Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Med Phys ; 49(4): 2309-2323, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35192200

RESUMEN

PURPOSE: We demonstrate the viability of a four-dimensional X-ray computed tomography (4DCT) imaging system to accurately and precisely estimate mechanical activation times of left ventricular (LV) wall motion. Accurate and reproducible timing estimates of LV wall motion may be beneficial in the successful planning and management of cardiac resynchronization therapy (CRT). METHODS: We developed an anthropomorphically accurate in silico LV phantom based on human CT images with programmed septal-lateral wall dyssynchrony. Twenty-six temporal phases of the in silico phantom were used to sample the cardiac cycle of 1 s. For each of the 26 phases, 1 cm thick axial slabs emulating axial CT image volumes were extracted, 3D printed, and imaged using a commercially available CT scanner. A continuous dynamic sinogram was synthesized by blending sinograms from these static phases; the synthesized sinogram emulated the sinogram that would be acquired under true continuous phantom motion. Using the synthesized dynamic sinogram, images were reconstructed at 70 ms intervals spanning the full cardiac cycle; these images exhibited expected motion artifact characteristics seen in images reconstructed from real dynamic data. The motion corrupted images were then processed with a novel motion correction algorithm (ResyncCT) to yield motion corrected images. Five pairs of motion uncorrected and motion corrected images were generated, each corresponding to a different starting gantry angle (0 to 180 degrees in 45 degree increments). Two line profiles perpendicular to the endocardial surface were used to sample local myocardial motion trajectories at the septum and the lateral wall. The mechanical activation time of wall motion was defined as the time at which the endocardial boundary crossed a fixed position defined on either of the two line profiles while moving toward the center of the LV during systolic contraction. The mechanical activation times of these myocardial trajectories estimated from the motion uncorrected and the motion corrected images were then compared with those derived from the static images of the 3D printed phantoms (ground truth). The precision of the timing estimates was obtained from the five different starting gantry angle simulations. RESULTS: The range of estimated mechanical activation times observed across all starting gantry angles was significantly larger for the motion uncorrected images than for the motion corrected images (lateral wall: 58 ± 15 ms vs 12 ± 4 ms, p < 0.005; septal wall: 61 ± 13 ms vs 13 ± 9 ms, p < 0.005). CONCLUSIONS: 4DCT images processed with the ResyncCT motion correction algorithm yield estimates of mechanical activation times of LV wall motion with significantly improved accuracy and precision. The promising results reported in this study highlight the potential utility of 4DCT in estimating the timing of mechanical events of interest for CRT guidance.


Asunto(s)
Tomografía Computarizada Cuatridimensional , Ventrículos Cardíacos , Artefactos , Tomografía Computarizada Cuatridimensional/métodos , Ventrículos Cardíacos/diagnóstico por imagen , Humanos , Movimiento (Física) , Fantasmas de Imagen
2.
Med Phys ; 49(7): 4404-4418, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35588288

RESUMEN

PURPOSE: Standard four-dimensional computed tomography (4DCT) cardiac reconstructions typically include spiraling artifacts that depend not only on the motion of the heart but also on the gantry angle range over which the data was acquired. We seek to reduce these motion artifacts and, thereby, improve the accuracy of left ventricular wall positions in 4DCT image series. METHODS: We use a motion artifact reduction approach (ResyncCT) that is based largely on conjugate pairs of partial angle reconstruction (PAR) images. After identifying the key locations where motion artifacts exist in the uncorrected images, paired subvolumes within the PAR images are analyzed with a modified cross-correlation function in order to estimate 3D velocity and acceleration vectors at these locations. A subsequent motion compensation process (also based on PAR images) includes the creation of a dense motion field, followed by a backproject-and-warp style compensation. The algorithm was tested on a 3D printed phantom, which represents the left ventricle (LV) and on challenging clinical cases corrupted by severe artifacts. RESULTS: The results from our preliminary phantom test as well as from clinical cardiac scans show crisp endocardial edges and resolved double-wall artifacts. When viewed as a temporal series, the corrected images exhibit a much smoother motion of the LV endocardial boundary as compared to the uncorrected images. In addition, quantitative results from our phantom studies show that ResyncCT processing reduces endocardial surface distance errors from 0.9 ± 0.8 to 0.2 ± 0.1 mm. CONCLUSIONS: The ResyncCT algorithm was shown to be effective in reducing motion artifacts and restoring accurate wall positions. Some perspectives on the use of conjugate-PAR images and on techniques for CT motion artifact reduction more generally are also given.


Asunto(s)
Artefactos , Tomografía Computarizada Cuatridimensional , Algoritmos , Tomografía Computarizada Cuatridimensional/métodos , Ventrículos Cardíacos/diagnóstico por imagen , Movimiento (Física) , Fantasmas de Imagen
3.
J Med Imaging (Bellingham) ; 6(4): 045001, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-31824981

RESUMEN

We present an anthropomorphically accurate left ventricular (LV) phantom derived from human computed tomography (CT) data to serve as the ground truth for the optimization and the spatial resolution quantification of a CT-derived regional strain metric (SQUEEZ) for the detection of regional wall motion abnormalities. Displacements were applied to the mesh points of a clinically derived end-diastolic LV mesh to create analytical end-systolic poses with physiologically accurate endocardial strains. Normal function and regional dysfunction of four sizes [1, 2/3, 1/2, and 1/3 American Heart Association (AHA) segments as core diameter], each exhibiting hypokinesia (70% reduction in strain) and subtle hypokinesia (40% reduction in strain), were simulated. Regional shortening ( RS CT ) estimates were obtained by registering the end-diastolic mesh to each simulated end-systolic mesh condition using a nonrigid registration algorithm. Ground-truth models of normal function and of hypokinesia were used to identify the optimal parameters in the registration algorithm and to measure the accuracy of detecting regional dysfunction of varying sizes and severities. For normal LV function, RS CT values in all 16 AHA segments were accurate to within ± 5 % . For cases with regional dysfunction, the errors in RS CT around the dysfunctional region increased with decreasing size of dysfunctional tissue.

4.
Circ Cardiovasc Imaging ; 12(12): e009075, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31842587

RESUMEN

BACKGROUND: Modern computed tomographic scanning can produce 4-dimensional images of the left atrial appendage (LAA). LAA function and morphology can then be measured, to plan interventions such as occlusion and to evaluate LAA flow for thrombogenic risk analysis. A current problem here is defining a reproducible boundary between the LAA and the left atrium. METHODS: This study used retrospectively gated 4-dimensional computed tomographic data from 25 implantation and coronary artery imaging patients. In each patient, the LAA ostium was defined at multiple time points during the RR interval. To examine the reproducibility of the definition of the LAA ostium, 3 observers analyzed all time frames in each patient 3 times. Five nonconsecutive time frames from each patient were then compared using intraclass correlation coefficients to quantify the precision of the method across patients. The correlation of LAA volumes for each time frame of each patient was determined across the different observers (interobserver) and within each observer's own data sets (intraobserver). RESULTS: The method was successful in 92% of patients. Two-way random-effect, absolute-agreement, single-measurement intraclass correlation coefficients for interobserver measurements were 0.984, 0.990, and 0.988, with intraobserver intraclass correlation coefficients of 0.989, 0.989, and 0.995. The intraclass correlation coefficient of all observations was 0.988. CONCLUSIONS: Classification of the LAA ostium using a stepwise procedure identifying the coumadin ridge and 2 vascular landmarks in ECG-gated computed tomography provides a viable method of establishing a highly reproducible boundary between the atrium and LAA needed to obtain LAA metrics useful for procedure planning and measuring LAA function.


Asunto(s)
Apéndice Atrial/diagnóstico por imagen , Fibrilación Atrial/diagnóstico , Función del Atrio Izquierdo/fisiología , Imagenología Tridimensional/métodos , Tomografía Computarizada por Rayos X/métodos , Anciano , Anciano de 80 o más Años , Fibrilación Atrial/fisiopatología , Estudios Transversales , Femenino , Humanos , Masculino , Persona de Mediana Edad , Curva ROC , Reproducibilidad de los Resultados , Estudios Retrospectivos
5.
Med Phys ; 46(12): 5514-5527, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31603567

RESUMEN

PURPOSE: Coronary x-ray computed tomography angiography (CCTA) continues to develop as a noninvasive method for the assessment of coronary vessel geometry and the identification of physiologically significant lesions. The uncertainty of quantitative lesion diameter measurement due to limited spatial resolution and vessel motion reduces the accuracy of CCTA diagnoses. In this paper, we introduce a new technique called computed tomography (CT)-number-Calibrated Diameter to improve the accuracy of the vessel and stenosis diameter measurements with CCTA. METHODS: A calibration phantom containing cylindrical holes (diameters spanning from 0.8 mm through 4.0 mm) capturing the range of diameters found in human coronary vessels was three-dimensional printed. We also printed a human stenosis phantom with 17 tubular channels having the geometry of lesions derived from patient data. We acquired CT scans of the two phantoms with seven different imaging protocols. Calibration curves relating vessel intraluminal maximum voxel value (maximum CT number of a voxel, described in Hounsfield Units, HU) to true diameter, and full-width-at-half maximum (FWHM) to true diameter were constructed for each CCTA protocol. In addition, we acquired scans with a small constant motion (15 mm/s) and used a motion correction reconstruction (Snapshot Freeze) algorithm to correct motion artifacts. We applied our technique to measure the lesion diameter in the 17 lesions in the stenosis phantom and compared the performance of CT-number-Calibrated Diameter to the ground truth diameter and a FWHM estimate. RESULTS: In all cases, vessel intraluminal maximum voxel value vs diameter was found to have a simple functional form based on the two-dimensional point spread function yielding a constant maximum voxel value region above a cutoff diameter, and a decreasing maximum voxel value vs decreasing diameter below a cutoff diameter. After normalization, focal spot size and reconstruction kernel were the principal determinants of cutoff diameter and the rate of maximum voxel value reduction vs decreasing diameter. The small constant motion had a significant effect on the CT number calibration; however, the motion-correction algorithm returned the maximum voxel value vs diameter curve to that of stationary vessels. The CT number Calibration technique showed better performance than FWHM estimation of diameter, yielding a high accuracy in the tested range (0.8 mm through 2.5 mm). We found a strong linear correlation between the smallest diameter in each of 17 lesions measured by CT-number-Calibrated Diameter (DC ) and ground truth diameter (Dgt ), (DC  = 0.951 × Dgt  + 0.023 mm, r = 0.998 with a slope very close to 1.0 and intercept very close to 0 mm. CONCLUSIONS: Computed tomography-number-Calibrated Diameter is an effective method to enhance the accuracy of the estimate of small vessel diameters and degree of coronary stenosis in CCTA.


Asunto(s)
Angiografía por Tomografía Computarizada , Estenosis Coronaria/diagnóstico por imagen , Estenosis Coronaria/patología , Procesamiento de Imagen Asistido por Computador , Tomografía Computarizada por Rayos X , Artefactos , Calibración , Estenosis Coronaria/fisiopatología , Movimiento , Fantasmas de Imagen
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA