Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Angew Chem Int Ed Engl ; 59(23): 8902-8906, 2020 06 02.
Artículo en Inglés | MEDLINE | ID: mdl-32157801

RESUMEN

Amphiphiles alter the energy of surfaces, but the extent of this feature is typically constant. Smart systems with amphiphilicity as a function of an external, physical trigger are desirable. As a trigger, the exposure to a magnetic field, in particular, is attractive because it is not shielded in water. Amphiphiles like surfactants are well known, but the magnetic response of molecules is typically weak. Vice-versa, magnetic particles with strong response to magnetic triggers are fully established in nanoscience, but they are not amphiphilic. In this work colloids with Janus architecture and ultra-small dimensions (25 nm) have been prepared by spatial control over the thiol-yne click modification of organosilica-magnetite core-shell nanoparticles. The amphiphilic properties of these anisotropically modified particles are proven. Finally, a pronounced and reversible change in interfacial stabilization results from the application of a weak (<1 T) magnetic field.

2.
Chemistry ; 24(71): 18842-18856, 2018 Dec 17.
Artículo en Inglés | MEDLINE | ID: mdl-29953683

RESUMEN

Surfactants are ubiquitous in cellular membranes, detergents or as emulsification agents. Due to their amphiphilic properties, they cannot only mediate between two domains of very different solvent compatibility like water and organic but also show fascinating self-assembly features resulting in micelles, vesicles, or lyotropic liquid crystals. The current review article highlights some approaches towards the next generation surfactants, for example, those with catalytically active heads. Furthermore, it is shown that amphiphilic properties can be obtained beyond the classical hydrophobic-hydrophilic interplay, for instance with surfactants containing one molecular block with a special shape. Whereas, classical surfactants are static, researchers have become more interested in species that are able to change their properties depending on external triggers. The article discusses examples for surfactants sensitive to chemical (e.g., pH value) or physical triggers (temperature, electric and magnetic fields).

3.
Chem Sci ; 12(1): 270-281, 2020 Nov 03.
Artículo en Inglés | MEDLINE | ID: mdl-34163595

RESUMEN

Metallosurfactants are molecular compounds which combine the unique features of amphiphiles, like their capability of self-organization, with the peculiar properties of metal complexes like magnetism and a rich redox chemistry. Considering the high relevance of surfactants in industry and science, amphiphiles that change their properties on applying an external trigger are highly desirable. A special feature of the surfactant reported here, 1-(Z)-heptenyl-1'-dimethylammonium-methyl-(3-sulfopropyl)ferrocene (6), is that the redox-active ferrocene constituent is in a gemini-position. Oxidation to 6+ induces a drastic change of the surfactant's properties accompanied by the emergence of paramagnetism. The effects of an external magnetic field on vesicles formed by 6+ and the associated dynamics were monitored in situ using a custom-made optical birefringence and dual dynamic light scattering setup. This allowed us to observe the optical anisotropy as well as the anisotropy of the diffusion coefficient and revealed the field-induced formation of oriented string-of-pearls-like aggregates and their delayed disappearance after the field is switched off.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA