Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Proc Natl Acad Sci U S A ; 118(2)2021 01 12.
Artículo en Inglés | MEDLINE | ID: mdl-33419925

RESUMEN

Affinity maturation depends on how efficiently germinal centers (GCs) positively select B cells in the light zone (LZ). Positively selected GC B cells recirculate between LZs and dark zones (DZs) and ultimately differentiate into plasmablasts (PBs) and memory B cells (MBCs). Current understanding of the GC reaction presumes that cMyc-dependent positive selection of LZ B cells is a competitive affinity-dependent process; however, this cannot explain the production of GC-derived lower-affinity MBCs or retention of GC B cells with varied affinities. Here, by combining single-cell/bulk RNA sequencing and flow cytometry, we identified and characterized temporally and functionally distinct positively selected cMyc+ GC B cell subpopulations. cMyc+ LZ B cell subpopulations enriched with either higher- or lower-affinity cells diverged soon after permissive positive selection. The former subpopulation contained PB precursors, whereas the latter comprised less proliferative MBC precursors and future DZ entrants. The overall affinity of future DZ entrants was enhanced in the LZ through preferential proliferation of higher-affinity cells. Concurrently, lower-affinity cells were retained in GCs and protected from apoptosis. These findings redefine positive selection as a dynamic process generating three distinct B cell fates and elucidate how positive selection ensures clonal diversity for broad protection.


Asunto(s)
Linfocitos B/metabolismo , Centro Germinal/inmunología , Animales , Apoptosis , Diferenciación Celular , Proliferación Celular , Células Cultivadas , Selección Clonal Mediada por Antígenos , Femenino , Humanos , Ganglios Linfáticos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Células Plasmáticas , Receptores de Antígenos de Linfocitos B/genética
2.
BMC Med ; 19(1): 32, 2021 01 28.
Artículo en Inglés | MEDLINE | ID: mdl-33504336

RESUMEN

BACKGROUND: SARS-CoV-2 has induced a worldwide pandemic and subsequent non-pharmaceutical interventions (NPIs) to control the spread of the virus. As in many countries, the SARS-CoV-2 pandemic in Germany has led to a consecutive roll-out of different NPIs. As these NPIs have (largely unknown) adverse effects, targeting them precisely and monitoring their effectiveness are essential. We developed a compartmental infection dynamics model with specific features of SARS-CoV-2 that allows daily estimation of a time-varying reproduction number and published this information openly since the beginning of April 2020. Here, we present the transmission dynamics in Germany over time to understand the effect of NPIs and allow adaptive forecasts of the epidemic progression. METHODS: We used a data-driven estimation of the evolution of the reproduction number for viral spreading in Germany as well as in all its federal states using our model. Using parameter estimates from literature and, alternatively, with parameters derived from a fit to the initial phase of COVID-19 spread in different regions of Italy, the model was optimized to fit data from the Robert Koch Institute. RESULTS: The time-varying reproduction number (Rt) in Germany decreased to <1 in early April 2020, 2-3 weeks after the implementation of NPIs. Partial release of NPIs both nationally and on federal state level correlated with moderate increases in Rt until August 2020. Implications of state-specific Rt on other states and on national level are characterized. Retrospective evaluation of the model shows excellent agreement with the data and usage of inpatient facilities well within the healthcare limit. While short-term predictions may work for a few weeks, long-term projections are complicated by unpredictable structural changes. CONCLUSIONS: The estimated fraction of immunized population by August 2020 warns of a renewed outbreak upon release of measures. A low detection rate prolongs the delay reaching a low case incidence number upon release, showing the importance of an effective testing-quarantine strategy. We show that real-time monitoring of transmission dynamics is important to evaluate the extent of the outbreak, short-term projections for the burden on the healthcare system, and their response to policy changes.


Asunto(s)
Número Básico de Reproducción , COVID-19/epidemiología , Pandemias , COVID-19/transmisión , Alemania/epidemiología , Humanos , Italia/epidemiología , Modelos Estadísticos , Estudios Retrospectivos
3.
iScience ; 27(3): 109330, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38496296

RESUMEN

Identifying immune modulators that impact neutralizing antibody responses against severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2) is of great relevance. We postulated that high serum concentrations of soluble angiotensin-converting enzyme 2 (sACE2) might mask the spike and interfere with antibody maturation toward the SARS-CoV-2-receptor-binding motif (RBM). We tested 717 longitudinal samples from 295 COVID-19 patients and showed a 2- to 10-fold increase of enzymatically active sACE2 (a-sACE2), with up to 1 µg/mL total sACE2 in moderate and severe patients. Fifty percent of COVID-19 sera inhibited ACE2 activity, in contrast to 1.3% of healthy donors and 4% of non-COVID-19 pneumonia patients. A mild inverse correlation of a-sACE2 with RBM-directed serum antibodies was observed. In silico, we show that sACE2 concentrations measured in COVID-19 sera can disrupt germinal center formation and inhibit timely production of high-affinity antibodies. We suggest that sACE2 is a biomarker for COVID-19 and that soluble receptors may contribute to immune suppression informing vaccine design.

4.
Front Immunol ; 14: 1253704, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37818361

RESUMEN

The selection of high-affinity B cells and the production of high-affinity antibodies are mediated by T follicular helper cells (Tfhs) within germinal centres (GCs). Therein, somatic hypermutation and selection enhance B cell affinity but risk the emergence of self-reactive B cell clones. Despite being outnumbered compared to their helper counterpart, the ablation of T follicular regulatory cells (Tfrs) results in enhanced dissemination of self-reactive antibody-secreting cells (ASCs). The specific mechanisms by which Tfrs exert their regulatory action on self-reactive B cells are largely unknown. We developed computer simulations to investigate how Tfrs regulate either selection or differentiation of B cells to prevent auto-reactivity. We observed that Tfr-induced apoptosis of self-reactive B cells during the selection phase impedes self-reactivity with physiological Tfr numbers, especially when Tfrs can access centrocyte-enriched GC areas. While this aided in selecting non-self-reactive B cells by restraining competition, higher Tfr numbers distracted non-self-reactive B cells from receiving survival signals from Tfhs. Thus, the location and number of Tfrs must be regulated to circumvent such Tfr distraction and avoid disrupting GC evolution. In contrast, when Tfrs regulate differentiation of selected centrocytes by promoting recycling to the dark zone phenotype of self-reactive GC resident pre-plasma cells (GCPCs), higher Tfr numbers were required to impede the circulation of self-reactive ASCs (s-ASCs). On the other hand, Tfr-engagement with GCPCs and subsequent apoptosis of s-ASCs can control self-reactivity with low Tfr numbers, but does not confer selection advantage to non-self-reactive B cells. The simulations predict that to restrict auto-reactivity, natural redemption of self-reactive B cells is insufficient and that Tfrs should increase the mutation probability of self-reactive B cells.


Asunto(s)
Linfocitos B , Centro Germinal , Linfocitos T Reguladores , Diferenciación Celular , Autoanticuerpos
5.
Front Immunol ; 14: 1080853, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36993964

RESUMEN

A variety of B cell clones seed the germinal centers, where a selection stringency expands the fitter clones to generate higher affinity antibodies. However, recent experiments suggest that germinal centers often retain a diverse set of B cell clones with a range of affinities and concurrently carry out affinity maturation. Amid a tendency to flourish germinal centers with fitter clones, how several B cell clones with differing affinities can be concurrently selected remains poorly understood. Such a permissive selection may allow non-immunodominant clones, which are often rare and of low-affinity, to somatically hypermutate and result in a broad and diverse B cell response. How the constituent elements of germinal centers, their quantity and kinetics may modulate diversity of B cells, has not been addressed well. By implementing a state-of-the-art agent-based model of germinal center, here, we study how these factors impact temporal evolution of B cell clonal diversity and its underlying balance with affinity maturation. While we find that the extent of selection stringency dictates clonal dominance, limited antigen availability on follicular dendritic cells is shown to expedite the loss of diversity of B cells as germinal centers mature. Intriguingly, the emergence of a diverse set of germinal center B cells depends on high affinity founder cells. Our analysis also reveals a substantial number of T follicular helper cells to be essential in balancing affinity maturation with clonal diversity, as a low number of T follicular helper cells impedes affinity maturation and also contracts the scope for a diverse B cell response. Our results have implications for eliciting antibody responses to non-immunodominant specificities of the pathogens by controlling the regulators of the germinal center reaction, thereby pivoting a way for vaccine development to generate broadly protective antibodies.


Asunto(s)
Centro Germinal , Células T Auxiliares Foliculares , Linfocitos B , Antígenos , Células Dendríticas Foliculares
6.
Commun Med (Lond) ; 2: 75, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35774529

RESUMEN

Background: During the first wave of COVID-19, hospital and intensive care unit beds got overwhelmed in Italy leading to an increased death burden. Based on data from Italian regions, we disentangled the impact of various factors contributing to the bottleneck situation of healthcare facilities, not well addressed in classical SEIR-like models. A particular emphasis was set on the undetected fraction (dark figure), on the dynamically changing hospital capacity, and on different testing, contact tracing, quarantine strategies. Methods: We first estimated the dark figure for different Italian regions. Using parameter estimates from literature and, alternatively, with parameters derived from a fit to the initial phase of COVID-19 spread, the model was optimized to fit data (infected, hospitalized, ICU, dead) published by the Italian Civil Protection. Results: We show that testing influenced the infection dynamics by isolation of newly detected cases and subsequent interruption of infection chains. The time-varying reproduction number (R t) in high testing regions decreased to <1 earlier compared to the low testing regions. While an early test and isolate (TI) scenario resulted in up to ~31% peak reduction of hospital occupancy, the late TI scenario resulted in an overwhelmed healthcare system. Conclusions: An early TI strategy would have decreased the overall hospital usage drastically and, hence, death toll (∼34% reduction in Lombardia) and could have mitigated the lack of healthcare facilities in the course of the pandemic, but it would not have kept the hospitalization amount within the pre-pandemic hospital limit.

7.
J Exp Med ; 218(4)2021 04 05.
Artículo en Inglés | MEDLINE | ID: mdl-33332554

RESUMEN

During affinity maturation, germinal center (GC) B cells alternate between proliferation and somatic hypermutation in the dark zone (DZ) and affinity-dependent selection in the light zone (LZ). This anatomical segregation imposes that the vigorous proliferation that allows clonal expansion of positively selected GC B cells takes place ostensibly in the absence of the signals that triggered selection in the LZ, as if by "inertia." We find that such inertial cycles specifically require the cell cycle regulator cyclin D3. Cyclin D3 dose-dependently controls the extent to which B cells proliferate in the DZ and is essential for effective clonal expansion of GC B cells in response to strong T follicular helper (Tfh) cell help. Introduction into the Ccnd3 gene of a Burkitt lymphoma-associated gain-of-function mutation (T283A) leads to larger GCs with increased DZ proliferation and, in older mice, clonal B cell lymphoproliferation, suggesting that the DZ inertial cell cycle program can be coopted by B cells undergoing malignant transformation.


Asunto(s)
Linfocitos B/inmunología , Ciclo Celular/genética , Proliferación Celular/genética , Ciclina D3/fisiología , Centro Germinal/inmunología , Hipermutación Somática de Inmunoglobulina/genética , Animales , Linfoma de Burkitt/genética , Sistemas CRISPR-Cas , Células Cultivadas , Quimera/inmunología , Ciclina D3/genética , Femenino , Mutación con Ganancia de Función , Edición Génica/métodos , Masculino , Ratones , Ratones Endogámicos C57BL , Células T Auxiliares Foliculares/inmunología
8.
Commun Med (Lond) ; 1(1): 4, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34870284

RESUMEN

BACKGROUND: In early March 2020, a SARS-CoV-2 outbreak in the ski resort Ischgl in Austria initiated the spread of SARS-CoV-2 throughout Austria and Northern Europe. METHODS: Between April 21st and 27th 2020, a cross-sectional epidemiologic study targeting the full population of Ischgl (n = 1867), of which 79% could be included (n = 1473, incl. 214 children), was performed. For each individual, the study involved a SARS-CoV-2 PCR, antibody testing and structured questionnaires. A mathematical model was used to help understand the influence of the determined seroprevalence on virus transmission. RESULTS: The seroprevalence was 42.4% (95% confidence interval (CI) 39.8-44.7). Individuals under 18 showed a significantly lower seroprevalence of 27.1% (95% CI 21.3-33.6) than adults (45%; 95% CI 42.2-47.7; OR of 0.455, 95% CI 0.356-0.682, p < 0.001). Of the seropositive individuals, 83.7% had not been diagnosed to have had SARS-CoV-2 infection previously. The clinical course was generally mild. Over the previous two months, two COVID-19-related deaths had been recorded, corresponding to an infection fatality rate of 0.25% (95% CI 0.03-0.91). Only 8 (0.5 %) individuals were newly diagnosed to be infected with SARS-CoV-2 during this study. CONCLUSIONS: Ischgl was hit early and hard by SARS-CoV-2 leading to a high local seroprevalence of 42.4%, which was lower in individuals below the age of 18 than in adults. Mathematical modeling suggests that a drastic decline of newly infected individuals in Ischgl by the end of April occurred due to the dual impact from the non-pharmacological interventions and a high immunization of the Ischgl population.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA