Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Lipid Res ; : 100665, 2024 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-39393447

RESUMEN

The scavenger receptor SR-BI facilitates the transport of both HDL and LDL through endothelial cells. Its two splice variants, SR-BIvar1 and SR-BIvar2, differ in their carboxyterminal domains. Only the one of SR-BIvar1 contains the putative binding sites for the adapter proteins PDZK1 and DOCK4, which limit the cell surface abundance and internalization of the receptor. To investigate the cellular localization of the SR-BI variants and their interaction with lipoproteins in endothelial cells, EA.hy926 cells were stably transfected with vectors encoding untagged, GFP- or mCherry-tagged constructs of the two SR-BI variants. Additionally, the cells were transfected with shRNAs against PDZK1 or DOCK4. Microscopy investigation showed that SR-BIvar1 was predominantly localized on the cell surface together with clathrin whereas SR-BIvar2 was absent from the cell surface but retrieved in endosomes and lysosomes. Accordingly, only SR-BIvar1 increased lipoprotein binding to endothelial while HDL and LDL uptake were enhanced by both variants. Silencing of PDZK1 or DOCK3 only reduced HDL association in SR-BIvar2 overexpressing cells while LDL association was reduced both in wild type and SR-BIvar2 overexpressing cells. In conclusion, either SR-BI variant facilitates the uptake of HDL and LDL into endothelial cells, however by different mechanisms and trafficking routes. This dual role may explain why the loss of DOCK4 or PDZK1 differently affects the uptake of HDL and LDL in different endothelial cells.

2.
Cardiovasc Res ; 120(5): 476-489, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38109696

RESUMEN

AIMS: The entry of lipoproteins from blood into the arterial wall is a rate-limiting step in atherosclerosis. It is controversial whether this happens by filtration or regulated transendothelial transport.Because sphingosine-1-phosphate (S1P) preserves the endothelial barrier, we investigated in vivo and in vitro, whether S1P and its cognate S1P-receptor 3 (S1P3) regulate the transendothelial transport of lipoproteins. METHODS AND RESULTS: Compared to apoE-haploinsufficient mice (CTRL), apoE-haploinsufficient mice with additional endothelium-specific knock-in of S1P3 (S1P3-iECKI) showed decreased transport of LDL and Evan's Blue but increased transport of HDL from blood into the peritoneal cave. After 30 weeks of high-fat diet feeding, S1P3-iECKI mice had lower levels of non-HDL-cholesterol and less atherosclerosis than CTRL mice. In vitro stimulation with an S1P3 agonist increased the transport of 125I-HDL but decreased the transport of 125I-LDL through human aortic endothelial cells (HAECs). Conversely, inhibition or knock-down of S1P3 decreased the transport of 125I-HDL but increased the transport of 125I-LDL. Silencing of SCARB1 encoding scavenger receptor B1 (SR-BI) abrogated the stimulation of 125I-HDL transport by the S1P3 agonist. The transendothelial transport of 125I-LDL was decreased by silencing of SCARB1 or ACVLR1 encoding activin-like kinase 1 but not by interference with LDLR. None of the three knock-downs prevented the stimulatory effect of S1P3 inhibition on transendothelial 125I-LDL transport. CONCLUSION: S1P3 regulates the transendothelial transport of HDL and LDL oppositely by SR-BI-dependent and SR-BI-independent mechanisms, respectively. This divergence supports a contention that lipoproteins pass the endothelial barrier by specifically regulated mechanisms rather than passive filtration.


Asunto(s)
Aterosclerosis , Células Endoteliales , Lipoproteínas HDL , Lipoproteínas LDL , Transporte de Proteínas , Receptores de Esfingosina-1-Fosfato , Animales , Humanos , Ratones , Aterosclerosis/metabolismo , Aterosclerosis/genética , Aterosclerosis/patología , Aterosclerosis/prevención & control , Transporte Biológico , Células Cultivadas , Modelos Animales de Enfermedad , Células Endoteliales/metabolismo , Lipoproteínas HDL/metabolismo , Lipoproteínas LDL/metabolismo , Lisofosfolípidos , Ratones Endogámicos C57BL , Ratones Noqueados para ApoE , Receptores Depuradores de Clase B/metabolismo , Receptores Depuradores de Clase B/genética , Receptores de Esfingosina-1-Fosfato/metabolismo , Receptores de Esfingosina-1-Fosfato/genética , Transporte de Proteínas/genética
3.
Cells ; 11(19)2022 09 28.
Artículo en Inglés | MEDLINE | ID: mdl-36231005

RESUMEN

The transport of low-density lipoprotein (LDL) through the endothelium is a key step in the development of atherosclerosis, but it is notorious that phenotypic differences exist between endothelial cells originating from different vascular beds. Endothelial cells forming the blood-brain barrier restrict paracellular and transcellular passage of plasma proteins. Here, we systematically compared brain versus aortic endothelial cells towards their interaction with LDL and the role of proteins known to regulate the uptake of LDL by endothelial cells. Both brain endothelial cells and aortic endothelial cells bind and internalize LDL. However, whereas aortic endothelial cells degrade very small amounts of LDL and transcytose the majority, brain endothelial cells degrade but do not transport LDL. Using RNA interference (siRNA), we found that the LDLR-clathrin pathway leads to LDL degradation in either endothelial cell type. Both loss- and gain-of-function experiments showed that ALK1, which promotes transcellular LDL transport in aortic endothelial cells, also limits LDL degradation in brain endothelial cells. SR-BI and caveolin-1, which promote LDL uptake and transport into aortic endothelial cells, limit neither binding nor association of LDL to brain endothelial cells. Together, these results indicate distinct LDL trafficking by brain microvascular endothelial cells and aortic endothelial cells.


Asunto(s)
Células Endoteliales , Lipoproteínas LDL , Encéfalo/metabolismo , Caveolina 1/metabolismo , Clatrina/metabolismo , Células Endoteliales/metabolismo , Endotelio/metabolismo , Lipoproteínas LDL/metabolismo , ARN Interferente Pequeño/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA