Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 102
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
J Biol Chem ; 299(2): 102869, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36621627

RESUMEN

The CTLH (C-terminal to lissencephaly-1 homology motif) complex is a multisubunit RING E3 ligase with poorly defined substrate specificity and flexible subunit composition. Two key subunits, muskelin and Wdr26, specify two alternative CTLH complexes that differ in quaternary structure, thereby allowing the E3 ligase to presumably target different substrates. With the aid of different biophysical and biochemical techniques, we characterized CTLH complex assembly pathways, focusing not only on Wdr26 and muskelin but also on RanBP9, Twa1, and Armc8ß subunits, which are critical to establish the scaffold of this E3 ligase. We demonstrate that the ability of muskelin to tetramerize and the assembly of Wdr26 into dimers define mutually exclusive oligomerization modules that compete with nanomolar affinity for RanBP9 binding. The remaining scaffolding subunits, Armc8ß and Twa1, strongly interact with each other and with RanBP9, again with nanomolar affinity. Our data demonstrate that RanBP9 organizes subunit assembly and prevents higher order oligomerization of dimeric Wdr26 and the Armc8ß-Twa1 heterodimer through its tight binding. Combined, our studies define alternative assembly pathways of the CTLH complex and elucidate the role of RanBP9 in governing differential oligomeric assemblies, thereby advancing our mechanistic understanding of CTLH complex architectures.


Asunto(s)
Multimerización de Proteína , Ubiquitina-Proteína Ligasas , Ubiquitina-Proteína Ligasas/química , Ubiquitina-Proteína Ligasas/metabolismo , Multimerización de Proteína/genética , Estructura Cuaternaria de Proteína , Polimerizacion , Unión Proteica
2.
Nat Chem Biol ; 18(5): 547-555, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35301481

RESUMEN

RNA-catalyzed RNA methylation was recently shown to be part of the catalytic repertoire of ribozymes. The methyltransferase ribozyme MTR1 catalyzes the site-specific synthesis of 1-methyladenosine (m1A) in RNA, using O6-methylguanine (m6G) as a methyl group donor. Here, we report the crystal structure of MTR1 at a resolution of 2.8 Å, which reveals a guanine-binding site reminiscent of natural guanine riboswitches. The structure represents the postcatalytic state of a split ribozyme in complex with the m1A-containing RNA product and the demethylated cofactor guanine. The structural data suggest the mechanistic involvement of a protonated cytidine in the methyl transfer reaction. A synergistic effect of two 2'-O-methylated ribose residues in the active site results in accelerated methyl group transfer. Supported by these results, it seems plausible that modified nucleotides may have enhanced early RNA catalysis and that metabolite-binding riboswitches may resemble inactivated ribozymes that have lost their catalytic activity during evolution.


Asunto(s)
ARN Catalítico , Sitios de Unión , Catálisis , Guanina , Metiltransferasas/genética , Conformación de Ácido Nucleico , ARN Catalítico/metabolismo
3.
Cell ; 134(2): 268-78, 2008 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-18662542

RESUMEN

Ubiquitin (Ub) and ubiquitin-like proteins (Ubls) are conjugated to their targets by specific cascades involving three classes of enzymes, E1, E2, and E3. Each E1 adenylates the C terminus of its cognate Ubl, forms a E1 approximately Ubl thioester intermediate, and ultimately generates a thioester-linked E2 approximately Ubl product. We have determined the crystal structure of yeast Uba1, revealing a modular architecture with individual domains primarily mediating these specific activities. The negatively charged C-terminal ubiquitin-fold domain (UFD) is primed for binding of E2s and recognizes their positively charged first alpha helix via electrostatic interactions. In addition, a mobile loop from the domain harboring the E1 catalytic cysteine contributes to E2 binding. Significant, experimentally observed motions in the UFD around a hinge in the linker connecting this domain to the rest of the enzyme suggest a conformation-dependent mechanism for the transthioesterification function of Uba1; however, this mechanism clearly differs from that of other E1 enzymes.


Asunto(s)
Proteínas de Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/metabolismo , Enzimas Activadoras de Ubiquitina/química , Ubiquitina/metabolismo , Cristalografía por Rayos X , Modelos Moleculares , Estructura Terciaria de Proteína , Saccharomyces cerevisiae/enzimología , Proteínas de Saccharomyces cerevisiae/metabolismo , Ubiquitina/química , Enzimas Activadoras de Ubiquitina/metabolismo
4.
Proc Natl Acad Sci U S A ; 117(52): 33235-33245, 2020 12 29.
Artículo en Inglés | MEDLINE | ID: mdl-33318193

RESUMEN

The antimalarial artemisinins have also been implicated in the regulation of various cellular pathways including immunomodulation of cancers and regulation of pancreatic cell signaling in mammals. Despite their widespread application, the cellular specificities and molecular mechanisms of target recognition by artemisinins remain poorly characterized. We recently demonstrated how these drugs modulate inhibitory postsynaptic signaling by direct binding to the postsynaptic scaffolding protein gephyrin. Here, we report the crystal structure of the central metabolic enzyme pyridoxal kinase (PDXK), which catalyzes the production of the active form of vitamin B6 (also known as pyridoxal 5'-phosphate [PLP]), in complex with artesunate at 2.4-Šresolution. Partially overlapping binding of artemisinins with the substrate pyridoxal inhibits PLP biosynthesis as demonstrated by kinetic measurements. Electrophysiological recordings from hippocampal slices and activity measurements of glutamic acid decarboxylase (GAD), a PLP-dependent enzyme synthesizing the neurotransmitter γ-aminobutyric acid (GABA), define how artemisinins also interfere presynaptically with GABAergic signaling. Our data provide a comprehensive picture of artemisinin-induced effects on inhibitory signaling in the brain.


Asunto(s)
Artemisininas/farmacología , Regulación hacia Abajo , Inhibición Neural/efectos de los fármacos , Inhibidores de Proteínas Quinasas/farmacología , Piridoxal Quinasa/antagonistas & inhibidores , Transmisión Sináptica/efectos de los fármacos , Adenosina Trifosfato/análogos & derivados , Adenosina Trifosfato/metabolismo , Animales , Artemisininas/química , Sitios de Unión , Regulación hacia Abajo/efectos de los fármacos , Fenómenos Electrofisiológicos/efectos de los fármacos , Femenino , Neuronas GABAérgicas/efectos de los fármacos , Neuronas GABAérgicas/metabolismo , Glutamato Descarboxilasa/metabolismo , Masculino , Ratones Endogámicos C57BL , Modelos Biológicos , Modelos Moleculares , Inhibidores de Proteínas Quinasas/química , Piridoxal Quinasa/química , Piridoxal Quinasa/metabolismo , Sinapsis/efectos de los fármacos , Sinapsis/metabolismo , Ácido gamma-Aminobutírico/biosíntesis
5.
PLoS Pathog ; 16(6): e1008640, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32569299

RESUMEN

Ubiquitylation is a common post translational modification of eukaryotic proteins and in the human malaria parasite, Plasmodium falciparum (Pf) overall ubiquitylation increases in the transition from intracellular schizont to extracellular merozoite stages in the asexual blood stage cycle. Here, we identify specific ubiquitylation sites of protein substrates in three intraerythrocytic parasite stages and extracellular merozoites; a total of 1464 sites in 546 proteins were identified (data available via ProteomeXchange with identifier PXD014998). 469 ubiquitylated proteins were identified in merozoites compared with only 160 in the preceding intracellular schizont stage, suggesting a large increase in protein ubiquitylation associated with merozoite maturation. Following merozoite invasion of erythrocytes, few ubiquitylated proteins were detected in the first intracellular ring stage but as parasites matured through trophozoite to schizont stages the apparent extent of ubiquitylation increased. We identified commonly used ubiquitylation motifs and groups of ubiquitylated proteins in specific areas of cellular function, for example merozoite pellicle proteins involved in erythrocyte invasion, exported proteins, and histones. To investigate the importance of ubiquitylation we screened ubiquitin pathway inhibitors in a parasite growth assay and identified the ubiquitin activating enzyme (UBA1 or E1) inhibitor MLN7243 (TAK-243) to be particularly effective. This small molecule was shown to be a potent inhibitor of recombinant PfUBA1, and a structural homology model of MLN7243 bound to the parasite enzyme highlights avenues for the development of P. falciparum specific inhibitors. We created a genetically modified parasite with a rapamycin-inducible functional deletion of uba1; addition of either MLN7243 or rapamycin to the recombinant parasite line resulted in the same phenotype, with parasite development blocked at the schizont stage. Nuclear division and formation of intracellular structures was interrupted. These results indicate that the intracellular target of MLN7243 is UBA1, and this activity is essential for the final differentiation of schizonts to merozoites.


Asunto(s)
Merozoítos/metabolismo , Plasmodium falciparum/metabolismo , Proteínas Protozoarias/metabolismo , Ubiquitina/metabolismo , Ubiquitinación , Humanos , Plasmodium falciparum/genética , Proteínas Protozoarias/genética , Ubiquitina/genética
6.
Chemistry ; 27(7): 2506-2512, 2021 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-33075184

RESUMEN

Legionnaires' disease is caused by infection with the intracellularly replicating Gram-negative bacterium Legionella pneumophila. This pathogen uses an unconventional way of ubiquitinating host proteins by generating a phosphoribosyl linkage between substrate proteins and ubiquitin by making use of an ADPribosylated ubiquitin (UbADPr ) intermediate. The family of SidE effector enzymes that catalyze this reaction is counteracted by Legionella hydrolases, which are called Dups. This unusual ubiquitination process is important for Legionella proliferation and understanding these processes on a molecular level might prove invaluable in finding new treatments. Herein, a modular approach is used for the synthesis of triazole-linked UbADPr , and analogues thereof, and their affinity towards the hydrolase DupA is determined and hydrolysis rates are compared to natively linked UbADPr . The inhibitory effects of modified Ub on the canonical eukaryotic E1-enzyme Uba1 are investigated and rationalized in the context of a high-resolution crystal structure reported herein. Finally, it is shown that synthetic UbADPr analogues can be used to effectively pull-down overexpressed DupA from cell lysate.


Asunto(s)
ADP-Ribosilación , Legionella pneumophila/enzimología , Enfermedad de los Legionarios/microbiología , Ubiquitina/química , Ubiquitina/metabolismo , Proteínas Bacterianas/metabolismo , Células HEK293 , Humanos , Hidrolasas/metabolismo , Legionella pneumophila/crecimiento & desarrollo , Enzimas Activadoras de Ubiquitina/metabolismo , Ubiquitinación
7.
Mol Cell ; 49(4): 692-703, 2013 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-23333303

RESUMEN

Small nuclear ribonucleoproteins (snRNPs) represent key constituents of major and minor spliceosomes. snRNPs contain a common core, composed of seven Sm proteins bound to snRNA, which forms in a step-wise and factor-mediated reaction. The assembly chaperone pICln initially mediates the formation of an otherwise unstable pentameric Sm protein unit. This so-called 6S complex docks subsequently onto the SMN complex, which removes pICln and enables the transfer of pre-assembled Sm proteins onto snRNA. X-ray crystallography and electron microscopy was used to investigate the structural basis of snRNP assembly. The 6S complex structure identifies pICln as an Sm protein mimic, which enables the topological organization of the Sm pentamer in a closed ring. A second structure of 6S bound to the SMN complex components SMN and Gemin2 uncovers a plausible mechanism of pICln elimination and Sm protein activation for snRNA binding. Our studies reveal how assembly factors facilitate formation of RNA-protein complexes in vivo.


Asunto(s)
Proteínas de Drosophila/química , Canales Iónicos/química , Proteínas Nucleares snRNP/química , Secuencia de Aminoácidos , Animales , Cristalografía por Rayos X , Drosophila melanogaster , Humanos , Enlace de Hidrógeno , Ratones , Microscopía Electrónica , Modelos Moleculares , Multimerización de Proteína , Estructura Cuaternaria de Proteína , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Proteínas de Xenopus/química , Xenopus laevis , Proteínas Nucleares snRNP/ultraestructura
8.
Subcell Biochem ; 93: 221-272, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31939153

RESUMEN

p97 belongs to the functional diverse superfamily of AAA+ (ATPases Associated with diverse cellular Activities) ATPases and is characterized by an N-terminal regulatory domain and two stacked hexameric ATPase domains forming a central protein conducting channel. p97 is highly versatile and has key functions in maintaining protein homeostasis including protein quality control mechanisms like the ubiquitin proteasome system (UPS) and autophagy to disassemble polyubiquitylated proteins from chromatin, membranes, macromolecular protein complexes and aggregates which are either degraded by the proteasome or recycled. p97 can use energy derived from ATP hydrolysis to catalyze substrate unfolding and threading through its central channel. The function of p97 in a large variety of different cellular contexts is reflected by its simultaneous association with different cofactors, which are involved in substrate recognition and processing, thus leading to the formation of transient multi-protein complexes. Dysregulation in protein homeostasis and proteotoxic stress are often involved in the development of cancer and neurological diseases and targeting the UPS including p97 in cancer is a well-established pharmacological strategy. In this chapter we will describe structural and functional aspects of the p97 interactome in regulating diverse cellular processes and will discuss the role of p97 in targeted cancer therapy.


Asunto(s)
Adenosina Trifosfatasas/química , Adenosina Trifosfatasas/metabolismo , Proteínas Nucleares/química , Proteínas Nucleares/metabolismo , Proteostasis , Humanos , Neoplasias/tratamiento farmacológico , Neoplasias/enzimología , Neoplasias/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , Ubiquitina/metabolismo
9.
Proc Natl Acad Sci U S A ; 114(51): 13453-13458, 2017 12 19.
Artículo en Inglés | MEDLINE | ID: mdl-29208709

RESUMEN

Phosphorylation is a major regulator of protein interactions; however, the mechanisms by which regulation occurs are not well understood. Here we identify a salt-bridge competition or "theft" mechanism that enables a phospho-triggered swap of protein partners by Raf Kinase Inhibitory Protein (RKIP). RKIP transitions from inhibiting Raf-1 to inhibiting G-protein-coupled receptor kinase 2 upon phosphorylation, thereby bridging MAP kinase and G-Protein-Coupled Receptor signaling. NMR and crystallography indicate that a phosphoserine, but not a phosphomimetic, competes for a lysine from a preexisting salt bridge, initiating a partial unfolding event and promoting new protein interactions. Structural elements underlying the theft occurred early in evolution and are found in 10% of homo-oligomers and 30% of hetero-oligomers including Bax, Troponin C, and Early Endosome Antigen 1. In contrast to a direct recognition of phosphorylated residues by binding partners, the salt-bridge theft mechanism represents a facile strategy for promoting or disrupting protein interactions using solvent-accessible residues, and it can provide additional specificity at protein interfaces through local unfolding or conformational change.


Asunto(s)
Secuencia Conservada , Mapas de Interacción de Proteínas , Procesamiento Proteico-Postraduccional , Sustitución de Aminoácidos , Animales , Evolución Molecular , Humanos , Lisina/genética , Lisina/metabolismo , Proteínas de Unión a Fosfatidiletanolamina/química , Proteínas de Unión a Fosfatidiletanolamina/genética , Proteínas de Unión a Fosfatidiletanolamina/metabolismo , Fosforilación , Unión Proteica , Serina/genética , Serina/metabolismo , Troponina C/química , Troponina C/genética , Troponina C/metabolismo , Proteínas de Transporte Vesicular/química , Proteínas de Transporte Vesicular/genética , Proteínas de Transporte Vesicular/metabolismo , Proteína X Asociada a bcl-2/química , Proteína X Asociada a bcl-2/genética , Proteína X Asociada a bcl-2/metabolismo
10.
Angew Chem Int Ed Engl ; 59(35): 14788-14795, 2020 08 24.
Artículo en Inglés | MEDLINE | ID: mdl-32187813

RESUMEN

In recent years, three-dimensional density maps reconstructed from single particle images obtained by electron cryo-microscopy (cryo-EM) have reached unprecedented resolution. However, map interpretation can be challenging, in particular if the constituting structures require de-novo model building or are very mobile. Herein, we demonstrate the potential of convolutional neural networks for the annotation of cryo-EM maps: our network Haruspex has been trained on a carefully curated set of 293 experimentally derived reconstruction maps to automatically annotate RNA/DNA as well as protein secondary structure elements. It can be straightforwardly applied to newly reconstructed maps in order to support domain placement or as a starting point for main-chain placement. Due to its high recall and precision rates of 95.1 % and 80.3 %, respectively, on an independent test set of 122 maps, it can also be used for validation during model building. The trained network will be available as part of the CCP-EM suite.


Asunto(s)
Microscopía por Crioelectrón/métodos , ADN/química , Redes Neurales de la Computación , Oligonucleótidos/metabolismo , ARN/química , Humanos , Modelos Moleculares , Estructura Secundaria de Proteína
11.
Angew Chem Int Ed Engl ; 59(31): 12669-12673, 2020 07 27.
Artículo en Inglés | MEDLINE | ID: mdl-32239740

RESUMEN

The absence of fluorine from most biomolecules renders it an excellent probe for NMR spectroscopy to monitor inhibitor-protein interactions. However, predicting the binding mode of a fluorinated ligand from a chemical shift (or vice versa) has been challenging due to the high electron density of the fluorine atom. Nonetheless, reliable 19 F chemical-shift predictions to deduce ligand-binding modes hold great potential for in silico drug design. Herein, we present a systematic QM/MM study to predict the 19 F NMR chemical shifts of a covalently bound fluorinated inhibitor to the essential oxidoreductase tryparedoxin (Tpx) from African trypanosomes, the causative agent of African sleeping sickness. We include many protein-inhibitor conformations as well as monomeric and dimeric inhibitor-protein complexes, thus rendering it the largest computational study on chemical shifts of 19 F nuclei in a biological context to date. Our predicted shifts agree well with those obtained experimentally and pave the way for future work in this area.


Asunto(s)
Inhibidores Enzimáticos/química , Resonancia Magnética Nuclear Biomolecular/métodos , Pirimidinonas/química , Tiofenos/química , Tiorredoxinas/química , Tripanocidas/química , Inhibidores Enzimáticos/metabolismo , Flúor/química , Mutación , Unión Proteica , Proteínas Protozoarias/antagonistas & inhibidores , Proteínas Protozoarias/química , Proteínas Protozoarias/genética , Proteínas Protozoarias/metabolismo , Pirimidinonas/metabolismo , Tiofenos/metabolismo , Tiorredoxinas/antagonistas & inhibidores , Tiorredoxinas/genética , Tiorredoxinas/metabolismo , Tripanocidas/metabolismo , Trypanosoma brucei brucei/enzimología
12.
Biochemistry ; 58(15): 1992-2008, 2019 04 16.
Artículo en Inglés | MEDLINE | ID: mdl-30887800

RESUMEN

Conformational factors that predicate selectivity for valine or isoleucine binding to IlvN leading to the regulation of aceto hydroxy acid synthase I (AHAS I) of Escherichia coli have been determined for the first time from high-resolution (1.9-2.43 Å) crystal structures of IlvN·Val and IlvN·Ile complexes. The valine and isoleucine ligand binding pockets are located at the dimer interface. In the IlvN·Ile complex, among residues in the binding pocket, the side chain of Cys43 is 2-fold disordered (χ1 angles of gauche- and trans). Only one conformation can be observed for the identical residue in the IlvN·Val complexes. In a reversal, the side chain of His53, located at the surface of the protein, exhibits two conformations in the IlvN·Val complex. The concerted conformational switch in the side chains of Cys43 and His53 may play an important role in the regulation of the AHAS I holoenzyme activity. A significant result is the establishment of the subunit composition in the AHAS I holoenzyme by analytical ultracentrifugation. Solution nuclear magnetic resonance and analytical ultracentrifugation experiments have also provided important insights into the hydrodynamic properties of IlvN in the ligand-free and -bound states. The structural and biophysical data unequivocally establish the molecular basis for differential binding of the ligands to IlvN and a rationale for the resistance of IlvM to feedback inhibition by the branched-chain amino acids.


Asunto(s)
Isoleucina/química , Conformación Proteica , Valina/química , Acetolactato Sintasa/química , Acetolactato Sintasa/genética , Acetolactato Sintasa/metabolismo , Secuencia de Aminoácidos , Sitios de Unión/genética , Cristalografía por Rayos X , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Retroalimentación Fisiológica , Enlace de Hidrógeno , Isoleucina/genética , Isoleucina/metabolismo , Modelos Moleculares , Unión Proteica , Valina/genética , Valina/metabolismo
13.
Eur J Neurosci ; 50(12): 3906-3920, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31370103

RESUMEN

Glycine transporter 2 (GlyT2) mutations across the entire sequence have been shown to represent the presynaptic component of the neurological disease hyperekplexia. Dominant, recessive and compound heterozygous mutations have been identified, most of them leading to impaired glycine uptake. Here, we identified a novel loss of function mutation of the GlyT2 resulting from an amino acid exchange of proline 429 to leucine in a family with both parents being heterozygous carriers. A homozygous child suffered from severe neuromotor deficits. We characterised the GlyT2P429L variant at the molecular, cellular and protein level. Functionality was determined by glycine uptake assays. Homology modelling revealed that the mutation localises to α-helix 5, presumably disrupting the integrity of this α-helix. GlyT2P429L shows protein trafficking through various intracellular compartments to the cellular surface. However, the protein expression at the whole cell level was significantly reduced. Although present at the cellular surface, GlyT2P429L demonstrated a loss of protein function. Coexpression of the mutant with the wild-type protein, reflecting the situation in the parents, did not affect transporter function, thus explaining their non-symptomatic phenotype. Nevertheless, when the mutant was expressed in excess compared with the wild-type protein, glycine uptake was significantly reduced. Thus, these data demonstrate that the proline residue at position 429 is structurally important for the correct formation of α-helix 5. The failure in functionality of the mutated GlyT2 is most probably due to structural changes localised in close proximity to the sodium-binding site of the transporter.


Asunto(s)
Proteínas de Transporte de Glicina en la Membrana Plasmática/genética , Hiperekplexia/genética , Mutación con Pérdida de Función/genética , Mutación/genética , Glicina/metabolismo , Heterocigoto , Homocigoto , Humanos , Enfermedades del Sistema Nervioso/genética , Neuronas/metabolismo
14.
Angew Chem Int Ed Engl ; 58(11): 3640-3644, 2019 03 11.
Artículo en Inglés | MEDLINE | ID: mdl-30605929

RESUMEN

Trypanosomal and leishmanial infections claim tens of thousands of lives each year. The metabolism of these unicellular eukaryotic parasites differs from the human host and their enzymes thus constitute promising drug targets. Tryparedoxin (Tpx) from Trypanosoma brucei is the essential oxidoreductase in the parasite's hydroperoxide-clearance cascade. In vitro and in vivo functional assays show that a small, selective inhibitor efficiently inhibits Tpx. With X-ray crystallography, SAXS, analytical SEC, SEC-MALS, MD simulations, ITC, and NMR spectroscopy, we show how covalent binding of this monofunctional inhibitor leads to Tpx dimerization. Intra- and intermolecular inhibitor-inhibitor, protein-protein, and inhibitor-protein interactions stabilize the dimer. The behavior of this efficient antitrypanosomal molecule thus constitutes an exquisite example of chemically induced dimerization with a small, monovalent ligand that can be exploited for future drug design.


Asunto(s)
Antiprotozoarios/química , Proteínas Bacterianas/química , Inhibidores Enzimáticos/química , Oxidorreductasas/química , Tiorredoxinas/química , Trypanosoma brucei brucei/enzimología , Animales , Antiprotozoarios/metabolismo , Diseño de Fármacos , Inhibidores Enzimáticos/metabolismo , Glutatión/análogos & derivados , Glutatión/química , Humanos , Peróxido de Hidrógeno/metabolismo , Simulación de Dinámica Molecular , Oxidación-Reducción , Unión Proteica , Conformación Proteica , Multimerización de Proteína , Espermidina/análogos & derivados , Espermidina/química , Trypanosoma/metabolismo , Trypanosoma/parasitología
15.
EMBO J ; 33(18): 2113-33, 2014 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-25082542

RESUMEN

The formation of neuronal synapses and the dynamic regulation of their efficacy depend on the assembly of the postsynaptic neurotransmitter receptor apparatus. Receptor recruitment to inhibitory GABAergic and glycinergic synapses is controlled by the scaffold protein gephyrin and the adaptor protein collybistin. We derived new insights into the structure of collybistin and used these to design biochemical, cell biological, and genetic analyses of collybistin function. Our data define a collybistin-based protein interaction network that controls the gephyrin content of inhibitory postsynapses. Within this network, collybistin can adopt open/active and closed/inactive conformations to act as a switchable adaptor that links gephyrin to plasma membrane phosphoinositides. This function of collybistin is regulated by binding of the adhesion protein neuroligin-2, which stabilizes the open/active conformation of collybistin at the postsynaptic plasma membrane by competing with an intramolecular interaction in collybistin that favors the closed/inactive conformation. By linking trans-synaptic neuroligin-dependent adhesion and phosphoinositide signaling with gephyrin recruitment, the collybistin-based regulatory switch mechanism represents an integrating regulatory node in the formation and function of inhibitory postsynapses.


Asunto(s)
Regulación Alostérica , Proteínas Portadoras/análisis , Proteínas de la Membrana/análisis , Factores de Intercambio de Guanina Nucleótido Rho/química , Factores de Intercambio de Guanina Nucleótido Rho/metabolismo , Sinapsis/química , Sinapsis/fisiología , Animales , Membrana Celular/química , Células Cultivadas , Cristalografía por Rayos X , Ratones , Microscopía de Fuerza Atómica , Modelos Biológicos , Modelos Moleculares , Conformación Proteica , Dispersión del Ángulo Pequeño
16.
J Biol Chem ; 291(1): 244-54, 2016 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-26546675

RESUMEN

The regulatory protein collybistin (CB) recruits the receptor-scaffolding protein gephyrin to mammalian inhibitory glycinergic and GABAergic postsynaptic membranes in nerve cells. CB is tethered to the membrane via phosphoinositides. We developed an in vitro assay based on solid-supported 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine membranes doped with different phosphoinositides on silicon/silicon dioxide substrates to quantify the binding of various CB2 constructs using reflectometric interference spectroscopy. Based on adsorption isotherms, we obtained dissociation constants and binding capacities of the membranes. Our results show that full-length CB2 harboring the N-terminal Src homology 3 (SH3) domain (CB2SH3+) adopts a closed and autoinhibited conformation that largely prevents membrane binding. This autoinhibition is relieved upon introduction of the W24A/E262A mutation, which conformationally "opens" CB2SH3+ and allows the pleckstrin homology domain to properly bind lipids depending on the phosphoinositide species with a preference for phosphatidylinositol 3-monophosphate and phosphatidylinositol 4-monophosphate. This type of membrane tethering under the control of the release of the SH3 domain of CB is essential for regulating gephyrin clustering.


Asunto(s)
Fosfatidilinositoles/metabolismo , Factores de Intercambio de Guanina Nucleótido Rho/química , Factores de Intercambio de Guanina Nucleótido Rho/metabolismo , Adsorción , Membrana Dobles de Lípidos/química , Membranas Artificiales , Unión Proteica , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Análisis Espectral , Relación Estructura-Actividad , Fracciones Subcelulares/metabolismo , Temperatura
17.
Proc Natl Acad Sci U S A ; 111(33): 12079-84, 2014 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-25099351

RESUMEN

Unfolded and partially unfolded proteins participate in a wide range of biological processes from pathological aggregation to the regulation of normal cellular activity. Unfolded states can be populated under strongly denaturing conditions, but the ensemble which is relevant for folding, stability, and aggregation is that populated under physiological conditions. Characterization of nonnative states is critical for the understanding of these processes, yet comparatively little is known about their energetics and their structural propensities under native conditions. The standard view is that energetically significant coupled interactions involving multiple residues are generally not present in the denatured state ensemble (DSE) or in intrinsically disordered proteins. Using the N-terminal domain of the ribosomal protein L9, a small α-ß protein, as an experimental model system, we demonstrate that networks of energetically significant, coupled interactions can form in the DSE of globular proteins, and can involve residues that are distant in sequence and spatially well separated in the native structure. X-ray crystallography, NMR, dynamics studies, native state pKa measurements, and thermodynamic analysis of more than 25 mutants demonstrate that residues are energetically coupled in the DSE. Altering these interactions by mutation affects the stability of the domain. Mutations that alter the energetics of the DSE can impact the analysis of cooperativity and folding, and may play a role in determining the propensity to aggregate.


Asunto(s)
Proteínas/química , Cristalografía , Mutación , Resonancia Magnética Nuclear Biomolecular , Desplegamiento Proteico , Proteínas/genética , Termodinámica
18.
J Biol Chem ; 289(5): 3094-103, 2014 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-24338687

RESUMEN

Mammalian phosphatases of the haloacid dehalogenase (HAD) superfamily have emerged as important regulators of physiology and disease. Many of these enzymes are stable homodimers; however, the role of their dimerization is largely unknown. Here, we explore the function of the obligatory homodimerization of chronophin, a mammalian HAD phosphatase known to dephosphorylate pyridoxal 5'-phosphate (PLP) and serine/threonine-phosphorylated proteins. The exchange of two residues in the murine chronophin homodimerization interface (chronophin(A194K,A195K)) yields a constitutive monomer both in vitro and in cells. The catalytic activity of monomeric chronophin toward PLP is strongly impaired. X-ray crystallographic studies of chronophin(A194K,A195K) revealed that dimer formation is essential for an intermolecular arginine-arginine-tryptophan stacking interaction that positions a critical histidine residue in the substrate specificity loop of chronophin for PLP coordination. Analysis of all available crystal structures of HAD hydrolases that are grouped together with chronophin in the C2a-type structural subfamily uncovered a highly conserved mode of dimerization that results in intermolecular contacts involving the substrate specificity loop. Our results explain how the dimerization of HAD hydrolases contributes to their catalytic efficiency and substrate specificity.


Asunto(s)
Fosfoproteínas Fosfatasas/química , Fosfoproteínas Fosfatasas/metabolismo , Monoéster Fosfórico Hidrolasas/química , Monoéster Fosfórico Hidrolasas/metabolismo , Fosfato de Piridoxal/metabolismo , Factores de Edad , Regulación Alostérica , Animales , Cristalografía por Rayos X , Dimerización , Hidrolasas/química , Hidrolasas/metabolismo , Ratones , Fosforilación , Estructura Terciaria de Proteína , Relación Estructura-Actividad , Especificidad por Sustrato
19.
J Biol Chem ; 289(6): 3416-31, 2014 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-24338473

RESUMEN

Mammalian haloacid dehalogenase (HAD)-type phosphatases are an emerging family of phosphatases with important functions in physiology and disease, yet little is known about the basis of their substrate specificity. Here, we characterize a previously unexplored HAD family member (gene annotation, phosphoglycolate phosphatase), which we termed AUM, for aspartate-based, ubiquitous, Mg(2+)-dependent phosphatase. AUM is a tyrosine-specific paralog of the serine/threonine-specific protein and pyridoxal 5'-phosphate-directed HAD phosphatase chronophin. Comparative evolutionary and biochemical analyses reveal that a single, differently conserved residue in the cap domain of either AUM or chronophin is crucial for phosphatase specificity. We have solved the x-ray crystal structure of the AUM cap fused to the catalytic core of chronophin to 2.65 Å resolution and present a detailed view of the catalytic clefts of AUM and chronophin that explains their substrate preferences. Our findings identify a small number of cap domain residues that encode the different substrate specificities of AUM and chronophin.


Asunto(s)
Fosfoproteínas Fosfatasas/química , Animales , Cristalografía por Rayos X , Humanos , Masculino , Ratones , Fosfoproteínas Fosfatasas/clasificación , Fosfoproteínas Fosfatasas/genética , Fosfoproteínas Fosfatasas/metabolismo , Estructura Terciaria de Proteína , Ratas , Especificidad por Sustrato
20.
Acta Crystallogr D Biol Crystallogr ; 71(Pt 10): 2040-53, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26457428

RESUMEN

The small nuclear ribonucleoproteins (snRNPs) U1, U2, U4/6 and U5 are major constituents of the pre-mRNA processing spliceosome. They contain a common RNP core that is formed by the ordered binding of Sm proteins onto the single-stranded Sm site of the snRNA. Although spontaneous in vitro, assembly of the Sm core requires assistance from the PRMT5 and SMN complexes in vivo. To gain insight into the key steps of the assembly process, the crystal structures of two assembly intermediates of U snRNPs termed the 6S and 8S complexes have recently been reported. These multimeric protein complexes could only be crystallized after the application of various rescue strategies. The developed strategy leading to the crystallization and solution of the 8S crystal structure was subsequently used to guide a combination of rational crystal-contact optimization with surface-entropy reduction of crystals of the related 6S complex. Conversely, the resulting high-resolution 6S crystal structure was used during the restrained refinement of the 8S crystal structure.


Asunto(s)
Proteínas de Drosophila/química , Drosophila melanogaster/química , Ribonucleoproteínas Nucleares Pequeñas/química , Empalmosomas/química , Animales , Cristalización , Cristalografía por Rayos X , Entropía , Modelos Moleculares
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA