Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Mol Pharm ; 20(11): 5690-5700, 2023 11 06.
Artículo en Inglés | MEDLINE | ID: mdl-37773975

RESUMEN

To assess bioequivalence of locally acting suspension-based nasal sprays, the U.S. FDA currently recommends a weight-of-evidence approach. In addition to in vitro and human pharmacokinetic (PK) studies, this includes a comparative clinical endpoint study to ensure equivalent bioavailability of the active pharmaceutical ingredient (API) at the site of action. The present study aimed to assess, within an in vitro/in vivo correlation paradigm, whether PK studies and dissolution kinetics are sensitive to differences in drug particle size for a locally acting suspension-based nasal spray product. Two investigational suspension-based nasal formulations of mometasone furoate (MF-I and MF-II; delivered dose: 180 µg) differed in API particle size and were compared in a single-center, double-blind, single-dose, randomized, two-way crossover PK study in 44 healthy subjects with oral charcoal block. Morphology-directed Raman spectroscopy yielded volume median diameters of 3.17 µm for MF-I and 5.50 µm for MF-II, and dissolution studies showed that MF-II had a slower dissolution profile than MF-I. The formulation with larger API particles (MF-II) showed a 45% smaller Cmax and 45% smaller AUC0-inf compared to those of MF-I. Systemic bioavailability of MF-I (2.20%) and MF-II (1.18%) correlated well with the dissolution kinetics, with the faster dissolving formulation yielding the higher bioavailability. This agreement between pharmacokinetics and dissolution kinetics cross-validated both methods and supported their use in assessing potential differences in slowly dissolving suspension-based nasal spray products.


Asunto(s)
Rociadores Nasales , Humanos , Disponibilidad Biológica , Furoato de Mometasona/farmacocinética , Tamaño de la Partícula , Equivalencia Terapéutica , Método Doble Ciego , Estudios Cruzados
2.
Pharm Res ; 34(12): 2541-2556, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-28799097

RESUMEN

PURPOSE: The ability of two semi-mechanistic simulation approaches to predict the systemic pharmacokinetics (PK) of inhaled corticosteroids (ICSs) delivered via dry powder inhalers (DPIs) was assessed for mometasone furoate, budesonide and fluticasone propionate. METHODS: Both approaches derived the total lung doses and the central to peripheral lung deposition ratios from clinically relevant cascade impactor studies, but differed in the way the pulmonary absorption rate was derived. In approach 1, the rate of in vivo drug dissolution/absorption was predicted for the included ICSs from in vitro aerodynamic particle size distribution and in vitro drug solubility estimates measured in an in vivo predictive dissolution medium. Approach 2 derived a first order absorption rate from the mean dissolution time (MDT), determined for the test formulations in an in vitro Transwell® based dissolution system. RESULTS: Approach 1 suggested PK profiles which agreed well with the published pharmacokinetic profiles. Similarly, within approach 2, input parameters for the pulmonary absorption rate constant derived from dissolution rate experiments were able to reasonably predict the pharmacokinetic profiles published in literature. CONCLUSION: Approach 1 utilizes more complex strategies for predicting the dissolution/absorption process without providing a significant advantage over approach 2 with regard to accuracy of in vivo predictions.


Asunto(s)
Antiinflamatorios/farmacocinética , Broncodilatadores/farmacocinética , Budesonida/farmacocinética , Fluticasona/farmacocinética , Pulmón/metabolismo , Furoato de Mometasona/farmacocinética , Administración por Inhalación , Corticoesteroides/administración & dosificación , Corticoesteroides/farmacocinética , Antiinflamatorios/administración & dosificación , Broncodilatadores/administración & dosificación , Budesonida/administración & dosificación , Inhaladores de Polvo Seco , Fluticasona/administración & dosificación , Humanos , Modelos Biológicos , Furoato de Mometasona/administración & dosificación
3.
Clin Transl Sci ; 15(8): 1906-1915, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35583936

RESUMEN

Selatogrel is a potent and selective reversible P2Y12 receptor antagonist in development for early treatment of acute myocardial infarction via subcutaneous (s.c.) self-injection. Selatogrel is almost exclusively eliminated via the hepatobiliary route. Hepatic impairment is associated with reduced drug clearance and primary hemostasis. This single-center, open-label study investigated the effect of mild and moderate hepatic impairment on pharmacokinetics (PK) and pharmacodynamics (PD) of a single s.c. dose of selatogrel (16 mg). The study included groups of eight subjects with mild and moderate hepatic impairment, and matched healthy control subjects. Compared to healthy subjects, exposure to selatogrel in subjects with mild and moderate hepatic impairment was 30% and 108% (maximum plasma concentration [Cmax ]) and 47% and 212% (area under the concentration-time curve from zero to infinity [AUC0-∞ ]) higher, respectively. Hepatic impairment was associated with lower clearance and volume of distribution, whereas plasma protein binding was not affected. Marked inhibition of platelet aggregation (IPA > 80%) was attained within 30 min in all subjects and hepatic impairment prolonged IPA duration. Area under the effect curve was 60% and 160% higher in subjects with mild and moderate hepatic impairment, respectively. PK/PD modeling identified a change in the relationship between exposure and IPA, with a steeper concentration-effect relationship in healthy subjects compared to subjects with hepatic impairment. The combination of higher exposure and lower half-maximum inhibitory concentration resulted in longer lasting effect. In conclusion, hepatic impairment alters the PK/PD relationship leading to prolonged effects. Therefore, dose adjustments may be warranted in subjects with moderate hepatic impairment.


Asunto(s)
Hepatopatías , Antagonistas del Receptor Purinérgico P2Y , Área Bajo la Curva , Humanos , Hepatopatías/tratamiento farmacológico , Organofosfonatos , Pirimidinas
4.
Clin Pharmacokinet ; 61(5): 687-695, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-34961905

RESUMEN

BACKGROUND AND OBJECTIVES: Selatogrel is a potent, reversible, and selective antagonist of the platelet P2Y12 receptor currently developed for the treatment of acute myocardial infarction (AMI). In the completed Phase I/II studies, selatogrel was subcutaneously (s.c.) administered as a lyophilizate-based formulation by syringe by a healthcare professional. In the Phase III study, selatogrel will be self-administered s.c. as a liquid formulation with an autoinjector at the onset of AMI symptoms to shorten treatment delay. This clinical bridging study compared the pharmacokinetics (PK) of selatogrel between the different formulations. METHODS: This was a single-center, randomized, open-label, three-period, cross-over Phase I study in 24 healthy subjects. In each period, a single subcutaneous dose of 16 mg selatogrel was administered as (1) a Phase III liquid formulation by autoinjector (Treatment A), (2) a Phase III liquid formulation by prefilled syringe (Treatment B), or (3) a Phase I/II reconstituted lyophilizate-based formulation by syringe (Treatment C). PK parameters including area under the plasma concentration-time curve from zero to infinity (AUC0-∞), maximum plasma concentration (Cmax), time to reach Cmax(tmax), and terminal half-life (t1/2) were determined using noncompartmental analysis. Pharmacodynamic (PD) parameters were estimated using PK/PD modeling, including the time of first occurrence of inhibition of platelet aggregation (IPA) ≥ 80% (tonset), duration of IPA above 80% (tduration), and responder rate defined as the percentage of subjects with tonset ≤ 30 min and tduration ≥ 3 h. Safety and tolerability were also assessed. RESULTS: Comparing Treatment A to Treatment C, the exposure (AUC0-∞) was bioequivalent with a geometric mean ratio (GMR) (90% confidence interval) of 0.95 (0.92-0.97) within the bioequivalence range (0.80-1.25). Absorption following Treatment A was slightly slower with a tmax occurring approximately 30 min later and a 20% lower Cmax. The autoinjector itself had no impact on the PK of selatogrel, as similar values of Cmax and AUC0-∞ were determined after administration as a Phase III liquid formulation by autoinjector or by prefilled syringe (i.e., GMR [90% confidence interval] of 1.06 [0.97-1.15] and 0.99 [0.96-1.03] for Cmax and AUC0-∞, respectively). PK/PD modeling predicted that the median tonset will occur slightly later for Treatment A (7.2 min) compared to Treatment C (4.2  min), while no relevant differences in tduration and responder rate were estimated between the two treatments. Selatogrel was safe and well tolerated following all three treatments. CONCLUSIONS: PK and simulated PD effects of selatogrel were similar across treatments. CLINICAL TRIAL REGISTRATION: NCT04557280.


Asunto(s)
Organofosfonatos , Jeringas , Área Bajo la Curva , Estudios Cruzados , Voluntarios Sanos , Humanos , Organofosfonatos/farmacocinética , Pirimidinas , Equivalencia Terapéutica
5.
Clin Drug Investig ; 41(8): 711-721, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34331678

RESUMEN

BACKGROUND AND OBJECTIVE: Daridorexant is a new dual orexin receptor antagonist currently in late-stage clinical development for the treatment of insomnia. This randomized, double-blind, placebo-controlled, four-period crossover study investigated the effect of daridorexant at a therapeutic and supratherapeutic dose on QT interval duration. METHODS: Thirty-six healthy subjects received single oral doses of daridorexant (50 mg; 200 mg), moxifloxacin (400 mg; open label), and placebo. All treatments were administered at bedtime to mimic therapeutic practice. The primary analysis was based on linear mixed-effects concentration-QT modelling. Triplicate ECG data were extracted from Holter recordings at baseline and until 24 h post dosing at time points matching those for pharmacokinetic sampling. Plasma concentrations of daridorexant were determined over 24 h. RESULTS: Assay sensitivity was demonstrated based on mean baseline- and placebo-corrected QT interval using Fridericia's formula (ΔΔQTcF) > 5 ms following moxifloxacin administration (p < 0.01). Following daridorexant administration, mean (90% confidence interval, CI) ΔΔQTcF was 1.40 ms (0.48; 2.32 ms) and 1.84 ms (-0.12; 3.79 ms) at the Cmax of 747 ng/mL (50 mg dose) and 1809 ng/mL (200 mg dose), respectively, i.e., the upper bounds of the CIs were < 10 ms defined as threshold of regulatory concern. Lack of relevant QT prolongation was confirmed by secondary by-time point analysis and absence of relevant findings in the categorical outlier analysis. Daridorexant was safe and well tolerated and its pharmacokinetics were consistent with previous data. CONCLUSION: Daridorexant does not impair cardiac repolarization evidenced by absence of relevant QT prolongation at therapeutic and supratherapeutic doses. Clinical Trials Registration ID: NCT04250506.


Asunto(s)
Síndrome de QT Prolongado , Antagonistas de los Receptores de Orexina , Estudios Cruzados , Relación Dosis-Respuesta a Droga , Método Doble Ciego , Electrocardiografía , Fluoroquinolonas , Frecuencia Cardíaca , Humanos , Imidazoles , Síndrome de QT Prolongado/inducido químicamente , Síndrome de QT Prolongado/diagnóstico , Antagonistas de los Receptores de Orexina/efectos adversos , Pirrolidinas
6.
Thromb Haemost ; 121(6): 755-766, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33412611

RESUMEN

Reduced pharmacodynamic (PD) effects of irreversible oral P2Y12 receptor antagonists have been reported when administered during cangrelor infusion. Therefore, the PD interaction liability of the novel P2Y12 receptor antagonist selatogrel with irreversible (i.e., clopidogrel, prasugrel) and reversible (i.e., ticagrelor) oral P2Y12 receptor antagonists was investigated in vitro and in healthy subjects. In vitro, selatogrel reduced the effects of clopidogrel and prasugrel in a concentration-dependent manner, while additive effects were observed for the combination of selatogrel and ticagrelor. Accordingly, a single-center, randomized, double-blind, two-way crossover study was conducted consisting of six groups. In each group (N = 12), an open-label loading dose of 300 or 600 mg clopidogrel, 60 mg prasugrel, or 180 mg ticagrelor was administered 30 minutes (i.e., at t max of selatogrel) or 12 hours after a single subcutaneous dose of 16 mg selatogrel or placebo. Inhibition of platelet aggregation (IPA) was assessed at various time points up to 48 hours. Reduced IPA was determined when clopidogrel or prasugrel was administered 30 minutes after selatogrel (∼40 and 70% lower IPA, respectively, at 24 hours postdosing). However, when administering prasugrel 12 hours after selatogrel, IPA was not impacted (>90% IPA) and in the case of clopidogrel reduced effects were partially mitigated. Similar IPA was determined for ticagrelor when administered 30 minutes after selatogrel or placebo. In conclusion, reduced IPA was observed for clopidogrel and prasugrel when administered after selatogrel, which can be mitigated by applying an appropriate time interval. No PD interaction with ticagrelor was observed.


Asunto(s)
Clopidogrel/administración & dosificación , Sustitución de Medicamentos , Organofosfonatos/administración & dosificación , Inhibidores de Agregación Plaquetaria/administración & dosificación , Agregación Plaquetaria/efectos de los fármacos , Clorhidrato de Prasugrel/administración & dosificación , Antagonistas del Receptor Purinérgico P2Y/administración & dosificación , Pirimidinas/administración & dosificación , Ticagrelor/administración & dosificación , Adulto , Anciano , Clopidogrel/efectos adversos , Estudios Cruzados , Método Doble Ciego , Interacciones Farmacológicas , Femenino , Humanos , Masculino , Persona de Mediana Edad , Organofosfonatos/efectos adversos , Inhibidores de Agregación Plaquetaria/efectos adversos , Clorhidrato de Prasugrel/efectos adversos , Estudios Prospectivos , Antagonistas del Receptor Purinérgico P2Y/efectos adversos , Pirimidinas/efectos adversos , Ticagrelor/efectos adversos , Factores de Tiempo , Resultado del Tratamiento , Adulto Joven
7.
AAPS J ; 23(3): 48, 2021 03 25.
Artículo en Inglés | MEDLINE | ID: mdl-33768368

RESUMEN

In the context of streamlining generic approval, this study assessed whether pharmacokinetics (PK) could elucidate the pulmonary fate of orally inhaled drug products (OIDPs). Three fluticasone propionate (FP) dry powder inhaler (DPI) formulations (A-4.5, B-3.8, and C-3.7), differing only in type and composition of lactose fines, exhibited median mass aerodynamic diameter (MMAD) of 4.5 µm (A-4.5), 3.8 µm (B-3.8), and 3.7 µm (C-3.7) and varied in dissolution rates (A-4.5 slower than B-3.8 and C-3.7). In vitro total lung dose (TLDin vitro) was determined as the average dose passing through three anatomical mouth-throat (MT) models and yielded dose normalization factors (DNF) for each DPI formulation X (DNFx = TLDin vitro,x/TLDin vitro,A-4.5). The DNF was 1.00 for A-4.5, 1.32 for B-3.8, and 1.21 for C-3.7. Systemic PK after inhalation of 500 µg FP was assessed in a randomized, double-blind, four-way crossover study in 24 healthy volunteers. Peak concentrations (Cmax) of A-4.5 relative to those of B-3.8 or C-3.7 lacked bioequivalence without or with dose normalization. The area under the curve (AUC0-Inf) was bio-IN-equivalent before dose normalization and bioequivalent after dose normalization. Thus, PK could detect differences in pulmonary available dose (AUC0-Inf) and residence time (dose-normalized Cmax). The differences in dose-normalized Cmax could not be explained by differences in in vitro dissolution. This might suggest that Cmax differences may indicate differences in regional lung deposition. Overall this study supports the use of PK studies to provide relevant information on the pulmonary performance characteristics (i.e., available dose, residence time, and regional lung deposition).


Asunto(s)
Broncodilatadores/farmacocinética , Medicamentos Genéricos/farmacocinética , Fluticasona/farmacocinética , Administración por Inhalación , Adolescente , Adulto , Aerosoles , Área Bajo la Curva , Broncodilatadores/administración & dosificación , Estudios Cruzados , Método Doble Ciego , Liberación de Fármacos , Medicamentos Genéricos/administración & dosificación , Inhaladores de Polvo Seco , Femenino , Fluticasona/administración & dosificación , Voluntarios Sanos , Humanos , Masculino , Persona de Mediana Edad , Polvos , Equivalencia Terapéutica , Adulto Joven
8.
Clin Pharmacokinet ; 59(5): 545-566, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32056160

RESUMEN

Coronary artery disease remains the major cause of mortality worldwide. Antiplatelet drugs such as acetylsalicylic acid and P2Y12 receptor antagonists are cornerstone treatments for the prevention of thrombotic events in patients with coronary artery disease. Clopidogrel has long been the gold standard but has major pharmacological limitations such as a slow onset and long duration of effect, as well as weak platelet inhibition with high inter-individual pharmacokinetic and pharmacodynamic variability. There has been a strong need to develop potent P2Y12 receptor antagonists with more favorable pharmacological properties. Prasugrel and ticagrelor are more potent and have a faster onset of action; however, they have shown an increased bleeding risk compared with clopidogrel. Cangrelor is highly potent and has a very rapid onset and offset of effect; however, its indication is limited to P2Y12 antagonist-naïve patients undergoing percutaneous coronary intervention. Two novel P2Y12 receptor antagonists are currently in clinical development, namely vicagrel and selatogrel. Vicagrel is an analog of clopidogrel with enhanced and more efficient formation of its active metabolite. Selatogrel is characterized by a rapid onset of action following subcutaneous administration and developed for early treatment of a suspected acute myocardial infarction. This review article describes the clinical pharmacology profile of marketed P2Y12 receptor antagonists and those under development focusing on pharmacokinetic, pharmacodynamic, and drug-drug interaction liability.


Asunto(s)
Intervención Coronaria Percutánea , Inhibidores de Agregación Plaquetaria/farmacocinética , Antagonistas del Receptor Purinérgico P2Y/farmacocinética , Síndrome Coronario Agudo , Clopidogrel/farmacocinética , Humanos , Clorhidrato de Prasugrel/farmacocinética , Ticagrelor/farmacocinética
9.
Clin Transl Sci ; 13(5): 886-890, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32166864

RESUMEN

In vitro studies have indicated that the P2Y12 receptor antagonist selatogrel is a substrate of organic anion-transporting-polypeptide (OATP)1B1 and OATP1B3 that are known to mediate hepatic uptake. Selatogrel is primarily eliminated via the biliary route. Therefore, the study aim was to investigate the effect of rifampin-mediated OATP1B1 and OATP1B3 inhibition on the pharmacokinetics (PK) of selatogrel. This was a randomized, double-blind, placebo-controlled, two-period, crossover study in 14 healthy subjects. In each period, a single subcutaneous dose of 4 mg selatogrel was administered, either immediately after a single intravenous 30 minutes infusion of 600 mg rifampin or after placebo. Plasma samples were collected for 36 hours and analyzed using a validated liquid chromatography-tandem mass spectrometry method. PK parameters of selatogrel were calculated using noncompartmental analysis. The effect of rifampin was explored based on geometric mean peak plasma concentration (Cmax ) and area under the concentration curve from zero to infinity (AUC0-∞ ) ratios and for time of maximum plasma concentration (Tmax ) by Wilcoxon signed rank test. In addition, the safety and tolerability of the study treatments were evaluated. The geometric mean ratios of Cmax and AUC0-∞ were 1.19 (90% confidence interval (CI) 1.11-1.28) and 1.43 (90% CI 1.36-1.51), respectively, indicating a minor selatogrel exposure increase when administered after an infusion of rifampin compared with placebo. Rifampin administration did not affect terminal half-life (t½ ) or Tmax of selatogrel. All study treatments were safe and well-tolerated. A single dose of 600 mg rifampin, a potent OATP1B1/1B3 inhibitor, did not impact the PK of selatogrel to a clinically relevant extent suggesting that OATP1B1 and OATP1B3 transporters do not play a major role in the elimination of selatogrel.


Asunto(s)
Organofosfonatos/farmacocinética , Antagonistas del Receptor Purinérgico P2Y/farmacocinética , Pirimidinas/farmacocinética , Rifampin/farmacocinética , Adolescente , Adulto , Anciano , Estudios Cruzados , Método Doble Ciego , Esquema de Medicación , Interacciones Farmacológicas , Femenino , Semivida , Voluntarios Sanos , Humanos , Transportador 1 de Anión Orgánico Específico del Hígado/antagonistas & inhibidores , Transportador 1 de Anión Orgánico Específico del Hígado/metabolismo , Masculino , Persona de Mediana Edad , Organofosfonatos/administración & dosificación , Antagonistas del Receptor Purinérgico P2Y/administración & dosificación , Pirimidinas/administración & dosificación , Receptores Purinérgicos P2Y12/metabolismo , Rifampin/administración & dosificación , Miembro 1B3 de la Familia de los Transportadores de Solutos de Aniones Orgánicos/antagonistas & inhibidores , Miembro 1B3 de la Familia de los Transportadores de Solutos de Aniones Orgánicos/metabolismo , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA