RESUMEN
BACKGROUND: The use of bovine-origin ribonucleases has been part of the standard protocol for plasmid DNA purification. As the field of gene therapy now enters the clinical stage, such enzymes need to be phased out or alternative purification protocols need to be developed to ensure product safety and regulatory compliance. The recombinant expression of bacterial RNase is fraught with toxicity problems making it a challenging enzyme to express. The current study describes a plasmid construct that allowed expression of barnase in Escherichia coli under co-expression of its native inhibitor barstar. RESULTS: The pure enzyme without the inhibitor barstar was exported to the extracellular space through the periplasm and then purified from the cell-free supernatant. Cation exchange chromatography was employed as a primary purification step. This was followed by hydrophobic interaction chromatography which resulted in a concentrated fraction of active enzyme. Although current levels of volumetric activity achieved are quite meagre (4 Kunitz units mL- 1), in principle its application to plasmid DNA purification could be proved. Currently, this is capable of processing small amounts (13 g) of bacterial biomass for plasmid production. CONCLUSIONS: The current work focusses on the downstream purification strategies for a recombinant RNase and sets a framework for higher scale production if specific productivity is increased by optimal hosts and/or re-engineered plasmids. Also important is to curtail the massive enzyme loss during purification by cation exchange chromatography. Application of even a relatively small amount of recombinant RNase would contribute to greatly reducing the initial RNA levels in alkaline lysates thereby augmenting further downstream plasmid purification steps.
Asunto(s)
Proteínas Bacterianas/biosíntesis , Proteínas Bacterianas/metabolismo , Escherichia coli/metabolismo , Ribonucleasas/biosíntesisRESUMEN
The development of new therapies to slow down or halt the progression of Parkinson's disease is a health care priority. A key pathological feature is the presence of alpha-synuclein aggregates, and there is increasing evidence that alpha-synuclein propagation plays a central role in disease progression. Consequently, the downregulation of alpha-synuclein is a potential therapeutic target. As a chronic disease, the ideal treatment will be minimally invasive and effective in the long-term. Knockdown of gene expression has clear potential, and siRNAs specific to alpha-synuclein have been designed; however, the efficacy of siRNA treatment is limited by its short-term efficacy. To combat this, we designed shRNA minicircles (shRNA-MCs), with the potential for prolonged effectiveness, and used RVG-exosomes as the vehicle for specific delivery into the brain. We optimized this system using transgenic mice expressing GFP and demonstrated its ability to downregulate GFP protein expression in the brain for up to 6 weeks. RVG-exosomes were used to deliver anti-alpha-synuclein shRNA-MC therapy to the alpha-synuclein preformed-fibril-induced model of parkinsonism. This therapy decreased alpha-synuclein aggregation, reduced the loss of dopaminergic neurons, and improved the clinical symptoms. Our results confirm the therapeutic potential of shRNA-MCs delivered by RVG-exosomes for long-term treatment of neurodegenerative diseases.
Asunto(s)
Encéfalo/metabolismo , Modelos Animales de Enfermedad , Sistemas de Liberación de Medicamentos , Exosomas/genética , Enfermedad de Parkinson/terapia , ARN Interferente Pequeño/genética , alfa-Sinucleína/administración & dosificación , Animales , Regulación de la Expresión Génica , Terapia Genética , Humanos , Masculino , Ratones , Ratones Endogámicos C3H , Ratones Endogámicos C57BL , Ratones Transgénicos , Enfermedad de Parkinson/genética , Enfermedad de Parkinson/patología , alfa-Sinucleína/antagonistas & inhibidores , alfa-Sinucleína/genéticaRESUMEN
The Sleeping Beauty (SB) transposon system is a non-viral gene delivery platform that combines simplicity, inexpensive manufacture, and favorable safety features in the context of human applications. However, efficient correction of hematopoietic stem and progenitor cells (HSPCs) with non-viral vector systems, including SB, demands further refinement of gene delivery techniques. We set out to improve SB gene transfer into hard-to-transfect human CD34+ cells by vectorizing the SB system components in the form of minicircles that are devoid of plasmid backbone sequences and are, therefore, significantly reduced in size. As compared to conventional plasmids, delivery of the SB transposon system as minicircle DNA is â¼20 times more efficient, and it is associated with up to a 50% reduction in cellular toxicity in human CD34+ cells. Moreover, providing the SB transposase in the form of synthetic mRNA enabled us to further increase the efficacy and biosafety of stable gene delivery into hematopoietic progenitors ex vivo. Genome-wide insertion site profiling revealed a close-to-random distribution of SB transposon integrants, which is characteristically different from gammaretroviral and lentiviral integrations in HSPCs. Transplantation of gene-marked CD34+ cells in immunodeficient mice resulted in long-term engraftment and hematopoietic reconstitution, which was most efficient when the SB transposase was supplied as mRNA and nucleofected cells were maintained for 4-8 days in culture before transplantation. Collectively, implementation of minicircle and mRNA technologies allowed us to further refine the SB transposon system in the context of HSPC gene delivery to ultimately meet clinical demands of an efficient and safe non-viral gene therapy protocol.
Asunto(s)
Elementos Transponibles de ADN , Técnicas de Transferencia de Gen , Vectores Genéticos/genética , Células Madre Hematopoyéticas/metabolismo , Animales , Supervivencia Celular , Citometría de Flujo , Expresión Génica , Humanos , Ratones , Ratones Noqueados , Retroviridae/genética , Transfección , TransgenesRESUMEN
Plasmid DNA is being used as a pharmaceutical agent in vaccination, as well as a basic substance and starting material in gene and cell therapy, and viral vector production. Since the uncontrolled expression of backbone sequences present in such plasmids and the dissemination of antibiotic resistance genes may have profound detrimental effects, an important goal in vector development was to produce supercoiled DNA lacking bacterial backbone sequences: Minicircle (MC) DNA. The Sleeping Beauty (SB) transposon system is a non-viral gene delivery platform enabling a close-to-random profile of genomic integration. In combination, the MC platform greatly enhances SB transposition and transgene integration resulting in higher numbers of stably modified target cells. We have recently developed a strategy for MC-based SB transposition of chimeric antigen receptor (CAR) transgenes that enable improved transposition rates compared to conventional plasmids and rapid manufacturing of therapeutic CAR T cell doses (Monjezi et al. 2016). This advance enables manufacturing CAR T cells in a virus-free process that relies on SB-mediated transposition from MC DNA to accomplish gene-transfer. Advantages of this approach include a strong safety profile due to the nature of the MC itself and the genomic insertion pattern of MC-derived CAR transposons. In addition, stable transposition and high-level CAR transgene expression, as well as easy and reproducible handling, make MCs a preferred vector source for gene-transfer in advanced cellular and gene therapy. In this chapter, we will review our experience in MC-based CAR T cell engineering and discuss our recent advances in MC manufacturing to accelerate both pre-clinical and clinical implementation.
Asunto(s)
Técnicas de Transferencia de Gen , Terapia Genética/métodos , Inmunoterapia Adoptiva/métodos , Neoplasias/terapia , Receptores de Antígenos de Linfocitos T/genética , Linfocitos T/trasplante , Animales , Elementos Transponibles de ADN , Regulación Neoplásica de la Expresión Génica , Humanos , Neoplasias/genética , Neoplasias/inmunología , Neoplasias/metabolismo , Receptores de Antígenos de Linfocitos T/biosíntesis , Receptores de Antígenos de Linfocitos T/inmunología , Linfocitos T/inmunología , Linfocitos T/metabolismo , Transfección , Transgenes , Transposasas/genética , Transposasas/metabolismoRESUMEN
A plasmid production process has been established to manufacture plasmid DNA at a large scale in High-Quality grade. This is used as a starting material to produce mRNA vaccines for clinical trials. Recently, the World Health Organization (WHO) has released regulatory guidelines related to the quality, safety, and efficacy for DNA- as well as for mRNA-based vaccines. Following an extraordinary year of scientific, regulatory, and manufacturing developments, the scientific community today stands considerably better equipped to deal with urgent production requirements in large scale for nucleic acid-based vaccinations and therapies. Going forward, work needs to be done in better coordinating the supply and logistics of essential raw materials for biological manufacturing, especially under emergency conditions.
Asunto(s)
Plásmidos , Vacunas de ADN , Plásmidos/genética , Humanos , Vacunas de ADN/genética , Vacunas de ADN/inmunología , Vacunas de ARNmRESUMEN
The development of effective disease-modifying therapies to halt Parkinson's disease (PD) progression is required. In a subtype of PD patients, alpha-synuclein pathology may start in the enteric nervous system (ENS) or autonomic peripheral nervous system. Consequently, strategies to decrease the expression of alpha-synuclein in the ENS will be an approach to prevent PD progression at pre-clinical stages in these patients. In the present study, we aimed to assess if anti-alpha-synuclein shRNA-minicircles (MC) delivered by RVG-extracellular vesicles (RVG-EV) could downregulate alpha-synuclein expression in the intestine and spinal cord. RVG-EV containing shRNA-MC were injected intravenously in a PD mouse model, and alpha-synuclein downregulation was evaluated by qPCR and Western blot in the cord and distal intestine. Our results confirmed the downregulation of alpha-synuclein in the intestine and spinal cord of mice treated with the therapy. We demonstrated that the treatment with anti-alpha-synuclein shRNA-MC RVG-EV after the development of pathology is effective to downregulate alpha-synuclein expression in the brain as well as in the intestine and spinal cord. Moreover, we confirmed that a multidose treatment is necessary to maintain downregulation for long-term treatments. Our results support the potential use of anti-alpha-synuclein shRNA-MC RVG-EV as a therapy to delay or halt PD pathology progression.
RESUMEN
Plasmid DNA in any form (plasmid DNA, minicircle, miniplasmid) does experience renewed and increasing attention for use in gene therapy and DNA vaccination. For such applications, stability analyses and quality control are essential prerequisites for clinical use. In this context we analyzed the stability of good manufacturing practice (GMP)-grade pCMVß reporter plasmid DNA by capillary gel electrophoresis. The plasmid DNA was produced for a clinical gene transfer study for treatment of malignant melanoma. The pCMVß plasmid DNA was stored at -20 °C for 20 years under continuous, controlled monitoring. Another plasmid., pCMV-Luc, stored for 15 years, served as reference. The stability of plasmid DNA was analyzed by capillary gel electrophoresis (CGE) and functionally tested in vitro by LacZ functional assay. In this chapter we provide the detailed description of CGE and functional analysis of the GMP-grade pCMVß and also pCMV-Luc plasmid DNA. By this the proportion of open circular and supercoiled or covalently closed circular forms of plasmid DNA is analyzed. Functionality of the plasmid was tested by in vitro transfection and LacZ functional assay. In result of this, the 20-year-old plasmid DNA showed topology and expression performance, which revealed significant alterations in topology while maintaining functionality regarding transgene expression. Therefore, stable storage conditions are effective to mainly preserve the integrity of the plasmid DNA as important parameter for long-term storage of, for example, reference samples.
Asunto(s)
Electroforesis Capilar , Terapia Genética , ADN/genética , Electroforesis Capilar/métodos , Terapia Genética/métodos , Plásmidos/genética , Control de CalidadRESUMEN
Development and application of chimeric antigen receptor (CAR) T cell therapy has led to a breakthrough in the treatment of hematologic malignancies. In 2017, the FDA approved the first commercialized CD19-specific CAR T cell products for treatment of patients with B-cell malignancies. This success increased the desire to broaden the availability of CAR T cells to a larger patient cohort with hematological but also solid tumors. A critical factor of CAR T cell production is the stable and efficient delivery of the CAR transgene into T cells. This gene transfer is conventionally achieved by viral vectors. However, viral gene transfer is not conducive to affordable, scalable, and timely manufacturing of CAR T cell products. Thus, there is a necessity for developing alternative nonviral engineering platforms, which are more cost-effective, less complex to handle and which provide the scalability requirement for a globally available therapy.One alternative method for engineering of T cells is the nonviral gene transfer by Sleeping Beauty (SB) transposition. Electroporation with two nucleic acids is sufficient to achieve stable CAR transfer into T cells. One of these vectors has to encode the gene of interest, which is the CAR , the second one a recombinase called SB transposase, the enzyme that catalyzes integration of the transgene into the host cell genome. As nucleic acids are easy to produce and handle SB gene transfer has the potential to provide scalability, cost-effectiveness, and feasibility for widespread use of CAR T cell therapies.Nevertheless, the electroporation of two large-size plasmid vectors into T cells leads to high T cell toxicity and low gene transfer rates and has hindered the prevalent clinical application of the SB system. To circumvent these limitations, conventional plasmid vectors can be replaced by minimal-size vectors called minicircles (MC ). MCs are DNA vectors that lack the plasmid backbone, which is relevant for propagation in bacteria, but has no function in a human cell. Thus, their size is drastically reduced compared to conventional plasmids. It has been demonstrated that MC-mediated SB CAR transposition into T cells enhances their viability and gene transfer rate enabling the production of therapeutic doses of CAR T cells. These improvements make CAR SB transposition from MC vectors a promising alternative for engineering of clinical grade CAR T cells.
Asunto(s)
Elementos Transponibles de ADN , Técnicas de Transferencia de Gen , Ácidos Nucleicos , Vectores Genéticos , Humanos , Inmunoterapia Adoptiva/métodos , Neoplasias/genética , Linfocitos T , Transposasas/genética , Transposasas/metabolismoRESUMEN
BACKGROUND: There is an increasing demand for chimeric antigen receptor (CAR) T cell products from patients and care givers. Here, we established an automated manufacturing process for CAR T cells on the CliniMACS Prodigy platform that is scaled to provide therapeutic doses and achieves gene-transfer with virus-free Sleeping Beauty (SB) transposition. METHODS: We used an advanced CliniMACS Prodigy that is connected to an electroporator unit and performed a series of small-scale development and large-scale confirmation runs with primary human T cells. Transposition was accomplished with minicircle (MC) DNA-encoded SB100X transposase and pT2 transposon encoding a CD19 CAR. RESULTS: We defined a bi-pulse electroporation shock with bi-directional and unidirectional electric field, respectively, that permitted efficient MC insertion and maintained a high frequency of viable T cells. In three large scale runs, 2E8 T cells were enriched from leukapheresis product, activated, gene-engineered and expanded to yield up to 3.5E9 total T cells/1.4E9 CAR-modified T cells within 12 days (CAR-modified T cells: 28.8%±12.3%). The resulting cell product contained highly pure T cells (97.3±1.6%) with balanced CD4/CD8 ratio and a high frequency of T cells with central memory phenotype (87.5%±10.4%). The transposon copy number was 7.0, 9.4 and 6.8 in runs #1-3, respectively, and gene analyses showed a balanced expression of activation/exhaustion markers. The CD19 CAR T cell product conferred potent anti-lymphoma reactivity in pre-clinical models. Notably, the operator hands-on-time was substantially reduced compared with conventional non-automated CAR T cell manufacturing campaigns. CONCLUSIONS: We report on the first automated transposon-based manufacturing process for CAR T cells that is ready for formal validation and use in clinical manufacturing campaigns. This process and platform have the potential to facilitate access of patients to CAR T cell therapy and to accelerate scaled, multiplexed manufacturing both in the academic and industry setting.
Asunto(s)
Inmunoterapia Adoptiva , Receptores Quiméricos de Antígenos , Antígenos CD19/genética , Antígenos CD19/metabolismo , Humanos , Inmunoterapia Adoptiva/métodos , Receptores de Antígenos de Linfocitos T , Linfocitos TRESUMEN
BACKGROUND: Plasmid-based gene therapy approaches often lack long-term transgene expression in vivo as a result of silencing or loss of the vector. One way to overcome these limitations is to combine nonsilenced promoters with strong enhancers. METHODS: In the present study, we combine murine or human cytomegalovirus (CMV)-derived enhancer elements with the human elongation factor 1α (EF1α) promoter in a plasmid backbone devoid of potentially immunostimulating cytosine-guanine repeat sequences. Luciferase transgene activity was monitored in mouse liver after hydrodynamic plasmid delivery. RESULTS: Luciferase activity of a CMV-promoter driven plasmid rapidly declined within days, whereas the activity of the EF1α driven plasmid remained high for 2 weeks (murine enhancer) and detectable for > 80 days (human enhancer). Expression levels clearly correlated with higher plasmid copy number found in the liver at 2 months after gene delivery. Furthermore, we developed a novel synthetic CMV-EF1α hybrid promoter (SCEP) combining the high activity of CMV and sustained activity of EF1α promoter. The SCEP led to a constitutive three-fold increase in expression levels compared to the EF1α promoter in vivo. CONCLUSIONS: This novel combination of enhancer and promoter element with optimized plasmid backbones will pave the way for more efficient nonviral approaches in gene therapy.
Asunto(s)
Elementos de Facilitación Genéticos , Expresión Génica/genética , Vectores Genéticos/genética , Hígado/metabolismo , Plásmidos/genética , Regiones Promotoras Genéticas , Transgenes/genética , Animales , Línea Celular Tumoral , Islas de CpG/genética , Femenino , Regulación de la Expresión Génica , Técnicas de Transferencia de Gen , Terapia Genética , Humanos , Ratones , Ratones Endogámicos BALB C , Ratones SCID , Especificidad de Órganos/genéticaRESUMEN
BACKGROUND: Supercoiled topology of transfected plasmid DNA (pDNA) is critical for transgene expression in mammalian cells. In the present study, we analysed transgene expression of transfected supercoiled pDNA concatemers. METHODS: Jurkat T cells were transfected with a supercoiled 4.7-kb monomeric and, in parallel, a 9.4-kb dimeric pEGFP plasmid concatemer using electroporation. The absolute amounts of pDNA delivered into the cytoplasm and the nucleus were quantified by quantitative real-time polymerase chain reaction. Further, the number and mean fluorescent intensity (MFI) of enhanced green fluorescent protein (EGFP) expressing cells and the relative amounts of TOTO-1 fluorescently-labeled pDNA associated with the cell, located in the cytoplasm, and in the nucleus, were analysed by flow cytometry. RESULTS: For both constructs, significantly higher amounts of pDNA were detected in the cytoplasm compared to the nucleus. Furthermore, from FACS analysis, we could infer the relative gene copy (E(gene)) and plasmid expression efficiency (E(plasmid)) by determining the ratio of the EGFP MFI of the transfected cells to TOTO-1 MFI per nucleus on the single cell level. E(gene) and E(plasmid) were significantly 1.6-and 3.5-fold higher for EGFP-dimer than for EGFP-monomer, although the transfection rates considering the number of transfected cells were significantly lower for EGFP-dimer than for EGFP-monomer. Together with hydrodynamic plasmid diameter measurements, these observations suggest that concatemer arrangement increases relative gene expression efficiency, whereas plasmid size is important for cell and nucleus entry after electroporation. CONCLUSIONS: We propose using preferably small supercoiled plasmid concatemers as the ideal plasmid vectors to maximize both transgene expression and the number of transfected target cells.
Asunto(s)
ADN Concatenado/genética , ADN Superhelicoidal/genética , Regulación de la Expresión Génica , Plásmidos/genética , Transfección , Transgenes/genética , Southern Blotting , Compartimento Celular , Dimerización , Electroporación , Citometría de Flujo , Fluorescencia , Dosificación de Gen , Proteínas Fluorescentes Verdes/metabolismo , Humanos , Células Jurkat , Luz , Dispersión de RadiaciónRESUMEN
Developments in gene therapy, cell therapy, and DNA vaccination require a pharmaceutical gene vector that, on one hand, fulfils the properties to express the encoded information--preferably at the right place, time, and level and, on the other hand, is safe and productive under good manufacturing practices (GMP). Here we summarize the features of producing and modifying these nonviral gene vectors and ensuring the required quality to treat cells and humans or animals.
Asunto(s)
ADN/biosíntesis , Preparaciones Farmacéuticas/metabolismo , Plásmidos/biosíntesis , Vectores Genéticos/genética , Virus/genéticaRESUMEN
A large number of cancer gene therapy clinical trials are currently being performed that are attempting to evaluate novel approaches to eliminate tumor cells by the introduction of genetic material into patients. One of the most important objectives in gene therapy is the development of highly safe and efficient vector systems for gene transfer in eukaryotic cells. Currently, viral and nonviral vector systems are used, both having their advantages and limitations. Minicircles are novel supercoiled minimal expression cassettes, derived from conventional plasmid DNA by site-specific recombination in vivo in Escherichia coli for the use in nonviral gene therapy and vaccination. Minicircle DNA lacks the bacterial backbone sequence consisting of an antibiotic resistance gene, an origin of replication, and inflammatory sequences intrinsic to bacterial DNA. In addition to their improved safety profile, minicircles have been shown to greatly increase the efficiency oftransgene expression in various in vitro and in vivo studies. In this chapter, we describe the production, purification, and application of minicircle DNA and discuss the rationale of the improved gene transfer efficiencies compared to conventional plasmid DNA.
Asunto(s)
Terapia Genética/métodos , Plásmidos/genética , Animales , ADN/biosíntesis , ADN/aislamiento & purificación , Técnicas de Transferencia de Gen , Vectores Genéticos/genética , Humanos , Plásmidos/biosíntesis , Plásmidos/aislamiento & purificación , Recombinación Genética/genéticaRESUMEN
PURPOSE: This phase I clinical trial evaluated safety, feasibility, and efficiency of nonviral intratumoral jet-injection gene transfer in patients with skin metastases from melanoma and breast cancer. EXPERIMENTAL DESIGN: Seventeen patients were enrolled. The patients received five jet injections with a total dose of 0.05 mg beta-galactosidase (LacZ)-expressing plasmid DNA (pCMVbeta) into a single cutaneous lesion. Clinical and laboratory safety monitoring were done. Systemic plasmid clearance was monitored by quantitative real-time PCR of blood samples throughout the study. All lesions were resected after 2 to 6 days. Intratumoral plasmid DNA load, DNA distribution, and LacZ expression was analyzed by quantitative real-time PCR, quantitative reverse transcription-PCR, Western blot, immunohistochemistry, and 5-bromo-4-chloro-3-indolyl-beta-D-galactoside staining. RESULTS: Jet injection of plasmid DNA was safely done in all patients. No serious side effects were observed. Thirty minutes after jet injection, peak plasmid DNA levels were detected in the blood followed by rapid decline and clearance. Plasmid DNA and LacZ mRNA and protein expression were detected in all treated lesions. Quantitative analysis revealed a correlation of plasmid DNA load and LacZ-mRNA expression confirmed by Western blot. Immunohistochemistry and 5-bromo-4-chloro-3-indolyl-beta-D-galactoside staining showed LacZ-protein throughout the tumor. Transfected tumor areas were found close and distant to the jet-injection site with varying levels of DNA load and transgene expression. CONCLUSION: Intratumoral jet injection of plasmid DNA led to efficient LacZ reporter gene expression in all patients. No side effects were experienced, supporting safety and applicability of this novel nonviral approach. A next step with a therapeutic gene product should determine antitumor efficacy of jet-injection gene transfer.
Asunto(s)
Neoplasias de la Mama/terapia , Terapia Genética/métodos , Melanoma/terapia , Plásmidos/administración & dosificación , Neoplasias Cutáneas/terapia , Anciano , Anciano de 80 o más Años , Western Blotting , Neoplasias de la Mama/patología , Femenino , Humanos , Inmunohistoquímica , Inyecciones a Chorro , Operón Lac , Masculino , Melanoma/secundario , Persona de Mediana Edad , ARN Mensajero/análisis , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Neoplasias Cutáneas/secundarioRESUMEN
BACKGROUND: Conventional plasmid-DNA (pDNA) used in gene therapy and vaccination can be subdivided into a bacterial backbone and a transcription unit. Bacterial backbone sequences are needed for pDNA production in bacteria. However, for gene transfer application, these sequences are dispensable, reduce the overall efficiency of the DNA agent and, most importantly, represent a biological safety risk. For example, the dissemination of antibiotic resistance genes, as well as the uncontrolled expression of backbone sequences, may have profound detrimental effects and unmethylated CpG motifs have been shown to contribute to silencing of episomal transgene expression. Therefore, an important goal in nonviral vector development is to produce supercoiled pDNA lacking bacterial backbone sequences. METHODS: A method is described to provide circular, supercoiled minimal expression cassettes (minicircle-DNA) based on two processes: (i) an inducible, sequence specific, in vivo recombination process that is almost 100% efficient and (2) a novel affinity-based chromatographic purification approach for the isolation of the minicircle-DNA. RESULTS: Quantitative real-time polymerase chain reaction analysis, capillary gel electrophoresis and restriction analysis of the recombination products, and the minicircle-DNA revealed a recombination efficiency greater than 99.5% and a purity of the isolated minicircle-DNA of more than 98.5%. CONCLUSIONS: The results obtained in the present study demonstrate that the described technology facilitates the production of highly pure minicircle-DNA for direct application in gene therapy and vaccination. The process described is efficient, stable and suitable for further scale-up in industrial large-scale manufacturing.
Asunto(s)
ADN Superhelicoidal/biosíntesis , Vectores Genéticos/biosíntesis , Plásmidos/genética , Recombinación Genética , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Cromatografía de Afinidad/métodos , ADN Bacteriano/biosíntesis , ADN Bacteriano/química , ADN Superhelicoidal/química , ADN Superhelicoidal/aislamiento & purificación , Técnicas de Transferencia de Gen , Terapia Genética/métodos , Vectores Genéticos/química , Vectores Genéticos/aislamiento & purificación , Represoras Lac , Plásmidos/metabolismo , Proteínas Represoras/genética , Proteínas Represoras/metabolismoRESUMEN
Plasmid DNA is currently gaining increasing importance for clinical research applications in gene therapy and genetic vaccination. For direct gene transfer into humans, good manufacturing practice (GMP)-grade plasmid DNA is mandatory. The same holds true if the drug substance contains a genetically modified cell, for example chimeric antigen receptor (CAR) T cells, where these cells as well as the contained plasmids are used. According to the responsible regulatory agencies, they have to be produced under full GMP. On the other hand, for GMP production of, for example, mRNA or viral vectors (lentiviral vectors, adeno-associated virus vectors, etc.), in many cases, High Quality Grade plasmid DNA is accepted as a starting material. The manufacturing process passes through different production steps. To ensure the right conditions are used for the plasmid, a pilot run must be conducted at the beginning. In this step, a followed upscaling with respect to reproducibility and influences on product quality is performed. Subsequently, a cell bank of the transformed productions strain is established and characterized. This cell bank is used for the cultivation process. After cell harvesting and lysis, several chromatography steps are conducted to receive a pure plasmid product. Depending on the respective required quality grade, the plasmid product is subject to several quality controls. The last step consists of formulation and filling of the product.
Asunto(s)
Vectores Genéticos , Plásmidos , Animales , Técnicas de Transferencia de Gen , Ingeniería Genética , Terapia Genética/métodos , Vectores Genéticos/genética , Vectores Genéticos/aislamiento & purificación , Vectores Genéticos/normas , Humanos , Plásmidos/genéticaRESUMEN
Limited duration of transgene expression, insertional mutagenesis, and size limitations for transgene cassettes pose challenges and risk factors for many gene therapy vectors. Here, we report on physiological expression of liver phenylalanine hydroxylase (PAH) by delivery of naked DNA/minicircle (MC)-based vectors for correction of homozygous enu2 mice, a model of human phenylketonuria (PKU). Because MC vectors lack a defined size limit, we constructed a MC vector expressing a codon-optimized murine Pah cDNA that includes a truncated intron and is under the transcriptional control of a 3.6-kb native Pah promoter/enhancer sequence. This vector, delivered via hydrodynamic injection, yielded therapeutic liver PAH activity and sustained correction of blood phenylalanine comparable to viral or synthetic liver promoters. Therapeutic efficacy was seen with vector copy numbers of <1 vector genome per diploid hepatocyte genome and was achieved at a vector dose that was significantly lowered. Partial hepatectomy and subsequent liver regeneration was associated with >95% loss of vector genomes and PAH activity in liver, demonstrating that MC vectors had not integrated into the liver genome. In conclusion, MC vectors, which do not have a defined size-limitation, offer a favorable safety profile for hepatic gene therapy due to their non-integration in combination with native promoters.
RESUMEN
Transplantation of a donor cornea to restore vision is the most frequently performed transplantation in the world. Corneal endothelial cells (CEC) are crucial for the outcome of a graft as they maintain corneal transparency and avoid graft failure due to corneal opaqueness. Given the characteristic of being a monolayer and in direct contact with culture medium during cultivation in eye banks, CEC are specifically suitable for gene therapeutic approaches prior to transplantation. Recombinant adeno-associated virus 2 (rAAV2) vectors represent a promising tool for gene therapy of CEC. However, high vector titers are needed to achieve sufficient gene expression. One of the rate-limiting steps for transgene expression is the conversion of single-stranded (ss-) DNA vector genome into double-stranded (ds-) DNA. This step can be bypassed by using self-complementary (sc-) AAV2 vectors. Aim of this study was to compare for the first time transduction efficiencies of ss- and scAAV2 vectors in CEC. For this purpose AAV2 vectors containing enhanced green fluorescent protein (GFP) as transgene were used. Both in CEC and in donor corneas, transduction with scAAV2 resulted in significantly higher transgene expression compared to ssAAV2. The difference in transduction efficiency decreased with increasing vector titer. In most cases, only half the vector titer of scAAV2 was required for equal or higher gene expression rates than those of ssAAV2. In human donor corneas, GFP expression was 64.7±11.3% (scAAV) and 38.0±8.6% (ssAAV) (p<0.001), respectively. Furthermore, transduced cells maintained their viability and showed regular morphology. Working together with regulatory authorities, a translation of AAV2 vector-mediated gene therapy to achieve a temporary protection of corneal allografts during cultivation and transplantation could therefore become more realistic.