Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
Chemistry ; : e202401033, 2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38775406

RESUMEN

Pentavalent uranium compounds are key components of uranium's redox chemistry and play important roles in environmental transport. Despite this, well-characterized U(V) compounds are scarce primarily because of their instability with respect to disproportionation to U(IV) and U(VI). In this work, we provide an alternate route to incorporation of U(V) into a crystalline lattice where different oxidation states of uranium can be stabilized through the incorporation of secondary cations with different sizes and charges. We show that iriginite-based crystalline layers allow for systematically replacing U(VI) with U(V) through aliovalent substitution of 2+ alkaline-earth or 3+ rare-earth cations as dopant ions under high-temperature conditions, specifically Ca(UVIO2)W4O14 and Ln(UVO2)W4O14 (Ln=Nd, Sm, Eu, Gd, Yb). Evidence for the existence of U(V) and U(VI) is supported by single-crystal X-ray diffraction, high energy resolution X-ray absorption near edge structure, X-ray photoelectron spectroscopy, and optical absorption spectroscopy. In contrast with other reported U(V) materials, the U(V) single crystals obtained using this route are relatively large (several centimeters) and easily reproducible, and thus provide a substantial improvement in the facile synthesis and stabilization of U(V).

2.
Nature ; 544(7650): 337-339, 2017 04 19.
Artículo en Inglés | MEDLINE | ID: mdl-28425999

RESUMEN

Glass is one of the most important high-performance materials used for scientific research, in industry and in society, mainly owing to its unmatched optical transparency, outstanding mechanical, chemical and thermal resistance as well as its thermal and electrical insulating properties. However, glasses and especially high-purity glasses such as fused silica glass are notoriously difficult to shape, requiring high-temperature melting and casting processes for macroscopic objects or hazardous chemicals for microscopic features. These drawbacks have made glasses inaccessible to modern manufacturing technologies such as three-dimensional printing (3D printing). Using a casting nanocomposite, here we create transparent fused silica glass components using stereolithography 3D printers at resolutions of a few tens of micrometres. The process uses a photocurable silica nanocomposite that is 3D printed and converted to high-quality fused silica glass via heat treatment. The printed fused silica glass is non-porous, with the optical transparency of commercial fused silica glass, and has a smooth surface with a roughness of a few nanometres. By doping with metal salts, coloured glasses can be created. This work widens the choice of materials for 3D printing, enabling the creation of arbitrary macro- and microstructures in fused silica glass for many applications in both industry and academia.

3.
J Am Chem Soc ; 144(21): 9217-9221, 2022 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-35588478

RESUMEN

The ternary neptunium(V) (Np(V)) hydroxides Na0.5[NpO2(OH)1.5]·0.5H2O (I) and Na[NpO2(OH)2] (II) were synthesized in aqueous NaOH solutions at T = 80 °C, and their crystal structures were determined to be monoclinic, P21, Z = 2, a = 5.9859(2), b = 10.1932(3), c = 12.1524(4) Å, ß = 98.864(1)°, V = 732.63(4) Å3 for (I) and orthorhombic, P212121, Z = 4, a = 5.856(7), b = 7.621(9), c = 8.174(9) Å, V = 364.8(7) Å3 for (II). By combining the detailed structural information with results from systematic solubility investigations, a comprehensive chemical and thermodynamic model of the Np(V) behavior in NaCl-NaOH solutions was evaluated. The results reveal a great stability of the ternary Na-Np(V)-OH solid phases that significantly enhances the predominance field of the entire Np(V) redox state to high alkalinity.

4.
Inorg Chem ; 61(26): 10159-10166, 2022 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-35748436

RESUMEN

Technetium (Tc) is an environmentally relevant radioactive contaminant whose migration is limited when Tc(VII) is reduced to Tc(IV). However, its reaction mechanisms are not well understood yet. We have combined electrochemistry, spectroscopy, and microscopy (cyclic voltammetry, rotating disk electrode, X-ray photoelectron spectroscopy, and Raman and scanning electron microscopy) to study Tc(VII) reduction in non-complexing media: 0.5 mM KTcO4 in 2 M NaClO4 in the pH from 2.0 to 10.0. At pH 2.0, Tc(VII) first gains 2.3 ± 0.3 electrons, following Tc(V) rapidly receives 1.3 ± 0.3 electrons yielding Tc(IV). At pH 4.0-10.0, Tc(IV) is directly obtained by transfer of 3.2 ± 0.3 electrons. The reduction of Tc(VII) produced always a black solid identified as Tc(IV) by Raman and XPS. Our results narrow a significant gap in the fundamental knowledge of Tc aqueous chemistry and are important to understand Tc speciation. They provide basic steps on the way from non-complexing to complex media.

5.
Inorg Chem ; 59(17): 12410-12421, 2020 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-32794734

RESUMEN

Trivalent actinides generally exhibit ninefold coordination in solution. 2,6-Bis(5,6-dipropyl-1,2,4-triazin-3-yl)pyridine (nPr-BTP), a tridentate nitrogen donor ligand, is known to form ninefold coordinated 1:3 complexes, [An(nPr-BTP)3]3+ (An = U, Pu, Am, Cm) in solution. We report a Cm(III) complex with tenfold coordination in solution, [Cm(nPr-BTP)3(NO3)]2+. This species was identified using time-resolved laser fluorescence spectroscopy (TRLFS), vibronic side band spectroscopy (VSBS), X-ray photoelectron spectroscopy (XPS), and density functional theory (DFT). Adding nitrate to a solution of the [Cm(nPr-BTP)3]3+ complex in 2-propanol shifts the Cm(III) emission band from 613.1 to 617.3 nm. This bathochromic shift is due to a higher coordination number of the Cm(III) ion in solution, in agreement with the formation of the [Cm(nPr-BTP)3(NO3)]2+ complex. The formation of this complex exhibits slow kinetics in the range of 5 to 12 days, depending on the water content of the solvent. Formation of a complex [Cm(nPr-BTP)3(X)]2+ was not observed for anions other than nitrate (X- = NO2-, CN-, or OTf-). The formation of the [Cm(nPr-BTP)3(NO3)]2+ complex was studied as a function of NO3- and nPr-BTP concentrations, and slope analyses confirmed the addition of one nitrate anion to the [Cm(nPr-BTP)3]3+ complex. Experiments with varied nPr-BTP concentration show that [Cm(nPr-BTP)3(NO3)]2+ only forms at nPr-BTP concentrations below 10-4 mol/L whereas for concentrations greater than 10-4 mol/L the formation of the tenfold species is suppressed and [Cm(nPr-BTP)3]3+ is the only species present. The presence of the tenfold coordinated complex is supported by VSBS, XPS, and DFT calculations. The vibronic side band of the [Cm(nPr-BTP)3(NO3)]2+ complex exhibits a nitrate stretching mode not observed in the [Cm(nPr-BTP)3]3+ complex. Moreover, XPS on [M(nPr-BTP)3(NO3)](NO3)2 (M = Eu, Am) yields signals from both non-coordinated and coordinated nitrate. Finally, DFT calculations reveal that the energetically most favored structure is obtained if the nitrate is positioned on the C2 axis of the D3 symmetrical [Cm(nPr-BTP)3]3+ complex with a bond distance of 413 pm. Combining results from TRLFS, VSBS, XPS, and DFT provides sound evidence for a unique tenfold coordinated Cm(III) complex in solution-a novelty in An(III) solution chemistry.

6.
Inorg Chem ; 59(1): 8-22, 2020 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-31834788

RESUMEN

Neptunium(V) and uranium(VI) are precipitated from an aqueous potassium-sodium-containing carbonate-rich solution, and the solid phases are investigated. U/Np M4,5-edge high-energy resolution X-ray absorption near edge structure (HR-XANES) spectroscopy and Np 3d4f resonant inelastic X-ray scattering (3d4f RIXS) are applied in combination with thermodynamic calculations, U/Np L3-edge XANES, and extended X-ray absorption fine structure (EXAFS) studies to analyze the local atomic coordination and oxidation states of uranium and neptunium. The XANES/HR-XANES analyses are supported by ab initio quantum-chemical computations with the finite difference method near-edge structure code (FDMNES). The solid precipitates are also investigated with powder X-ray diffraction, scanning electron microscopy-energy dispersive X-ray spectroscopy, and Raman spectroscopy. The results strongly suggest that K[NpVO2CO3](cr), K3[NpVO2(CO3)2](cr), and K3Na[UVIO2(CO3)3](cr) are the predominant neptunium and uranium solid phases formed. Despite the 100 times lower initial neptunium(V) concentration at pH 10.5 and oxic conditions, neptunium(V)-rich phases predominately precipitate. The prevailing formation of neptunium(V) over uranium(VI) solids demonstrates the high structural stability of neptunium(V) carbonates containing potassium. It is illustrated that the Np M5-edge HR-XANES spectra are sensitive to changes of the Np-O axial bond length for neptunyl(V/VI).

7.
Environ Sci Technol ; 54(5): 2678-2687, 2020 03 03.
Artículo en Inglés | MEDLINE | ID: mdl-31961663

RESUMEN

99Tc(VII) uptake by synthetic pure pyrite at 21 °C was studied in a wide pH range from 3.50 to 10.50 using batch experiments combined with scanning electron microscopy, X-ray absorption spectroscopy (XAS), X-ray photoelectron spectroscopy (XPS), and Raman microscopy. We found that pyrite removes Tc quantitatively from solution (log Kd = 5.0 ± 0.1) within 1 day at pH ≥ 5.50 ± 0.08. At pH < 5.50 ± 0.08, the uptake process is slower, leading to 98% Tc removal (log Kd = 4.5 ± 0.1) after 35 days. The slower Tc uptake was explained by higher pyrite solubility under acidic conditions. After 2 months in contact with oxygen at pH 6.00 ± 0.07 and 10.00 ± 0.04, Tc was neither reoxidized nor redissolved. XAS showed that the uptake mechanism involves the reduction from Tc(VII) to Tc(IV) and subsequent inner-sphere complexation of Tc(IV)-Tc(IV) dimers onto a Fe oxide like hematite at pH 6.00 ± 0.07, and Tc(IV) incorporation into magnetite via Fe(III) substitution at pH 10.00 ± 0.04. Calculations of Fe speciation under the experimental conditions predict the formation of hematite at pH < 7.50 and magnetite at pH > 7.50, explaining the formation of the two different Tc species depending on the pH. XPS spectra showed the formation of TcSx at pH 10.00 ± 0.04, being a small fraction of a surface complex, potentially a transient phase in the total redox process.


Asunto(s)
Compuestos Férricos , Hierro , Oxidación-Reducción , Sulfuros
8.
Inorg Chem ; 57(4): 1735-1743, 2018 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-29400951

RESUMEN

The minerals studtite, [UO2(η2-O2)(H2O)2]·2H2O, and metastudtite, [UO2(η2-O2)(H2O)2], are uranyl peroxide minerals that are major oxidative alteration phases of UO2 under conditions of geological storage. The dehydration of studtite has been studied using X-ray photoelectron spectroscopy (XPS) and X-ray absorption spectroscopy. XPS of the U 4f region shows small but significant differences between studtite and metastudtite, with the 4f binding energy of studtite being the highest reported for a uranyl mineral studied by this technique. Further information about the changes in the electronic structure was elucidated using U M4-edge high-energy resolution X-ray absorption near-edge structure (HR-XANES) spectroscopy, which directly probes f orbital states. The transition from the 3d to 5fσ* orbital is sensitive to variations in the U═Oaxial bond length and to changes in the bond covalency. We report evidence that the covalence in the uranyl fragment decreases upon dehydration. Photoluminescence spectroscopy at near-liquid helium temperatures reveals significant spectral differences between the two materials, correlating with the X-ray spectroscopy results. A theoretical investigation has been conducted on the structures of both studtite and metastudtite and benchmarked to the HR-XANES spectra. These illustrate the sensitivity of the 3d to 5f σ* transition toward U═Oaxial bond variation. Small structural changes upon dehydration have been shown to have an important electronic effect on the uranyl fragment.

9.
Environ Sci Technol ; 51(4): 2217-2225, 2017 02 21.
Artículo en Inglés | MEDLINE | ID: mdl-28094921

RESUMEN

Uranium redox states and speciation in magnetite nanoparticles coprecipitated with U(VI) for uranium loadings varying from 1000 to 10 000 ppm are investigated by X-ray absorption spectroscopy (XAS). It is demonstrated that the U M4 high energy resolution X-ray absorption near edge structure (HR-XANES) method is capable to clearly characterize U(IV), U(V), and U(VI) existing simultaneously in the same sample. The contributions of the three different uranium redox states are quantified with the iterative transformation factor analysis (ITFA) method. U L3 XAS and transmission electron microscopy (TEM) reveal that initially sorbed U(VI) species recrystallize to nonstoichiometric UO2+x nanoparticles within 147 days when stored under anoxic conditions. These U(IV) species oxidize again when exposed to air. U M4 HR-XANES data demonstrate strong contribution of U(V) at day 10 and that U(V) remains stable over 142 days under ambient conditions as shown for magnetite nanoparticles containing 1000 ppm U. U L3 XAS indicates that this U(V) species is protected from oxidation likely incorporated into octahedral magnetite sites. XAS results are supported by density functional theory (DFT) calculations. Further characterization of the samples include powder X-ray diffraction (pXRD), scanning electron microscopy (SEM) and Fe 2p X-ray photoelectron spectroscopy (XPS).


Asunto(s)
Nanopartículas de Magnetita , Uranio/química , Oxidación-Reducción , Espectroscopía de Fotoelectrones , Espectroscopía de Absorción de Rayos X
10.
Environ Sci Technol ; 50(21): 11735-11741, 2016 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-27667100

RESUMEN

Environmental scientists and geoscientists working in different fields regard the reactivity of calcite and corresponding changes in its trace elemental- or isotopic composition from diametrically opposed points of view. As one extreme, calcite based environmental remediation strategies rely on the fast recrystallization of calcite and the concurrent uptake and immobilization of pollutants. Paleo-ecological investigations denote the other extreme, and rely on the invariability of calcite composition over geological periods of time. We use long-term radiotracer experiments to quantify recrystallization rates of seven types of calcite powder with diverse morphology and particle size distribution. On the one hand our results demonstrate the long-term metastability of calcite with equilibrated crystal surfaces even at isotopic dis-equilibrium. On the other hand, we document the extremely high reactivity and interfacial free energy of freshly ground, rough calcite. Our results indicate that bulk calcite recrystallization is an interfacial free energy driven Ostwald-ripening process, in which particle roughness effects dominate over the effect of crystal habitus and particle size. We confirm that the dynamic equilibrium exchange of crystal constituents between kink sites involves an activation barrier of about 25 kJ/mol. At room temperature the equilibrium exchange is limited to a near surface region and proceeds at a rate of (3.6 ± 1.4)·10-13 mol/(m2·s).


Asunto(s)
Carbonato de Calcio/química , Tamaño de la Partícula
11.
Environ Sci Technol ; 48(3): 1665-74, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24422437

RESUMEN

The mechanism of selenium(IV) uptake by maghemite was investigated on both the macroscopic and the molecular level. Maghemite nanoparticles exhibited fast adsorption kinetics toward selenium(IV). Batch experiments showed a decreased sorption with increasing pH (3.5-11). Ionic strength variations (0.01 to 0.1 M NaCl) had no significant influence on selenium(IV) uptake. Electrophoretic mobility measurements revealed a significant shift toward lower values of the isoelectric point of maghemite upon selenium(IV) uptake, suggesting the formation of inner-sphere surface complexes. At the molecular level, using X-ray Absorption Fine-Structure Spectroscopy (EXAFS), the formation of both bidentate binuclear corner-sharing ((2)C) and bidentate mononuclear edge-sharing ((1)E) inner-sphere surface complexes was observed, with a trend toward solely (1)E complexes at high pH. The absence of a tridentate surface complex as observed for arsenic(III) and antimonite(III) might be due to the relatively small size of the Se(IV)O3 unit. These new spectroscopic results can be implemented in reactive transport models to improve the prediction of selenium migration behavior in the environment as well as its monitoring through its interaction with maghemite or maghemite layers at the surface of magnetite. Due to its chemical stability even at low pH and its magnetization properties allowing magnetic separation, maghemite is a promising sorbing phase for the treatment of Se polluted waters.


Asunto(s)
Compuestos Férricos/química , Selenio/química , Eliminación de Residuos Líquidos , Contaminantes Químicos del Agua/química , Adsorción , Termodinámica , Espectroscopía de Absorción de Rayos X
12.
ACS Appl Mater Interfaces ; 16(7): 8813-8821, 2024 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-38335022

RESUMEN

The structure and chemical state of heterogeneous catalysts are closely related to their operational stability. Knowing these relationships as precisely as possible is thus essential for further catalyst development. This work focuses on the deactivation of a Cu/ZnO/ZrO2-type catalyst for methanol synthesis. Experiments were performed in a parallel setup, with which time-dependent changes in the catalyst material can be observed. Elucidation of potential deactivation pathways is described for catalyst aging at different times on stream (0, 50, 935 h). Data from X-ray absorption spectroscopy, X-ray photoelectron spectroscopy, N2 physisorption, and transmission electron microscopy measurements reveal that sintering of Cu0 domains and restructuring within ZnO domains mainly contribute to deactivation. Subsequent reactivation by reduction (in H2/N2) reverts the observed structural changes only to a limited extent. Moreover, this work highlights the participation of ZrO2 as a promoter and reveals redispersion of zirconia after initial reduction.

13.
Sci Rep ; 13(1): 5877, 2023 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-37041164

RESUMEN

Mobility and bioavailability of radionuclides in the environment strongly depend on their aqueous speciation, adsorption behavior and the solubility of relevant solid phases. In the present context, we focus on naturally occurring Th-232 at a location in central Sri Lanka presenting high background radiation levels. Four different soil samples were characterized using X-ray Absorption Spectroscopy (XAS) at the Th L3-edge (16.3 keV), Scanning Electron Microscopy (SEM) and Energy Dispersive X-ray (EDX) spectroscopy. X-ray Absorption Near Edge Structure (XANES) spectra are applied as a fingerprint indication for Th existing in different chemical environments. Linear combination fitting (LCF) of the Extended X-ray Absorption Fine Structure (EXAFS) data involving reference Th-monazite (phosphate) and thorianite (oxide) compounds suggested that Th is mostly present as Th-phosphate (76 ± 2%) and Th-oxide (24 ± 2%), even though minor amounts of thorite (silicate) were also detected by SEM-EDX. Further studies on selected individual particles using micro-focus X-ray Fluorescence (µ-XRF) and micro-X-ray Absorption Spectroscopy (µ-XAS) along with SEM-EDX elemental mapping provided information about the nature of Th-bearing mineral particles regarding mixed phases. This is the first study providing quantitative and XAS based speciation information on Th-mineral phases in soil samples from Sri Lanka.

14.
Langmuir ; 28(16): 6606-17, 2012 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-22448713

RESUMEN

Deposition of latex colloids on a structured silicon surface was investigated. The surface with well-defined roughness and topography pattern served as an analogue for rough mineral surfaces with half-pores in the submicrometer size. The silicon topography consists of a regular pit pattern (pit diameter = 400 nm, pit spacing = 400 nm, pit depth = 100 nm). Effects of hydrodynamics and colloidal interactions in transport and deposition dynamics of a colloidal suspension were investigated in a parallel plate flow chamber. The experiments were conducted at pH ∼ 5.5 under both favorable and unfavorable adsorption conditions using carboxylate functionalized colloids to study the impact of surface topography on particle retention. Vertical scanning interferometry (VSI) was applied for both surface topography characterization and the quantification of colloidal retention over large fields of view. The influence of particle diameter variation (d = 0.3-2 µm) on retention of monodisperse as well as polydisperse suspensions was studied as a function of flow velocity. Despite electrostatically unfavorable conditions, at all flow velocities, an increased retention of colloids was observed at the rough surface compared to a smooth surface without surface pattern. The impact of surface roughness on retention was found to be more significant for smaller colloids (d = 0.3, 0.43 vs. 1, 2 µm). From smooth to rough surfaces, the deposition rate of 0.3 and 0.43 µm colloids increased by a factor of ∼2.7 compared to a factor of 1.2 or 1.8 for 1 and 2 µm colloids, respectively. For a substrate herein, with constant surface topography, the ratio between substrate roughness and radius of colloid, Rq/rc, determined the deposition efficiency. As Rq/rc increased, particle-substrate overall DLVO interaction energy decreased. Larger colloids (1 and 2 µm) beyond a critical velocity (7 × 10(-5) and 3 × 10(-6) m/s) (when drag force exceeds adhesion force) tend to detach from the surface irrespective of the impact of roughness. For polydisperse solutions, an increase in the polydispersity and flow velocity resulted in a reduction of colloid deposition efficiency due to the resulting enhanced double-layer repulsion. Quantification of surface topography variations of two endmembers of natural grain surfaces showed that half-pore depths and roughness of sedimentary quartz grains are mainly in the micrometer range. Grains with diagenetically formed quartz overgrowths, however, show surface roughness mainly in the submicrometer range. Thus, surface topography features applied in the here presented analogue study and resulting variation in particle retention can serve as quantitative analogue for particle reactions in diagenetically altered quartz sands and sandstones. The reported impact of particle polydispersity can have an important application for quantitative prediction of retention of varying types of minerals, such as different clay minerals in the environment under prevailing unfavorable conditions.

15.
J Hazard Mater ; 433: 128739, 2022 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-35366449

RESUMEN

Although the oxidative capacity of manganese oxides has been widely investigated, potential changes of the surface reactivity in dynamic anoxic/oxic environments have been often overlooked. In this study, we showed that the reactivity of layer structured manganese oxide (birnessite) was highly sensitive to variable redox conditions within environmentally relevant ranges of pH (4.0 - 8.0), ionic strength (0-100 mM NaCl) and Mn(II)/MnO2 molar ratio (0-0.58) using ofloxacine (OFL), a typical antibiotic, as a target contaminant. In oxic conditions, OFL removal was enhanced relative to anoxic environments under alkaline conditions. Surface-catalyzed oxidation of Mn(II) enabled the formation of more reactive Mn(III) sites for OFL oxidation. However, an increase in Mn(II)/MnO2 molar ratio suppressed MnO2 reactivity, probably because of competitive binding between Mn(II) and OFL and/or modification in MnO2 surface charge. Monovalent cations (e.g., Na+) may compensate the charge deficiency caused by the presence of Mn(III), and affect the aggregation of MnO2 particles, particularly under oxic conditions. An enhancement in the removal efficiency of OFL was then confirmed in the dynamic two-step anoxic/oxic process, which emulates oscillating redox conditions in environmental settings. These findings call for a thorough examination of the reactivity changes at environmental mineral surfaces (e.g., MnO2) in natural systems that may be subjected to alternation between anaerobic and oxygenated conditions.


Asunto(s)
Compuestos de Manganeso , Óxidos , Adsorción , Oxidación-Reducción
16.
Nanoscale ; 14(47): 17661-17669, 2022 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-36415933

RESUMEN

Intermetallic nanoparticles (NPs) are highly interesting materials in catalysis due to their geometrically ordered structures and altered electronic properties, but the synthesis of defined intermetallic NPs remains a challenge. Here, we report a novel and facile approach for the synthesis of intermetallic Pd-In NPs in ionic liquids (ILs) at moderate temperatures. Depending on the molar ratio of the metal precursors and the reaction temperature, single-phase Pd3In, PdIn and Pd3In7 NPs were obtained, which was confirmed, e.g. by powder X-ray diffraction, electron microscopy, and optical emission spectroscopy with inductively coupled plasma. The Pd-In NPs stabilized in ILs were used as catalysts in the liquid-phase semi-hydrogenation of diphenylacetylene (DPA). Highly ordered PdIn NPs with a CsCl type structure revealed both high activity and selectivity to cis-stilbene even at full DPA conversion. Intermetallic compounds such as PdIn can be used to isolate contiguous Pd atoms with another base metal into single Pd sites, thereby increasing the catalytic selectivity of Pd while stabilizing the individual sites in the intermetallic structures. This work may provide new pathways for the synthesis of single-phase intermetallic NPs and future insights into a more rational design of bimetallic catalysts with specific catalytic properties.

17.
Front Chem ; 10: 1042709, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36458154

RESUMEN

The impact of temperature on a freshly precipitated ThO2(am, hyd) solid phase was investigated using a combination of undersaturation solubility experiments and a multi-method approach for the characterization of the solid phase. XRD and EXAFS confirm that ageing of ThO2(am, hyd) at T = 80°C promotes a significant increase of the particle size and crystallinity. TG-DTA and XPS support that the ageing process is accompanied by an important decrease in the number of hydration waters/hydroxide groups in the original amorphous Th(IV) hydrous oxide. However, while clear differences between the structure of freshly precipitated ThO2(am, hyd) and aged samples were observed, the characterization methods used in this work are unable to resolve clear differences between solid phases aged for different time periods or at different pH values. Solubility experiments conducted at T = 22°C with fresh and aged Th(IV) solid phases show a systematic decrease in the solubility of the solid phases aged at T = 80°C. In contrast to the observations gained by solid phase characterization, the ageing time and ageing pH significantly affect the solubility measured at T = 22°C. These observations can be consistently explained considering a solubility control by the outermost surface of the ThO2(s, hyd) solid, which cannot be properly probed by any of the techniques considered in this work. Solubility data are used to derive the thermodynamic properties (log *K°s,0, Δf G°m) of the investigated solid phases, and discussed in terms of particle size using the Schindler equation. These results provide new insights on the interlink between solubility, structure, surface and thermodynamics in the ThO2(s, hyd)-H2O(l) system, with special emphasis on the transformation of the amorphous hydrous/hydroxide solid phases into the thermodynamically stable crystalline oxides.

18.
Environ Sci Pollut Res Int ; 28(30): 40264-40274, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-33387313

RESUMEN

Bioreduction of selenium oxyanions to elemental selenium is ubiquitous; elucidating the properties of this biogenic elemental selenium (BioSe) is thus important to understand its environmental fate. In this study, the magnetic properties of biogenic elemental selenium nanospheres (BioSe-Nanospheres) and nanorods (BioSe-Nanorods) obtained via the reduction of selenium(IV) using anaerobic granular sludge taken from an upflow anaerobic sludge blanket (UASB) reactor treating paper and pulp wastewater were investigated. The study indicated that the BioSe nanomaterials have a strong paramagnetic contribution with some ferromagnetic component due to the incorporation of Fe(III) (high-spin and low-spin species) as indicated by electron paramagnetic resonance (EPR). The paramagnetism did not saturate up to 50,000 Oe at 5 K, and the hysteresis curve showed the coercivity of 100 Oe and magnetic moment saturation around 10 emu. X-ray photoelectron spectroscopy (XPS) and EPR evidenced the presence of Fe(III) in the nanomaterial. Signals for Fe(II) were observed neither in EPR nor in XPS ruling out its presence in the BioSe nanoparticles. Fe(III) being abundantly present in the sludge likely got entrapped in the extracellular polymeric substances (EPS) coating the biogenic nanomaterials. The presence of Fe(III) in BioSe nanomaterial increases the mobility of Fe(III) and may have an effect on phytoplankton growth in the environment. Furthermore, as supported by the literature, there is a potential to exploit the magnetic properties of BioSe nanomaterials in drug delivery systems as well as in space refrigeration.


Asunto(s)
Nanoestructuras , Selenio , Compuestos Férricos , Fenómenos Magnéticos , Aguas del Alcantarillado
19.
Chemosphere ; 281: 130904, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34289606

RESUMEN

Reductive immobilization of 99Tc by a synthetic FeS2 mixture, i.e. marcasite-pyrite 60:40, was studied by a combined approach of batch experiments and powder X-ray diffraction, X-ray photoelectron spectroscopy as well as Raman microscopy. It was found that the FeS2 mixture removes 100% of Tc from the suspension after 7 days in contact at 6.0 < pH ≤ 9.0. The retention outside that pH range was slower and incomplete. Spectroscopic analysis showed that the redox active species at pH 6.0 is Fe2+ as expected from previous works with pyrite. However, at pH 10.0 the surprising oxidation of S2- to SO42- was found responsible for Tc immobilization. This was explained by the high reactivity of marcasite that is easily oxidized to produce H2SO4. Our work provides new molecular insights into the reductive mobilization of Tc(VII) by oxidative formation of sulfate. The assigned molecular reactions may also be relevant for the assessment of other redox reactive contaminants. Technetium re-oxidation experiments showed that the fast oxidation of marcasite is associated to the reduction of the remaining Tc(VII) in solution, which gives marcasite the potential of Tc natural remediation since it delays the re-oxidation of Tc(IV).


Asunto(s)
Sulfuros , Tecnecio , Oxidación-Reducción , Espectroscopía de Fotoelectrones , Sulfatos , Difracción de Rayos X
20.
J Colloid Interface Sci ; 561: 708-718, 2020 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-31767395

RESUMEN

HYPOTHESIS: This study investigates the adsorption of americium and its chemical analogue europium on magnetite, which is expected to form as a major long-term steel canister corrosion product under anoxic and highly saline conditions. EXPERIMENTS: The sorption of europium on magnetite (solid/liquid ratio = 0.5 g/L) was investigated batch wise in NaCl brines with ionic strength I = 1 m, 3.5 m, and 6.67 m, as a function of pHm for two europium concentrations (6 × 10-10m, 1.2 × 10-5m). Information on the chemical nature of the surface species was obtained by X-ray absorption spectroscopy (XAS) at the americium L3-edge. FINDINGS: Retention of europium by magnetite of >99.5% was found above pHm 6.4 for all ionic strengths for europium concentration of 6 × 10-10m. No ionic strength effect was observed in this pHm range. At 1.2 × 10-5m europium concentration, 95 ± 4% sorption was found above pHm 7.5 for I = 1 m and above pHm 8.0 for I = 3.5 m and 6.67 m. A small ionic strength effect was observed in this case. X-ray absorption spectroscopy (XAS) results are consistent with the batch sorption experiment outcomes, showing an insignificant effect of ionic strength on the pHm dependent sorption. Results from potentiometric titrations of the solid phase, batch sorption experiments and spectroscopy were interpreted consistently with a charge distribution multi-site (CD-MUSIC) triple layer surface complexation model assuming surface coordination of the metal ion via a tridentate binding mode.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA