Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Exp Dermatol ; 32(10): 1763-1773, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37540053

RESUMEN

Psoriasis, one of the most common skin diseases affecting roughly 2%-3% of the world population, is associated with a reduced skin barrier function (SBF) that might play an important role in its pathophysiology. The SBF is provided primarily by the stratum corneum (SC) of the skin. Previous studies have revealed a higher trans-epidermal water loss, lower hydration, abnormal concentration and composition of intercellular lipids, as well as alterations in secondary keratin structure in the psoriatic SC. We compared on molecular level lesional psoriatic skin (LPS) with non-lesional psoriatic skin (nLPS) from 19 patients non-invasively in vivo, using confocal Raman micro-spectroscopy. By analysing the corresponding Raman spectra, we determined SBF-defining parameters of the SC depth-dependently. Our results revealed a lower total lipid concentration, a shift of lamellar lipid organisation towards more gauche-conformers and an increase of the less dense hexagonal lateral packing of the intercellular lipids in LPS. Furthermore, we observed lower natural moisturising factor concentration, lower total water as well as a strong tendency towards less strongly bound and more weakly bound water molecules in LPS. Finally, we detected a less stable secondary keratin structure with increased ß-sheets, in contrast to the tertiary structure, showing a higher degree of folded keratin in LPS. These findings clearly suggest structural differences indicating a reduced SBF in LPS, and are discussed in juxtaposition to preceding outcomes for psoriatic and healthy skin. Understanding the alterations of the psoriatic SC provides insights into the exact pathophysiology of psoriasis and paves the way for optimal future treatments.

2.
Exp Dermatol ; 32(9): 1582-1587, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37545424

RESUMEN

Far-UVC radiation sources of wavelengths 222 nm and 233 nm represent an interesting potential alternative for the antiseptic treatment of the skin due to their high skin compatibility. Nevertheless, no studies on far-UVC-induced DNA damage in different skin types have been published to date, which this study aims for. After irradiating the skin with far-UVC of the wavelengths 222 and 233 nm as well as broadband UVB, the tissue was screened for cyclobutane pyrimidine dimer-positive (CPD+ ) cells using immunohistochemistry. The epidermal DNA damage was lower in dark skin types than in fair skin types after irradiation at 233 nm. Contrary to this, irradiation at 222 nm caused no skin type-dependent differences, which can be attributed to the decreased penetration depth of radiation. UVB showed the relatively strongest differences between light and dark skin types when using a suberythemal dose of 3 mJ/cm2 . As melanin is known for its photoprotective effect, we evaluated the ratio of melanin content in the stratum basale and stratum granulosum in samples of different skin types using two-photon excited fluorescence lifetime imaging (TPE-FLIM) finding a higher ratio up to skin type IV-V. As far-UVC is known to penetrate only into the upper layers of the viable skin, the aforementioned melanin ratio could explain the less pronounced differences between skin types after irradiation with far-UVC compared to UVB.


Asunto(s)
Daño del ADN , Melaninas , Dímeros de Pirimidina , Epidermis , Rayos Ultravioleta
3.
Dermatology ; 239(3): 478-493, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36787702

RESUMEN

BACKGROUND: The knowledge about the location and kinetics of tattoo pigments in human skin after application and during the recovery is restricted due to the limitation of in vivo methods for visualizing pigments. Here, the localization and distribution of tattoo ink pigments in freshly and old tattooed human skin during the regeneration of the epidermis and dermis were investigated in vivo. METHODS: Two-photon excited fluorescence lifetime imaging (TPE-FLIM) was used to identify tattoo ink pigments in human skin in vivo down to the reticular dermis. One subject with a freshly applied tattoo and 10 subjects with tattoos applied over 3 years ago were investigated in the epidermal and dermal layers in vivo. One histological slide of tattooed skin was used to localize skin-resident tattoo pigment using light microscopy. RESULTS: The carbon black particles deposited around the incision have still been visible 84 days after tattoo application, showing delayed recovery of the epidermis. The TPE-FLIM parameters of carbon black tattoo ink pigments were found to be different to all skin components except for melanin. Distinction from melanin in the skin was based on higher fluorescence intensity and agglomerate size. Using TPE-FLIM in vivo tattoo pigment was found in 75% of tattoos applied up to 9 years ago in the epidermis within keratinocytes, dendritic cells, and basal cells and in the dermis within the macrophages, mast cells, and fibroblasts. Loading of highly fluorescent carbon black particles enables in vivo imaging of dendritic cells in the epidermis and fibroblasts in the dermis, which cannot be visualized in native conditions. The collagen I structures showed a higher directionality similar to scar tissue resulting in a greater firmness and decreased elasticity of the tattooed skin. CONCLUSIONS: Here, we show the kinetics and location of carbon black tattoo ink pigment immediately after application for the first time in vivo in human skin. Carbon black particles are located exclusively intracellularly in the skin of fresh and old tattoos. They are found within macrophages, mast cells, and fibroblasts in the dermis and within keratinocytes, dendritic cells, and basal cells in the continuously renewed epidermis even in 9-year-old tattoos in skin showing no inflammation.


Asunto(s)
Tatuaje , Humanos , Niño , Melaninas , Fluorescencia , Hollín , Epidermis/diagnóstico por imagen , Epidermis/patología , Dermis/diagnóstico por imagen , Tinta
4.
Mycoses ; 66(1): 25-28, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-35986595

RESUMEN

Fungal infections have increased considerably over the last decades, becoming progressively resistant to common drugs. UVC light has shown microbiological eradication effects, whereby the wavelength of 254 nm is strongly carcino- and mutagenic. Therefore, 222 and 233 nm, which do not significantly harm skin cells, were tested for their antifungal effects. Microbicidal doses were reached at 40 mJ/cm2 for both wavelengths, resulting in only minor superficial skin damage (<20 µm). UVC irradiation with far-UVC <240 nm represents a new opportunity to effectively eradicate even larger pathogens on tissue causing no or strongly reduced DNA and tissue damage.


Asunto(s)
Candida albicans , Micosis , Humanos , Candida parapsilosis , Rayos Ultravioleta , Antifúngicos/farmacología , Antifúngicos/uso terapéutico , Micosis/tratamiento farmacológico
5.
Int J Mol Sci ; 24(19)2023 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-37834083

RESUMEN

Atopic dermatitis (AD)/atopic eczema is a chronic relapsing inflammatory skin disease affecting nearly 14% of the adult population. An important pathogenetic pillar in AD is the disrupted skin barrier function (SBF). The atopic stratum corneum (SC) has been examined using several methods, including Raman microspectroscopy, yet so far, there is no depth-dependent analysis over the entire SC thickness. Therefore, we recruited 21 AD patients (9 female, 12 male) and compared the lesional (LAS) with non-lesional atopic skin (nLAS) in vivo with confocal Raman microspectroscopy. Our results demonstrated decreased total intercellular lipid and carotenoid concentrations, as well as a shift towards decreased orthorhombic lateral lipid organisation in LAS. Further, we observed a lower concentration of natural moisturising factor (NMF) and a trend towards increased strongly bound and decreased weakly bound water in LAS. Finally, LAS showed an altered secondary and tertiary keratin structure, demonstrating a more folded keratin state than nLAS. The obtained results are discussed in comparison with healthy skin and yield detailed insights into the atopic SC structure. LAS clearly shows molecular alterations at certain SC depths compared with nLAS which imply a reduced SBF. A thorough understanding of these alterations provides useful information on the aetiology of AD and for the development/control of targeted topical therapies.


Asunto(s)
Dermatitis Atópica , Adulto , Humanos , Masculino , Femenino , Dermatitis Atópica/metabolismo , Recurrencia Local de Neoplasia/patología , Piel/metabolismo , Epidermis/metabolismo , Queratinas/metabolismo , Lípidos/análisis
6.
Skin Pharmacol Physiol ; 35(3): 125-136, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35008092

RESUMEN

Confocal Raman microspectroscopy is widely used in dermatology and cosmetology for analysis of the concentration of skin components (lipids, natural moisturizing factor molecules, water) and the penetration depth of cosmetic/medical formulations in the human stratum corneum (SC) in vivo. In recent years, it was shown that confocal Raman microspectroscopy can also be used for noninvasive in vivo depth-dependent determination of the physiological parameters of the SC, such as lamellar and lateral organization of intercellular lipids (ICLs), folding properties of keratin, water mobility, and hydrogen bonding states. The results showed that the strongest skin barrier function, which is primarily manifested by the orthorhombic organization of ICLs, is provided at ≈20-40% SC depth, which is related to the maximal bonding state of water with surrounding components in the SC. The secondary and tertiary structures of keratin determine water binding in the SC, which is depth-dependent. This paper shows the technical possibility and advantage of confocal Raman microspectroscopy in noninvasive investigation of the skin and summarizes recent results on in vivo investigation of the human SC.


Asunto(s)
Epidermis , Espectrometría Raman , Epidermis/metabolismo , Humanos , Queratinas/metabolismo , Lípidos/química , Piel/metabolismo , Espectrometría Raman/métodos , Agua/metabolismo
7.
Int J Cosmet Sci ; 44(1): 118-130, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34986500

RESUMEN

OBJECTIVE: To evaluate the safety and the synergistic effects of tea tree, lavender, eucalyptus and tangerine essential oils in combination on the skin using in vitro, ex vivo and clinical studies. METHODS: The phototoxicity was predicted using 3T3 neutral red uptake phototoxicity test (OECD TG 432). Skin penetration was evaluated by confocal Raman microspectroscopy using direct application of essential oils to pig ears. For the clinical studies, 40 participants were enrolled and randomized in three groups: (1) lavender, eucalyptus and tangerine, (2) the same essential oils plus melaleuca and (3) placebo group. The skin was evaluated by noninvasive techniques before and after a 90-day period of topical use. RESULTS: The essential oils were non-phototoxic, but the tangerine oil showed dose-dependent cytotoxicity (IC50: 33.1 µg/ml), presenting 35% of penetration in the viable epidermis. On the contrary, 17.7 µg/ml in combination was applied per day in the clinical study and the penetration rate for the combinations (10%, 1.77 µg/ml achieving the viable epidermis) guaranteed the safety, since in the clinical study, the application of the four essential oils improved skin barrier and morphologic skin characteristics, as well as increased skin hydration and decreased sebum levels, with no unwanted effects reported. CONCLUSIONS: All essential oils studied were considered non-cytotoxic or non-phototoxic separately except tangerine, which present a dose-dependent cytotoxicity. Finally, the essential oils in combination in an appropriate amount were safe and effective in the improvement of the hydrolipidic balance and morphological properties of the skin.


OBJECTIF: évaluer la sécurité d'emploi et les effets synergiques des associations d'huiles essentielles d'arbre à thé, de lavande, d'eucalyptus et de mandarine sur la peau à l'aide d'études in vitro, ex vivo et cliniques. MÉTHODES: la phototoxicité a été prédite avec le test de phototoxicité de fixation du rouge neutre 3T3 (OCDE TG 432). La pénétration cutanée a été évaluée par microspectroscopie confocale de Raman grâce à l'application directe d'huiles essentielles sur les oreilles de cochons. Pour les études cliniques, 40 participants ont été inclus et randomisés dans trois groupes : (1) lavande, eucalyptus et mandarine, (2) les mêmes huiles essentielles plus melaleuca et (3) un groupe placebo. La peau a été évaluée par des techniques non invasives avant et après une période d'utilisation topique de 90 jours. RÉSULTATS: les huiles essentielles se sont avérées non phototoxiques, mais l'huile de mandarine a montré une cytotoxicité dose-dépendante (CI 50 : 33,1 µg/ml), représentant 35 % de pénétration dans l'épiderme viable. À l'inverse, dans l'étude clinique, une quantité de 17,7 µg/ml par jour en association a été appliquée, et le taux de pénétration des associations (10 %, soit 1,77 µg/ml atteignant l'épiderme viable) a garanti la sécurité d'emploi, puisque dans l'étude clinique, l'application des quatre huiles essentielles a amélioré la barrière cutanée et les caractéristiques morphologiques de la peau, et a entraîné une augmentation de l'hydratation cutanée et une diminution des taux de sébum, sans signalement d'effets indésirables. CONCLUSIONS: chacune des huiles essentielles étudiées a été considérée comme non cytotoxique ou non phototoxique, à l'exception de la mandarine, qui présente une cytotoxicité dose-dépendante. Enfin, l'association d'huiles essentielles en quantité appropriée a démontré sa sécurité d'emploi et son efficacité dans l'amélioration de l'équilibre hydrolipidique et des propriétés morphologiques de la peau.


Asunto(s)
Aceites Volátiles , Animales , Epidermis , Aceites Volátiles/química , Aceites de Plantas/química , Piel , Absorción Cutánea , Porcinos , Humanos
8.
Skin Res Technol ; 27(2): 191-200, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-32686864

RESUMEN

BACKGROUND: The recommended amount of sunscreen by hand application (2 mg/cm2 ) is in reality not achieved, which decreases the homogeneity and thereby the effective sun protection factor (SPF). MATERIALS AND METHODS: The homogeneity of sunscreen applied by a newly developed spray applicator using an electrostatically charged aerosol, for which a hand rubbing of the formulation is not necessary, is evaluated. In vivo experiments were performed on the volar forearms of human volunteers using the spray applicator compared to the standardized hand application according to ISO 24444. RESULTS: The distribution homogeneity was assessed qualitatively using in vivo laser scanning microscopy and quantitatively by absorption spectroscopy after tape stripping and by the standard deviation of multiple spatially displaced reflectance measurements for non-invasive SPF determination below the minimal erythemal dose, which showed a significantly higher homogeneity by 20.9% after spray application compared to hand application. CONCLUSION: Non-invasive SPF determination of multiple spatially displaced reflectance measurements was proven to be a suitable method for the non-invasive determination of the sunscreen distribution homogeneity. Electrostatically charged spray application increased the sunscreen distribution homogeneity on the skin and can reduce the amount of overspray.


Asunto(s)
Protectores Solares , Rayos Ultravioleta , Humanos , Piel , Análisis Espectral , Factor de Protección Solar , Rayos Ultravioleta/efectos adversos
9.
Molecules ; 26(6)2021 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-33809557

RESUMEN

The influence of a topically applied formulation containing components of natural moisturizing factor (NMF) on barrier-related parameters of the stratum corneum (SC) was investigated in vivo using confocal Raman microspectroscopy in a randomized, placebo-controlled double-blind study on 12 volunteers for 14 days. This method allowed for the elucidation of subtle differences between the verum and the placebo even though the components of the verum naturally occur in the SC. This differentiation is not possible non-invasively by conventional methods. In this study, we found that the applied verum and placebo formulations disrupted the equilibrium of water, NMF and lipids in the SC. The adverse effects of the formulation could be mitigated by incorporating it into a simplified supplementation of NMF molecules. As a long-term effect, the amount of strongly bound water increases at 30-40% SC depth (p < 0.05) and the amount of weakly bound water decreases at 30-40% SC depth (p < 0.05) for the verum. This supplement was also unexpectedly able to prevent intercellular lipids (ICL) disorganization in selected depths. In the long term, the verum treatment limited the lateral disorganization of the ICL to the upper 20% SC depth. Further research is required to elucidate the interplay of these factors in the SC, to better understand their contribution to the equilibrium and barrier function of the skin. This understanding of the interaction of these naturally occurring components could help in the future to develop and optimize topical treatments for diseases like psoriasis, atopic dermatitis, ichthyosis where the skin barrier is disrupted.


Asunto(s)
Piel/metabolismo , Administración Tópica , Adulto , Dermatitis Atópica/metabolismo , Método Doble Ciego , Epidermis/metabolismo , Femenino , Humanos , Metabolismo de los Lípidos/fisiología , Lípidos/química , Masculino , Persona de Mediana Edad , Espectrometría Raman/métodos
10.
Skin Res Technol ; 26(2): 301-307, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-31903691

RESUMEN

BACKGROUND: Various cutaneous toxicities under chemotherapy indicate a local effect of chemotherapy by secretion after systemic application. Here, changes in the fluorescence and Raman spectral properties of the stratum corneum subsequent to intravenous chemotherapy were assessed. METHODS: Twenty healthy subjects and 20 cancer patients undergoing chemotherapy were included. Measurement time points in cancer patients were before the first cycle of chemotherapy (Tbase ) and immediately after intravenous application of the chemotherapy (T1 ). Healthy subjects were measured once without any further intervention. Measurements were conducted using an individually manufactured system consisting of a handheld probe and a wavelength-tunable diode laser-based 488 nm SHG light source. Hereby, changes in both skin fluorescence and shifted excitation resonance Raman difference spectroscopy (SERRDS) carotenoid signals were assessed. RESULTS: Healthy subjects showed significantly (P < .001) higher mean concentrations of carotenoids compared to cancer subjects at Tbase . An increase in fluorescence intensity was detected in almost all patients after chemotherapy, especially after doxorubicin infusion. Furthermore, a decrease in the carotenoid concentration in the skin after chemotherapy was found. CONCLUSION: The SERRDS based noninvasive detection can be used as an indirect quantitative assessment of fluorescent chemotherapeutics. The lower carotenoid SERRDS intensities at Tbase might be due to cancerous diseases and co-medication.


Asunto(s)
Antineoplásicos/efectos adversos , Carotenoides/análisis , Piel/química , Piel/efectos de los fármacos , Espectrometría de Fluorescencia/métodos , Adulto , Anciano , Femenino , Humanos , Masculino , Persona de Mediana Edad , Neoplasias/tratamiento farmacológico , Espectrometría Raman
11.
Skin Pharmacol Physiol ; 33(1): 30-37, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-31614347

RESUMEN

The skin barrier function is mostly provided by the stratum corneum (SC), the uppermost layer of the epidermis. To noninvasively analyze the physiological properties of the skin barrier functionin vivo, it is important to determine the SC thickness. Confocal Raman microscopy (CRM) is widely used for this task. In the present in vivo study, a new method based on the determination of the DNA concentration profile using CRM is introduced for determining the SC thickness. The obtained SC thickness values are compared with those obtained using other CRM-based methods determining the water and lipid depth profiles. The obtained results show almost no significant differences in SC thickness for the utilized methods. Therefore, the results indicate that it is possible to calculate the SC thickness by using the DNA profile in the fingerprint region, which is comparable with the SC thickness calculated by the water depth profiles (ANOVA test p = 0.77) and the lipid depth profile (ANOVA test p = 0.74). This provides the possibility to measure the SC thickness by using the DNA profile, in case the water or lipid profile analyses are influenced by a topically applied formulation. The increase in DNA concentration in the superficial SC (0-2 µm) is related to the DNA presence in the microbiome of the skin, which was not present in the SC depth below 4 µm.


Asunto(s)
ADN/análisis , Epidermis , Microbiota , Adulto , Epidermis/anatomía & histología , Epidermis/química , Epidermis/microbiología , Femenino , Humanos , Lípidos/análisis , Masculino , Microscopía Confocal , Persona de Mediana Edad , Adulto Joven
12.
Exp Dermatol ; 28(11): 1237-1243, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31400168

RESUMEN

The human stratum corneum (SC) contains an abundant amount of carotenoid antioxidants, quenching free radicals and thereby protecting the skin. For the precise measurements of the depth-dependent carotenoid concentration, confocal Raman microscopy is a suitable method. The quantitative concentration can be determined by the carotenoid-related peak intensity of a Gaussian function approached at ≈1524 cm-1 using non-linear regression. Results show that the carotenoid concentration is higher at the superficial layers of the SC then decreases to a minimum at 20% SC depth and increases again towards the bottom of the SC. In the present work, two carotenoid penetration pathways into the SC are postulated. The first pathway is from the stratum granulosum to the bottom of the SC, while in the second pathway, the carotenoids are delivered to the skin surface by sweat and/or sebum secretion and penetrate from outside. The carotenoids are aggregated at the superficial layers, which are shown by high correlation between the aggregation states of carotenoids and the lateral organization of lipids. At the 30%-40% SC depths, the ordered and dense lipid molecules intensify the lipid-carotenoid interactions and weaken the carotenoid-carotenoid interaction and thus exhibit the disaggregation of carotenoids. At 90%-100% SC depths, the carotenoid-lipid interaction is weakened and the carotenoids have a tendency to be aggregated. Thus, the molecular structural correlation of carotenoid and SC lipid might be reserved in the intercellular space of the SC and also serves as the skeleton of the intercellular lipids.


Asunto(s)
Carotenoides/análisis , Epidermis/química , Anciano , Femenino , Voluntarios Sanos , Humanos , Masculino , Microscopía Confocal , Persona de Mediana Edad , Espectrometría Raman
13.
Skin Res Technol ; 25(3): 389-398, 2019 May.
Artículo en Inglés | MEDLINE | ID: mdl-30758884

RESUMEN

BACKGROUND: Skin diseases can develop upon disadvantageous microclimate in relation to skin contact with textiles of supporting devices. Increased temperature, moisture, mechanical fracture, pressure, and inflammatory processes often occur mutually and enhance each other in their adverse effects. Therefore, the early prevention of skin irritations by improvement of microclimatic properties of skin in contact with supporting devices is important. MATERIALS AND METHODS: In this study, the microclimate under occlusion with polyester, cotton, chloroprene rubber, and silicone textiles, used for supporting devices, was analyzed by determining several characteristic physiologic skin parameters in vivo, including temperature, moisture, and transepidermal water loss (TEWL). This is achieved by comparing a miniaturized in vivo detection device with several established optical and sensory methods in vivo. RESULTS: A highly significant TEWL decrease was found after polyester, chloroprene rubber, and silicone application. The application of all materials showed highly significant decrease in skin surface temperature, with chloroprene rubber showing the lowest. Similarly, all materials showed highly significant increase in relative moisture, where the highest increase was found for chloroprene rubber and silicone and the lowest increase for cotton. The cutaneous carotenoid concentration of chloroprene rubber, silicone, and polyester decreased. A manipulation of the surface structure of the stratum corneum was recognized for all materials except for cotton by laser scanning microscopy. CONCLUSION: The skin parameters temperature, relative moisture, antioxidant status, and TEWL can effectively characterize the microclimatic environment during occlusion with medical supporting materials. These parameters could potentially be used to develop standardized testing procedures for material evaluation.


Asunto(s)
Fibra de Algodón/efectos adversos , Neopreno/efectos adversos , Poliésteres/efectos adversos , Siliconas/efectos adversos , Fenómenos Fisiológicos de la Piel , Pérdida Insensible de Agua , Adulto , Agua Corporal , Células Epidérmicas , Voluntarios Sanos , Humanos , Microclima , Persona de Mediana Edad , Piel/citología , Temperatura Cutánea
14.
Analyst ; 143(20): 4990-4999, 2018 Oct 08.
Artículo en Inglés | MEDLINE | ID: mdl-30225475

RESUMEN

Raman measurements applied on freshly tattooed porcine skin ex vivo showed a possibility of obtaining the ink pigment related information in the skin. Based on these results, confocal Raman microscopy was used to identify the tattoo ink pigments of different colors in multicolored tattooed human skin in vivo. The Raman signatures of tattoo ink pigments were unique. Therefore, it could be shown that the applied method is successful for the identification of the tattoo ink pigments in human skin in vivo down to depths of approx. 50 µm, which is sufficient to screen the entire epidermis and the top of the papillary dermis area on the forearm and leg skin sites. Additional application of the optical clearing technique in vivo by topical application of glycerol, combined with tape stripping removal of the uppermost stratum corneum layers and defatting allows the extension of depths of investigation in tattooed skin down to approx. 400 µm, i.e. to cover the entire papillary dermis and a large part of the reticular dermis. Thus, the tattoo ink pigments were identified in vivo and depth-dependently in human tattooed skin confirming their presence in the papillary and reticular dermis. The proposed non-invasive in vivo Raman screening combined with optical clearing for identifying the tattoo pigments in the dermis can be an important task preceding a laser-based tattoo removal procedure and for determining the optimal laser parameters.


Asunto(s)
Colorantes/análisis , Tinta , Microscopía Confocal/métodos , Piel/química , Espectrometría Raman/métodos , Tatuaje , Animales , Color , Humanos , Porcinos
15.
Exp Dermatol ; 24(10): 767-72, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26010742

RESUMEN

Raman spectroscopy has proved its capability as an objective, non-invasive tool for the detection of various melanoma and non-melanoma skin cancers (NMSC) in a number of studies. Most publications are based on a Raman microspectroscopic ex vivo approach. In this in vivo clinical evaluation, we apply Raman spectroscopy using a fibre-coupled probe that allows access to a multitude of affected body sites. The probe design is optimized for epithelial sensitivity, whereby a large part of the detected signal originates from within the epidermal layer's depth down to the basal membrane where early stages of skin cancer develop. Data analysis was performed on measurements of 104 subjects scheduled for excision of lesions suspected of being malignant melanoma (MM) (n = 36), basal cell carcinoma (BCC) (n = 39) and squamous cell carcinoma (SCC) (n = 29). NMSC were discriminated from normal skin with a balanced accuracy of 73% (BCC) and 85% (SCC) using partial least squares discriminant analysis (PLS-DA). Discriminating MM and pigmented nevi (PN) resulted in a balanced accuracy of 91%. These results lie within the range of comparable in vivo studies and the accuracies achieved by trained dermatologists using dermoscopy. Discrimination proved to be unsuccessful between cancerous lesions and suspicious lesions that had been histopathologically verified as benign by dermoscopy.


Asunto(s)
Carcinoma Basocelular/diagnóstico , Carcinoma de Células Escamosas/diagnóstico , Epidermis , Melanoma/diagnóstico , Nevo Pigmentado/diagnóstico , Neoplasias Cutáneas/diagnóstico , Espectrometría Raman/métodos , Carcinoma Basocelular/química , Carcinoma de Células Escamosas/química , Estudios de Casos y Controles , Diagnóstico Diferencial , Análisis Discriminante , Epidermis/química , Tecnología de Fibra Óptica , Humanos , Análisis de los Mínimos Cuadrados , Melanoma/química , Fibras Ópticas , Procesamiento de Señales Asistido por Computador , Neoplasias Cutáneas/química , Espectrometría Raman/instrumentación
16.
Eur J Pharm Biopharm ; 197: 114211, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38340877

RESUMEN

The concentration of air pollution is gradually increasing every year so that daily skin exposure is unavoidable. Dietary supplements and topical formulations currently represent the protective strategies to guard against the effects of air pollution on the body and the skin. Unfortunately, there are not yet enough methods available to measure the effectiveness of anti-pollution products on skin. Here, we present two ex vivo methods for measuring the protective effect against air pollution of different cream formulations on the skin: Electron paramagnetic resonance (EPR) spectroscopy and autofluorescence excited by 785 nm using a confocal Raman microspectrometer (CRM). Smoke from one cigarette was used as a model pollutant. EPR spectroscopy enables the direct measurement of free radicals in excised porcine skin after smoke exposure. The autofluorescence in the skin was measured ex vivo, which is an indicator of oxidative stress. Two antioxidants and a chelating agent in a base formulation and a commercial product containing an antioxidant mixture were investigated. The ex vivo studies show that the antioxidant epigallocatechin-3-gallate (EGCG) in the base cream formulation provided the best protection against oxidative stress from smoke exposure for both methods.


Asunto(s)
Antioxidantes , Piel , Animales , Porcinos , Antioxidantes/química , Espectroscopía de Resonancia por Spin del Electrón/métodos , Piel/metabolismo , Estrés Oxidativo , Radicales Libres/química
17.
Microbes Infect ; 26(4): 105320, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38461969

RESUMEN

INTRODUCTION: Healthcare-acquired infections and overuse of antibiotics are a common problem. Rising emergence of antibiotic and antiseptic resistances requires new methods of microbial decontamination or decolonization as the use of far-UV-C radiation. METHODS: The microbicidal efficacy of UV-C radiation (222 nm, 233 nm, 254 nm) was determined in a quantitative carrier test and on 3D-epidermis models against Staphylococcus (S.) aureus, S.epidermidis, S.haemolyticus, S.lugdunensis, Klebsiella pneumoniae, and Pseudomonas aeruginosa. To mimic realistic conditions, sodium chloride solution, mucin, albumin, artificial saliva, artificial wound exudate and artificial sweat were used. RESULTS: In sodium chloride solution, irradiation with a dose of 40 mJ/cm2 (233 nm) was sufficient to achieve 5 lg reduction independent of bacteria genus or species. In artificial sweat, albumin and artificial wound exudate, a reduction >3 lg was reached for most of the bacteria. Mucin and artificial saliva decreased the reduction to <2 lg. On 3D epidermis models, reduction was lower than in the carrier test. CONCLUSION: UV-C radiation at 233 nm was proven to be efficient in bacteria inactivation independent of genus or species thus being a promising candidate for clinical use in the presence of humans and on skin/mucosa.


Asunto(s)
Rayos Ultravioleta , Humanos , Bacterias/efectos de la radiación , Bacterias/efectos de los fármacos , Viabilidad Microbiana/efectos de la radiación , Viabilidad Microbiana/efectos de los fármacos , Células Epidérmicas/efectos de la radiación , Epidermis/efectos de la radiación , Epidermis/microbiología
18.
Eur J Pharm Biopharm ; 199: 114303, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38657740

RESUMEN

Dissolvable microneedles (DMNs), fabricated from biocompatible materials that dissolve in both water and skin have gained popularity in dermatology. However, limited research exists on their application in compromised skin conditions. This study compares the hyaluronic acid-based DMNs penetration, formation of microchannels, dissolution, and diffusion kinetics in intact, barrier-disrupted (tape stripped), and dry (acetone-treated) porcine ear skin ex vivo. After DMNs application, comprehensive investigations including dermoscopy, stereomicroscope, skin hydration, transepidermal water loss (TEWL), optical coherence tomography (OCT), reflectance confocal laser scanning microscopy (RCLSM), confocal Raman micro-spectroscopy (CRM), two-photon tomography combined with fluorescence lifetime imaging (TPT-FLIM), histology, and scanning electron microscopy (SEM) were conducted. The 400 µm long DMNs successfully penetrated the skin to depths of ≈200 µm for dry skin and ≈200-290 µm for barrier-disrupted skin. Although DMNs fully inserted into all skin conditions, their dissolution rates were high in barrier-disrupted and low in dry skin, as observed through stereomicroscopy and TPT-FLIM. The dissolved polymer exhibited a more significant expansion in barrier-disrupted skin compared to intact skin, with the smallest increase observed in dry skin. Elevated TEWL and reduced skin hydration levels were evident in barrier-disrupted and dry skins compared to intact skin. OCT and RCLSM revealed noticeable skin indentation and pronounced microchannel areas, particularly in barrier-disrupted and dry skin. Additional confirmation of DMN effects on the skin and substance dissolution was obtained through histology, SEM, and CRM techniques. This study highlights the impact of skin condition on DMN effectiveness, emphasizing the importance of considering dissolvability and dissolution rates of needle materials, primarily composed of hyaluronic acid, for optimizing DMN-based drug delivery.


Asunto(s)
Administración Cutánea , Ácido Hialurónico , Agujas , Absorción Cutánea , Piel , Solubilidad , Animales , Porcinos , Piel/metabolismo , Piel/efectos de los fármacos , Absorción Cutánea/efectos de los fármacos , Absorción Cutánea/fisiología , Ácido Hialurónico/química , Ácido Hialurónico/administración & dosificación , Sistemas de Liberación de Medicamentos/métodos , Tomografía de Coherencia Óptica/métodos , Microinyecciones/métodos , Pérdida Insensible de Agua/efectos de los fármacos , Pérdida Insensible de Agua/fisiología , Materiales Biocompatibles/administración & dosificación , Materiales Biocompatibles/química
19.
J Biophotonics ; 16(2): e202200219, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36106843

RESUMEN

The main components of the stratum corneum (SC), water, lipids, and proteins, are non-homogeneously distributed throughout the depth. The quantitative determination of their concentration profiles and penetration depth of topically applied substances are urgent topics of dermatological and cosmetic research. Confocal Raman micro-spectroscopy has distinct advantages when determining semi-quantitative concentrations of SC components and topically applied substances non-invasively and in vivo. In this work, we applied a tailored multivariate curve resolution-alternating least squares (tMCR-ALS) method to analyze Raman spectra of the SC in the 2000-4000 cm-1 region for quantitatively determining the concentrations of water, lipids, proteins, and topically applied oils using substance-related spectral loadings which were allowed to change depth-dependently from the SC's surface toward its bottom. tMCR-ALS makes matching of depth-dependent signal attenuation, that is, the normalization on keratin, unnecessary and requires only a few additional experiments for calibration - Raman spectra of the pure materials and their densities.


Asunto(s)
Esclerosis Amiotrófica Lateral , Humanos , Análisis de los Mínimos Cuadrados , Piel/metabolismo , Epidermis/metabolismo , Agua/metabolismo , Queratinas/metabolismo , Espectrometría Raman/métodos , Aceites/análisis , Aceites/metabolismo , Lípidos/análisis
20.
Antioxidants (Basel) ; 12(5)2023 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-37237877

RESUMEN

Air pollution is increasing worldwide and skin is exposed to high levels of pollution daily, causing oxidative stress and other negative consequences. The methods used to determine oxidative stress in the skin are invasive and non-invasive label-free in vivo methods, which are severely limited. Here, a non-invasive and label-free method to determine the effect of cigarette smoke (CS) exposure on skin ex vivo (porcine) and in vivo (human) was established. The method is based on the measurement of significant CS-exposure-induced enhancement in red- and near-infrared (NIR)-excited autofluorescence (AF) intensities in the skin. To understand the origin of red- and NIR-excited skin AF, the skin was exposed to several doses of CS in a smoking chamber. UVA irradiation was used as a positive control of oxidative stress in the skin. The skin was measured with confocal Raman microspectroscopy before CS exposure, immediately after CS exposure, and after skin cleaning. CS exposure significantly increased the intensity of red- and NIR-excited skin AF in a dose-dependent manner in the epidermis, as confirmed by laser scanning microscopy AF imaging and fluorescence spectroscopy measurements. UVA irradiation enhanced the intensity of AF, but to a lower extent than CS exposure. We concluded that the increase in red- and NIR-excited AF intensities of the skin after CS exposure could clearly be related to the induction of oxidative stress in skin, where skin surface lipids are mainly oxidized.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA