhances the vaccine response by rapidly triggering a local cytokine response leading to an optimal activation of APCs. The transient and confined nature of these responses provides further supporting evidence for the favorable safety profile of AS04 adjuvanted vaccines.


Asunto(s)
Adyuvantes Inmunológicos/farmacología , Hidróxido de Aluminio/farmacología , Linfocitos T CD4-Positivos/inmunología , Células Dendríticas/inmunología , Lípido A/análogos & derivados , Infecciones por Papillomavirus/inmunología , Vacunas contra Papillomavirus/inmunología , Receptor Toll-Like 4/agonistas , Animales , Antígeno B7-2/inmunología , Antígeno B7-2/metabolismo , Linfocitos T CD4-Positivos/efectos de los fármacos , Linfocitos T CD4-Positivos/metabolismo , Antígenos CD40/inmunología , Antígenos CD40/metabolismo , Línea Celular , Citocinas/efectos de los fármacos , Citocinas/inmunología , Citocinas/metabolismo , Células Dendríticas/efectos de los fármacos , Células Dendríticas/metabolismo , Femenino , Papillomavirus Humano 16/inmunología , Papillomavirus Humano 18/inmunología , Humanos , Inmunidad Innata/efectos de los fármacos , Lípido A/farmacología , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , FN-kappa B/agonistas , FN-kappa B/inmunología , FN-kappa B/metabolismo , Ovalbúmina/inmunología , Infecciones por Papillomavirus/virología , Receptor Toll-Like 4/inmunología , Transfección
10.
mBio ; 12(3): e0089921, 2021 06 29.
Artículo en Inglés | MEDLINE | ID: mdl-34060329

RESUMEN

One of the defining features of Staphylococcus aureus is its ability to evade and impair the human immune response through expression of staphylococcal protein A (SpA). Herein, we describe a previously unknown mechanism by which SpA can form toxic immune complexes when in the presence of human serum, which leads to the loss of human leukocytes. Further, we demonstrate that these toxic complexes are formed specifically through SpA's interaction with intact human IgG and that, in the presence of purified IgG Fab and Fc fragments, SpA shows no such toxicity. The mechanism of action of this toxicity appears to be one mediated by necrosis and not by apoptosis, as previously hypothesized, with up to 90% of human B cells rapidly becoming necrotic following stimulation with SpA-IgG complexes. This phenomenon depends on the immunoglobulin binding capacity of SpA, as a nonbinding mutant of SpA did not induce necrosis. Importantly, immune sera raised against SpA had the capacity to significantly reduce the observed toxicity. An unprecedented toxic effect of SpA-IgG complexes on monocytes was also observed, suggesting the existence of a novel mechanism independent from the interaction of SpA with the B cell receptor. Together, these data implicate SpA in inducing indiscriminate leukocyte toxicity upon formation of complexes with IgG and highlight the requirement for vaccination strategies to inhibit this mechanism. IMPORTANCE Staphylococcus aureus is one of the largest health care threats faced by humankind, with a reported mortality rate within the United States greater than that of HIV/AIDS, tuberculosis, and viral hepatitis combined. One of the defining features of S. aureus as a human pathogen is its ability to evade and impair the human immune response through expression of staphylococcal protein A. Herein, we show that SpA induces necrosis in various immune cells by complexing with human immunoglobulins. Vaccination of mice with a nontoxigenic SpA mutant induced sera capable of inhibiting this mechanism. These observations shed new light on the toxic mechanisms of this key staphylococcal virulence factor and on protective modalities of SpA-based vaccination.


Asunto(s)
Complejo Antígeno-Anticuerpo , Linfocitos B/efectos de los fármacos , Linfocitos B/patología , Inmunoglobulina G/metabolismo , Necrosis/inmunología , Proteína Estafilocócica A/farmacología , Animales , Línea Celular Tumoral , Femenino , Humanos , Inmunoglobulina G/inmunología , Inmunoglobulina G/farmacología , Ratones , Ratones Endogámicos BALB C , Proteína Estafilocócica A/administración & dosificación , Proteína Estafilocócica A/inmunología , Staphylococcus aureus/metabolismo , Vacunación
11.
Lancet Gastroenterol Hepatol ; 3(10): 698-707, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-30042064

RESUMEN

BACKGROUND: Intramuscular immunisation with a vaccine composed of three recombinant Helicobacter pylori antigens-vacuolating cytotoxin A (VacA), cytotoxin-associated antigen (CagA), and neutrophil-activating protein (NAP)-prevented infection in animal models and was well tolerated and highly immunogenic in healthy adults. We aimed to assess the efficacy of the vaccine in prevention of a H pylori infection after challenge with a CagA-positive strain (BCM 300) in healthy volunteers. METHODS: In this randomised phase 1/2, observer-blind, placebo-controlled, single-centre study, healthy non-pregnant adults aged 18-40 years who were confirmed negative for H pylori infection were randomly assigned (3:4) to three intramuscular doses of either placebo or vaccine at 0, 1, and 2 months. Randomisation was via a computer-generated list with study numbers ensuring the correct ratio within a block size of seven. Participants were consecutively assigned in a double-blind manner to existing study numbers of the study protocol. Investigators and participants were blinded to allocation throughout the study. One month after the third immunisation, participants underwent challenge with a CagA-positive H pylori strain, which, for safety reasons, was initially administered in a subset of participants. The primary efficacy outcome was the efficacy of the vaccine as measured by the proportion of participants infected with H pylori 12 weeks after the challenge. At the end of the study, participants infected with H pylori were treated for 14 days with combination therapy consisting of a proton pump inhibitor and two antibiotics twice daily. Safety and immunogenicity were monitored at pre-established visits. This trial is registered with ClinicalTrials.gov, number NCT00736476, and is completed. FINDINGS: 63 patients were randomly assigned, 27 to placebo and 36 to the vaccine. 34 participants (19 in the vaccinated group and 15 in the placebo group) underwent infectious challenge, all but one of whom experienced transient mild-to-moderate epigastric symptoms. 12 weeks after infectious challenge, six (32%) of 19 people in the vaccinated group and six (40%) of 15 people in the placebo group remained positive for H pylori. Eradication was successful in everyone who remained infected at 12 weeks. The geometric mean concentrations of antibodies specific to CagA (202 [95% CI 69-588] vs 4·73 [95% CI 1·41-16]; p=0·001), VacA (1469 [838-2577] vs 73 [39-138]; p=0·001), and NAP (208 [139-313] vs 8·01 [5·05-13]; p=0·001) were significantly higher in the vaccine group than in the placebo group 12 weeks after infectious challenge. INTERPRETATION: Compared with placebo, the vaccine did not confer additional protection against H pylori infection after challenge with a CagA-positive strain, despite increased systemic humoral responses to key H pylori antigens. The finding of spontaneous clearance of H pylori infection in more than half the participants in the placebo group is remarkable and suggests important immune protection in the healthy adult population. FUNDING: Novartis Vaccine and Diagnostics.


Asunto(s)
Vacunas Bacterianas/inmunología , Vacunas Bacterianas/uso terapéutico , Gastritis/prevención & control , Infecciones por Helicobacter/prevención & control , Helicobacter pylori/inmunología , Inmunogenicidad Vacunal , Adulto , Antígenos Bacterianos/inmunología , Proteínas Bacterianas/inmunología , Vacunas Bacterianas/efectos adversos , Quimiocina CXCL1/inmunología , Método Doble Ciego , Femenino , Gastritis/microbiología , Humanos , Inmunidad Celular , Inmunoglobulina G/sangre , Inyecciones Intramusculares , Masculino , Vacunas Sintéticas/efectos adversos , Vacunas Sintéticas/inmunología , Vacunas Sintéticas/uso terapéutico , Adulto Joven
12.
Hum Vaccin Immunother ; 14(1): 45-58, 2018 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-29172945

RESUMEN

Despite high vaccination coverage worldwide, pertussis has re-emerged in many countries. This randomized, controlled, observer-blind phase I study and extension study in Belgium (March 2012-June 2015) assessed safety and immunogenicity of investigational acellular pertussis vaccines containing genetically detoxified pertussis toxin (PT) (NCT01529645; NCT02382913). 420 healthy adults (average age: 26.8 ± 5.5 years, 60% female) were randomized to 1 of 10 vaccine groups: 3 investigational aP vaccines (containing pertussis antigens PT, filamentous hemagglutinin [FHA] and pertactin [PRN] at different dosages), 6 investigational TdaP (additionally containing tetanus toxoid [TT] and diphtheria toxoid [DT]), and 1 TdaP comparator containing chemically inactivated PT. Antibody responses were evaluated on days 1, 8, 30, 180, 365, and approximately 3 years post-booster vaccination. Cell-mediated immune responses and PT neutralization were evaluated in a subset of participants in pre-selected groups. Local and systemic adverse events (AEs), and unsolicited AEs were collected through day 7 and 30, respectively; serious AEs and AEs leading to study withdrawal were collected through day 365 post-vaccination. Antibody responses against pertussis antigens peaked at day 30 post-vaccination and then declined but remained above baseline level at approximately 3 years post-vaccination. Responses to FHA and PRN were correlated to antigen dose. Antibody responses specific to PT, toxin neutralization activity and persistence induced by investigational formulations were similar or significantly higher than the licensed vaccine, despite lower PT doses. Of 15 serious AEs, none were considered vaccination-related; 1 led to study withdrawal (premature labor, day 364; aP4 group). This study confirmed the potential benefits of genetically detoxified PT antigen. All investigational study formulations were well tolerated.


Asunto(s)
Vacunas contra Difteria, Tétanos y Tos Ferina Acelular/administración & dosificación , Inmunización Secundaria/métodos , Toxina del Pertussis/inmunología , Vacuna contra la Tos Ferina/administración & dosificación , Vacunación/métodos , Tos Ferina/prevención & control , Adulto , Anticuerpos Antibacterianos/análisis , Bélgica , Vacunas contra Difteria, Tétanos y Tos Ferina Acelular/efectos adversos , Vacunas contra Difteria, Tétanos y Tos Ferina Acelular/genética , Vacunas contra Difteria, Tétanos y Tos Ferina Acelular/inmunología , Femenino , Humanos , Inmunidad Celular , Inmunogenicidad Vacunal , Masculino , Toxina del Pertussis/genética , Vacuna contra la Tos Ferina/efectos adversos , Vacuna contra la Tos Ferina/genética , Vacuna contra la Tos Ferina/inmunología , Resultado del Tratamiento , Tos Ferina/sangre , Tos Ferina/inmunología , Adulto Joven
13.
Cancer Res ; 62(19): 5510-6, 2002 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-12359761

RESUMEN

We have identified a gene encoding an antigen recognized by cytolytic T lymphocytes on the autologous tumor cells of a melanoma patient, AVL3. The gene shows homologies with members of the HERV-K family of human endogenous retroviruses, and it was provisionally named HERV-K-MEL. It contains many mutations that disrupt the open reading frames coding for all of the viral proteins. The HERV-K-MEL gene is not expressed in normal tissues with the exception of testis and some skin samples. It is expressed in most samples of cutaneous and ocular melanoma. It is also expressed in a majority of naevi and in a minority of carcinomas and sarcomas. The antigenic peptide, presented by HLA-A2 molecules, is encoded by a very short open reading frame present in the env region of a spliced HERV-K-MEL transcript. Anti-HERV.A2 CTLp could not be detected in the blood of three individuals without cancer but were present at a frequency of 3 x 10(-5) among blood CD8 T cells in patient AVL3 and 6 x 10(-7) in another HLA-A2 melanoma patient whose tumor expressed HERV-K-MEL. Anti-HERV.A2 CTL clones derived from each patient lysed melanoma cells. Analysis of T-cell receptor beta chain sequences indicated that the anti-HERV.A2 CTL population was oligoclonal in patient AVL3 and probably monoclonal in the other patient. These results suggest that HERV-K-MEL is a source of antigens that are targeted by CTLs in melanoma patients and could therefore be used for vaccination.


Asunto(s)
Antígenos de Neoplasias/genética , Antígenos de Neoplasias/inmunología , Retrovirus Endógenos/genética , Melanoma/inmunología , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/inmunología , Linfocitos T Citotóxicos/inmunología , Secuencia de Aminoácidos , Secuencia de Bases , ADN Complementario/genética , Retrovirus Endógenos/inmunología , Expresión Génica , Antígeno HLA-A2/inmunología , Humanos , Activación de Linfocitos/inmunología , Melanoma/genética , Melanoma/virología , Antígenos Específicos del Melanoma , Datos de Secuencia Molecular , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
14.
PLoS One ; 11(6): e0157066, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27336786

RESUMEN

CD4+ T follicular helper cells (T(FH)) have been identified as the T-cell subset specialized in providing help to B cells for optimal activation and production of high affinity antibody. We recently demonstrated that the expansion of peripheral blood influenza-specific CD4(+)IL-21(+)ICOS1(+) T helper (T(H)) cells, three weeks after vaccination, associated with and predicted the rise of protective neutralizing antibodies to avian H5N1. In this study, healthy adults were vaccinated with plain seasonal trivalent inactivated influenza vaccine (TIIV), MF59(®)-adjuvanted TIIV (ATIIV), or saline placebo. Frequencies of circulating CD4(+) T(FH)1 ICOS(+) T(FH) cells and H1N1-specific CD4(+-)IL-21(+)ICOS(+) CXCR5(+) T(FH) and CXCR5(-) T(H) cell subsets were determined at various time points after vaccination and were then correlated with hemagglutination inhibition (HI) titers. All three CD4(+) T cell subsets expanded in response to TIIV and ATIIV, and peaked 7 days after vaccination. To demonstrate that these T(FH) cell subsets correlated with functional antibody titers, we defined an alternative endpoint metric, decorrelated HI (DHI), which removed any correlation between day 28/day 168 and day 0 HI titers, to control for the effect of preexisting immunity to influenza vaccine strains. The numbers of total circulating CD4(+)T(FH)1 ICOS(+) cells and of H1N1-specific CD4(+)IL-21(+)ICOS(+) CXCR5(+), measured at day 7, were significantly associated with day 28, and day 28 and 168 DHI titers, respectively. Altogether, our results show that CD4(+) T(FH) subsets may represent valuable biomarkers of vaccine-induced long-term functional immunity.


Asunto(s)
Formación de Anticuerpos/inmunología , Inmunidad , Recuento de Linfocitos , Subgrupos de Linfocitos T/inmunología , Linfocitos T Colaboradores-Inductores/inmunología , Vacunación , Adolescente , Adulto , Anticuerpos Antivirales/sangre , Anticuerpos Antivirales/inmunología , Linfocitos B/inmunología , Linfocitos B/metabolismo , Biomarcadores , Pruebas de Inhibición de Hemaglutinación , Humanos , Inmunofenotipificación , Proteína Coestimuladora de Linfocitos T Inducibles/metabolismo , Subtipo H1N1 del Virus de la Influenza A/inmunología , Vacunas contra la Influenza/inmunología , Activación de Linfocitos/inmunología , Pronóstico , Vigilancia en Salud Pública , Receptores CXCR5/metabolismo , Subgrupos de Linfocitos T/metabolismo , Linfocitos T Colaboradores-Inductores/metabolismo , Factores de Tiempo , Adulto Joven
15.
PLoS One ; 6(4): e19324, 2011 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-21559446

RESUMEN

Helicobacter pylori is a gram-negative bacterium that causes gastric and duodenal diseases in humans. Despite a robust antibody and cellular immune response, H. pylori infection persists chronically. To understand if and how H. pylori could modulate T cell activation, in the present study we investigated in vitro the interaction between H. pylori and human T lymphocytes freshly isolated from peripheral blood of H. pylori-negative donors. A direct interaction of live, but not killed bacteria with purified CD3+ T lymphocytes was observed by microscopy and confirmed by flow cytometry. Live H. pylori activated CD3+ T lymphocytes and predominantly γδ+ T cells bearing the TCR chain Vδ2. Upon interaction with H. pylori, these cells up-regulated the activation molecule CD69 and produced cytokines (such as TNFα, IFNγ) and chemokines (such as MIP-1ß, RANTES) in a non-antigen-specific manner. This activation required viable H. pylori and was not exhibited by other gram-negative bacteria. The cytotoxin-associated antigen-A (CagA), was at least partially responsible of this activation. Our results suggest that H. pylori can directly interact with T cells and modulate the response of γδ+ T cells, thereby favouring an inflammatory environment which can contribute to the chronic persistence of the bacteria and eventually to the gastric pathology.


Asunto(s)
Complejo CD3/metabolismo , Infecciones por Helicobacter/sangre , Helicobacter pylori/metabolismo , Receptores de Antígenos de Linfocitos T gamma-delta/metabolismo , Linfocitos T/metabolismo , Linfocitos T/microbiología , Técnicas de Cocultivo , Citometría de Flujo , Proteínas Fluorescentes Verdes/metabolismo , Humanos , Activación de Linfocitos , Microscopía Confocal/métodos , Receptores de Antígenos de Linfocitos T/metabolismo , Factores de Riesgo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA