Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
1.
Cell ; 166(4): 963-976, 2016 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-27477511

RESUMEN

Pancreatic cancer is a deadly malignancy that lacks effective therapeutics. We previously reported that oncogenic Kras induced the redox master regulator Nfe2l2/Nrf2 to stimulate pancreatic and lung cancer initiation. Here, we show that NRF2 is necessary to maintain pancreatic cancer proliferation by regulating mRNA translation. Specifically, loss of NRF2 led to defects in autocrine epidermal growth factor receptor (EGFR) signaling and oxidation of specific translational regulatory proteins, resulting in impaired cap-dependent and cap-independent mRNA translation in pancreatic cancer cells. Combined targeting of the EGFR effector AKT and the glutathione antioxidant pathway mimicked Nrf2 ablation to potently inhibit pancreatic cancer ex vivo and in vivo, representing a promising synthetic lethal strategy for treating the disease.


Asunto(s)
Factor 2 Relacionado con NF-E2/metabolismo , Neoplasias Pancreáticas/metabolismo , Biosíntesis de Proteínas , Animales , Comunicación Autocrina , Cisteína/metabolismo , Glutatión/metabolismo , Humanos , Ratones , Organoides/metabolismo , Neoplasias Pancreáticas/patología , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Transducción de Señal
2.
EMBO J ; 43(13): 2789-2812, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38811853

RESUMEN

It has remained unknown how cells reduce cystine taken up from the extracellular space, which is a required step for further utilization of cysteine in key processes such as protein or glutathione synthesis. Here, we show that the thioredoxin-related protein of 14 kDa (TRP14, encoded by TXNDC17) is the rate-limiting enzyme for intracellular cystine reduction. When TRP14 is genetically knocked out, cysteine synthesis through the transsulfuration pathway becomes the major source of cysteine in human cells, and knockout of both pathways becomes lethal in C. elegans subjected to proteotoxic stress. TRP14 can also reduce cysteinyl moieties on proteins, rescuing their activities as here shown with cysteinylated peroxiredoxin 2. Txndc17 knockout mice were, surprisingly, protected in an acute pancreatitis model, concomitant with activation of Nrf2-driven antioxidant pathways and upregulation of transsulfuration. We conclude that TRP14 is the evolutionarily conserved enzyme principally responsible for intracellular cystine reduction in C. elegans, mice, and humans.


Asunto(s)
Caenorhabditis elegans , Cisteína , Cistina , Ratones Noqueados , Oxidación-Reducción , Proteoma , Tiorredoxinas , Animales , Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/genética , Humanos , Cistina/metabolismo , Ratones , Tiorredoxinas/metabolismo , Tiorredoxinas/genética , Cisteína/metabolismo , Proteoma/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Peroxirredoxinas/metabolismo , Peroxirredoxinas/genética
3.
Int J Mol Sci ; 24(24)2023 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-38139034

RESUMEN

Hepatocellular carcinoma (HCC) is a major global health concern, representing one of the leading causes of cancer-related deaths. Despite various treatment options, the prognosis for HCC patients remains poor, emphasizing the need for a deeper understanding of the factors contributing to HCC development. This study investigates the role of poly(ADP-ribosyl)ation in hepatocyte maturation and its impact on hepatobiliary carcinogenesis. A conditional Parg knockout mouse model was employed, utilizing Cre recombinase under the albumin promoter to target Parg depletion specifically in hepatocytes. The disruption of the poly(ADP-ribosyl)ating pathway in hepatocytes affects the early postnatal liver development. The inability of hepatocytes to finish the late maturation step that occurs early after birth causes intensive apoptosis and acute inflammation, resulting in hypertrophic liver tissue with enlarged hepatocytes. Regeneration nodes with proliferative hepatocytes eventually replace the liver tissue and successfully fulfill the liver function. However, early developmental changes predispose these types of liver to develop pathologies, including with a malignant nature, later in life. In a chemically induced liver cancer model, Parg-depleted livers displayed a higher tendency for hepatocellular carcinoma development. This study underscores the critical role of the poly(ADP-ribosyl)ating pathway in hepatocyte maturation and highlights its involvement in liver pathologies and hepatobiliary carcinogenesis. Understanding these processes may provide valuable insights into liver biology and liver-related diseases, including cancer.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Lesiones Precancerosas , Animales , Ratones , Humanos , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Hepatocitos/metabolismo , Lesiones Precancerosas/metabolismo , Carcinogénesis/genética , Carcinogénesis/metabolismo , Glicósido Hidrolasas/metabolismo , Poli Adenosina Difosfato Ribosa/metabolismo , Mamíferos/metabolismo
4.
Proc Natl Acad Sci U S A ; 116(23): 11408-11417, 2019 06 04.
Artículo en Inglés | MEDLINE | ID: mdl-31097586

RESUMEN

Thioredoxin reductase-1 (TrxR1)-, glutathione reductase (Gsr)-, and Nrf2 transcription factor-driven antioxidant systems form an integrated network that combats potentially carcinogenic oxidative damage yet also protects cancer cells from oxidative death. Here we show that although unchallenged wild-type (WT), TrxR1-null, or Gsr-null mouse livers exhibited similarly low DNA damage indices, these were 100-fold higher in unchallenged TrxR1/Gsr-double-null livers. Notwithstanding, spontaneous cancer rates remained surprisingly low in TrxR1/Gsr-null livers. All genotypes, including TrxR1/Gsr-null, were susceptible to N-diethylnitrosamine (DEN)-induced liver cancer, indicating that loss of these antioxidant systems did not prevent cancer cell survival. Interestingly, however, following DEN treatment, TrxR1-null livers developed threefold fewer tumors compared with WT livers. Disruption of TrxR1 in a marked subset of DEN-initiated cancer cells had no effect on their subsequent contributions to tumors, suggesting that TrxR1-disruption does not affect cancer progression under normal care, but does decrease the frequency of DEN-induced cancer initiation. Consistent with this idea, TrxR1-null livers showed altered basal and DEN-exposed metabolomic profiles compared with WT livers. To examine how oxidative stress influenced cancer progression, we compared DEN-induced cancer malignancy under chronically low oxidative stress (TrxR1-null, standard care) vs. elevated oxidative stress (TrxR1/Gsr-null livers, standard care or phenobarbital-exposed TrxR1-null livers). In both cases, elevated oxidative stress was correlated with significantly increased malignancy. Finally, although TrxR1-null and TrxR1/Gsr-null livers showed strong Nrf2 activity in noncancerous hepatocytes, there was no correlation between malignancy and Nrf2 expression within tumors across genotypes. We conclude that TrxR1, Gsr, Nrf2, and oxidative stress are major determinants of liver cancer but in a complex, context-dependent manner.


Asunto(s)
Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patología , Glutatión Reductasa/metabolismo , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patología , Estrés Oxidativo/fisiología , Tiorredoxina Reductasa 1/metabolismo , Animales , Antioxidantes/metabolismo , Daño del ADN/fisiología , Progresión de la Enfermedad , Regulación de la Expresión Génica/fisiología , Glutatión/metabolismo , Hepatocitos/metabolismo , Hígado/metabolismo , Hígado/patología , Masculino , Metaboloma/fisiología , Ratones , Factor 2 Relacionado con NF-E2/metabolismo , Oxidación-Reducción
5.
Drug Metab Dispos ; 48(3): 187-197, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31955137

RESUMEN

Doxorubicin is a widely used cancer therapeutic, but its effectiveness is limited by cardiotoxic side effects. Evidence suggests cardiotoxicity is due not to doxorubicin, but rather its metabolite, doxorubicinol. Identification of the enzymes responsible for doxorubicinol formation is important in developing strategies to prevent cardiotoxicity. In this study, the contributions of three murine candidate enzymes to doxorubicinol formation were evaluated: carbonyl reductase (Cbr) 1, Cbr3, and thioredoxin reductase 1 (Tr1). Analyses with purified proteins revealed that all three enzymes catalyzed doxorubicin-dependent NADPH oxidation, but only Cbr1 and Cbr3 catalyzed doxorubicinol formation. Doxorubicin-dependent NADPH oxidation by Tr1 was likely due to redox cycling. Subcellular fractionation results showed that doxorubicin-dependent redox cycling activity was primarily microsomal, whereas doxorubicinol-forming activity was exclusively cytosolic, as were all three enzymes. An immunoclearing approach was used to assess the contributions of the three enzymes to doxorubicinol formation in the complex milieu of the cytosol. Immunoclearing Cbr1 eliminated 25% of the total doxorubicinol-forming activity in cytosol, but immunoclearing Cbr3 had no effect, even in Tr1 null livers that overexpressed Cbr3. The immunoclearing results constituted strong evidence that Cbr1 contributed to doxorubicinol formation in mouse liver but that enzymes other than Cbr1 also played a role, a conclusion supported by ammonium sulfate fractionation results, which showed that doxorubicinol-forming activity was found in fractions that contained little Cbr1. In conclusion, the results show that Cbr1 accounts for 25% of the doxorubicinol-forming activity in mouse liver cytosol but that the majority of the doxorubicinol-forming activity remains unidentified. SIGNIFICANCE STATEMENT: Earlier studies suggested carbonyl reductase (Cbr) 1 plays a dominant role in converting chemotherapeutic doxorubicin to cardiotoxic doxorubicinol, but a new immunoclearing approach described herein shows that Cbr1 accounts for only 25% of the doxorubicinol-forming activity in mouse liver cytosol, that two other candidate enzymes-Cbr3 and thioredoxin reductase 1-play no role, and that the majority of the activity remains unidentified. Thus, targeting Cbr1 is necessary but not sufficient to eliminate doxorubicinol-associated cardiotoxicity; identification of the additional doxorubicinol-forming activity is an important next challenge.


Asunto(s)
Oxidorreductasas de Alcohol/metabolismo , Cardiotoxicidad/metabolismo , Doxorrubicina/metabolismo , Hígado/metabolismo , Animales , Citosol/metabolismo , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , NADP/metabolismo , Oxidación-Reducción
6.
J Biol Chem ; 291(46): 24036-24040, 2016 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-27645994

RESUMEN

The human genome contains 25 genes coding for selenocysteine-containing proteins (selenoproteins). These proteins are involved in a variety of functions, most notably redox homeostasis. Selenoprotein enzymes with known functions are designated according to these functions: TXNRD1, TXNRD2, and TXNRD3 (thioredoxin reductases), GPX1, GPX2, GPX3, GPX4, and GPX6 (glutathione peroxidases), DIO1, DIO2, and DIO3 (iodothyronine deiodinases), MSRB1 (methionine sulfoxide reductase B1), and SEPHS2 (selenophosphate synthetase 2). Selenoproteins without known functions have traditionally been denoted by SEL or SEP symbols. However, these symbols are sometimes ambiguous and conflict with the approved nomenclature for several other genes. Therefore, there is a need to implement a rational and coherent nomenclature system for selenoprotein-encoding genes. Our solution is to use the root symbol SELENO followed by a letter. This nomenclature applies to SELENOF (selenoprotein F, the 15-kDa selenoprotein, SEP15), SELENOH (selenoprotein H, SELH, C11orf31), SELENOI (selenoprotein I, SELI, EPT1), SELENOK (selenoprotein K, SELK), SELENOM (selenoprotein M, SELM), SELENON (selenoprotein N, SEPN1, SELN), SELENOO (selenoprotein O, SELO), SELENOP (selenoprotein P, SeP, SEPP1, SELP), SELENOS (selenoprotein S, SELS, SEPS1, VIMP), SELENOT (selenoprotein T, SELT), SELENOV (selenoprotein V, SELV), and SELENOW (selenoprotein W, SELW, SEPW1). This system, approved by the HUGO Gene Nomenclature Committee, also resolves conflicting, missing, and ambiguous designations for selenoprotein genes and is applicable to selenoproteins across vertebrates.


Asunto(s)
Selenoproteínas/clasificación , Selenoproteínas/genética , Humanos , Terminología como Asunto
7.
Biochem Biophys Res Commun ; 493(1): 833-839, 2017 11 04.
Artículo en Inglés | MEDLINE | ID: mdl-28821430

RESUMEN

Oxidative stress is known to play a pivotal role in the development of oral squamous cell carcinoma (OSCC). We have demonstrated that activation of the nuclear factor erythroid 2-related factor 2 (Nrf2) signaling pathway has chemopreventive effects against oxidative stress-associated OSCC. However, Nrf2 have dual roles in cancer development; while it prevents carcinogenesis of normal cells, hyperactive Nrf2 also promotes the survival of cancer cells. This study is aimed to understand the function of Nrf2 in regulating cellular behaviors of OSCC cells, and the potential mechanisms through which Nrf2 facilitates OSCC. We established the Nrf2-overexpressing and Nrf2-knockdown OSCC cell lines, and examined the function of Nrf2 in regulating cell proliferation, migration, invasion, cell cycle and colony formation. Our data showed that Nrf2 overexpression promoted cancer phenotypes in OSCC cells, whereas Nrf2 silencing inhibited these phenotypes. In addition, Nrf2 positively regulated Notch signaling pathway in OSCC cells in vitro. Consistent with this observation, Nrf2 activation in Keap1-/- mice resulted in not only hyperproliferation of squamous epithelial cells in mouse tongue as evidenced by increased expression of PCNA, but also activation of Notch signaling in these cells as evidenced by increased expression of NICD1 and Hes1. In conclusion, Nrf2 regulates cancer behaviors and Notch signaling in OSCC cells.


Asunto(s)
Carcinoma de Células Escamosas/metabolismo , Carcinoma de Células Escamosas/patología , Factor 2 Relacionado con NF-E2/metabolismo , Receptores Notch/metabolismo , Neoplasias de la Lengua/metabolismo , Neoplasias de la Lengua/patología , Animales , Línea Celular Tumoral , Proliferación Celular , Supervivencia Celular , Regulación Neoplásica de la Expresión Génica , Ratones , Invasividad Neoplásica , Estrés Oxidativo , Transducción de Señal
8.
J Immunol ; 195(11): 5347-57, 2015 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-26519535

RESUMEN

Although acquired bone marrow failure (BMF) is considered a T cell-mediated autoimmune disease, few studies have considered contributing roles of innate immune deviations following otherwise innocuous infections as a cause underlying the immune defects that lead to BMF. Type I IFN signaling plays an important role in protecting hematopoiesis during systemic stress responses to the opportunistic fungal pathogen Pneumocystis. During Pneumocystis lung infection, mice deficient in both lymphocytes and type I IFN receptor (IFrag(-/-)) develop rapidly progressing BMF associated with accelerated hematopoietic cell apoptosis. However, the communication pathway eliciting the induction of BMF in response to this strictly pulmonary infection has been unclear. We developed a conditional-null allele of Ifnar1 and used tissue-specific induction of the IFrag(-/-) state and found that, following Pneumocystis lung infection, type I IFNs act not only in the lung to prevent systemic immune deviations, but also within the progenitor compartment of the bone marrow to protect hematopoiesis. In addition, transfer of sterile-filtered serum from Pneumocystis-infected mice as well as i.p. injection of Pneumocystis into uninfected IFrag(-/-) mice induced BMF. Although specific cytokine deviations contribute to induction of BMF, immune-suppressive treatment of infected IFrag(-/-) mice ameliorated its progression but did not prevent loss of hematopoietic progenitor functions. This suggested that additional, noncytokine factors also target and impair progenitor functions; and interestingly, fungal ß-glucans were also detected in serum. In conclusion, our data demonstrate that type 1 IFN signaling protects hematopoiesis within the bone marrow compartment from the damaging effects of proinflammatory cytokines elicited by Pneumocystis in the lung and possibly at extrapulmonary sites via circulating fungal components.


Asunto(s)
Hematopoyesis/inmunología , Células Madre Hematopoyéticas/citología , Interferón Tipo I/inmunología , Pneumocystis/inmunología , Receptor de Interferón alfa y beta/genética , Anemia Aplásica , Animales , Apoptosis , Enfermedades de la Médula Ósea , Trastornos de Fallo de la Médula Ósea , Hematopoyesis/genética , Hemoglobinuria Paroxística/genética , Hemoglobinuria Paroxística/inmunología , Proteínas de Homeodominio/genética , Interferón gamma/inmunología , Pulmón/inmunología , Pulmón/patología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones SCID , Neumonía por Pneumocystis/inmunología , Transducción de Señal/inmunología , beta-Glucanos/sangre
9.
Proc Natl Acad Sci U S A ; 111(12): 4472-7, 2014 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-24567396

RESUMEN

Mutations in the tumor suppressor BRCA1 predispose women to breast and ovarian cancers. The mechanism underlying the tissue-specific nature of BRCA1's tumor suppression is obscure. We previously showed that the antioxidant pathway regulated by the transcription factor NRF2 is defective in BRCA1-deficient cells. Reactivation of NRF2 through silencing of its negative regulator KEAP1 permitted the survival of BRCA1-null cells. Here we show that estrogen (E2) increases the expression of NRF2-dependent antioxidant genes in various E2-responsive cell types. Like NRF2 accumulation triggered by oxidative stress, E2-induced NRF2 accumulation depends on phosphatidylinositol 3-kinase-AKT activation. Pretreatment of mammary epithelial cells (MECs) with the phosphatidylinositol 3-kinase inhibitor BKM120 abolishes the capacity of E2 to increase NRF2 protein and transcriptional activity. In vivo the survival defect of BRCA1-deficient MECs is rescued by the rise in E2 levels associated with pregnancy. Furthermore, exogenous E2 administration stimulates the growth of BRCA1-deficient mammary tumors in the fat pads of male mice. Our work elucidates the basis of the tissue specificity of BRCA1-related tumor predisposition, and explains why oophorectomy significantly reduces breast cancer risk and recurrence in women carrying BRCA1 mutations.


Asunto(s)
Proteína BRCA1/genética , Supervivencia Celular/fisiología , Estrógenos/fisiología , Factor 2 Relacionado con NF-E2/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Animales , Femenino , Xenoinjertos , Ratones , Ratones Transgénicos , Estrés Oxidativo
10.
Biochem Soc Trans ; 43(4): 632-8, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-26551704

RESUMEN

NADPH transfers reducing power from bioenergetic pathways to thioredoxin reductase-1 (TrxR1) and glutathione reductase (GR) to support essential reductive systems. Surprisingly, it was recently shown that mouse livers lacking both TrxR1 and GR ('TR/GR-null') can sustain redox (reduction-oxidation) homoeostasis using a previously unrecognized NADPH-independent source of reducing power fuelled by dietary methionine. The NADPH-dependent systems are robustly redundant in liver, such that disruption of either TrxR1 or GR alone does not cause oxidative stress. However, disruption of TrxR1 induces transcription factor Nrf2 (nuclear factor erythroid-derived 2-like-2) whereas disruption of GR does not. This suggests the Nrf2 pathway responds directly to the status of the thioredoxin-1 (Trx1) system. The proximal regulator of Nrf2 is Keap1 (Kelch-like ECH-associated protein-1), a cysteine (Cys)-rich protein that normally interacts transiently with Nrf2, targeting it for degradation. During oxidative stress, this interaction is stabilized, preventing degradation of newly synthesized Nrf2, thereby allowing Nrf2 accumulation. Within the Trx1 system, TrxR1 and peroxiredoxins (Prxs) contain some of the most reactive nucleophilic residues in the cell, making them likely targets for oxidants or electrophiles. We propose that Keap1 activity and therefore Nrf2 is regulated by interactions of Trx1 system enzymes with oxidants. In TR/GR-null livers, Nrf2 activity is further induced, revealing that TrxR-independent systems also repress Nrf2 and these might be induced by more extreme challenges.


Asunto(s)
Citosol/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Factor 2 Relacionado con NF-E2/metabolismo , Tiorredoxina Reductasa 1/metabolismo , Animales , Humanos , Proteína 1 Asociada A ECH Tipo Kelch , Hígado/metabolismo , Ratones , Oxidación-Reducción , Peroxirredoxinas/metabolismo , Transducción de Señal
11.
Chem Res Toxicol ; 27(9): 1575-85, 2014 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-25148906

RESUMEN

In this study, we identified Nrf2 as a molecular target of [6]-shogaol (6S), a bioactive compound isolated from ginger, in colon epithelial cells in vitro and in vivo. Following 6S treatment of HCT-116 cells, the intracellular GSH/GSSG ratio was initially diminished but was then elevated above the basal level. Intracellular reactive oxygen species (ROS) correlated inversely with the GSH/GSSG ratio. Further analysis using gene microarray showed that 6S upregulated the expression of Nrf2 target genes (AKR1B10, FTL, GGTLA4, and HMOX1) in HCT-116 cells. Western blotting confirmed upregulation, phosphorylation, and nuclear translocation of Nrf2 protein followed by Keap1 decrease and upregulation of Nrf2 target genes (AKR1B10, FTL, GGTLA4, HMOX1, and MT1) and glutathione synthesis genes (GCLC and GCLM). Pretreatment of cells with a specific inhibitor of p38 (SB202190), PI3K (LY294002), or MEK1 (PD098059) attenuated these effects of 6S. Using ultra-high-performance liquid chromatography-tandem mass spectrometry, we found that 6S modified multiple cysteine residues of Keap1 protein. In vivo 6S treatment induced Nrf2 nuclear translocation and significantly upregulated the expression of MT1, HMOX1, and GCLC in the colon of wild-type mice but not Nrf2(-/-) mice. Similar to 6S, a cysteine-conjugated metabolite of 6S (M2), which was previously found to be a carrier of 6S in vitro and in vivo, also activated Nrf2. Our data demonstrated that 6S and its cysteine-conjugated metabolite M2 activate Nrf2 in colon epithelial cells in vitro and in vivo through Keap1-dependent and -independent mechanisms.


Asunto(s)
Catecoles/química , Cisteína/química , Factor 2 Relacionado con NF-E2/metabolismo , Zingiber officinale/química , Alquilación , Animales , Catecoles/farmacología , Cisteína/análisis , Células Epiteliales/citología , Células Epiteliales/metabolismo , Zingiber officinale/metabolismo , Glutamato-Cisteína Ligasa/metabolismo , Glutatión/metabolismo , Células HCT116 , Hemo-Oxigenasa 1/metabolismo , Humanos , Péptidos y Proteínas de Señalización Intracelular/química , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteína 1 Asociada A ECH Tipo Kelch , Proteínas de la Membrana/metabolismo , Ratones , Ratones Noqueados , Factor 2 Relacionado con NF-E2/deficiencia , Factor 2 Relacionado con NF-E2/genética , Fosforilación/efectos de los fármacos , Inhibidores de Proteínas Quinasas/farmacología , Especies Reactivas de Oxígeno/metabolismo , Regulación hacia Arriba/efectos de los fármacos
12.
Mamm Genome ; 2013 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-24022199

RESUMEN

Cre-responsive dual-fluorescent alleles allow in situ marking of cell lineages or genetically modified cells. Here we report a dual-fluorescent allele, ROSA nT-nG , which directs nuclear accumulation of tdTomato in Cre-naïve lineages. Cre converts the allele to ROSA nG , which drives nuclear EGFP accumulation. Conditions were established for analyzing marked nuclei by flow cytometry on the basis of red-green fluorescence and ploidy, with a particular focus on liver nuclei. Hydrodynamic delivery of a Cre-expression plasmid was used to time-stamp arbitrary hepatocytes for lineage tracing. The distinct green fluorescence of nuclei from Cre-exposed lineages facilitated analyses of ploidy transitions within clones. To assess developmental transitions in liver nuclei, ROSA nT-nG was combined with the hepatocyte-specific AlbCre transgene, facilitating discrimination between hepatocyte and nonhepatocyte nuclei. Nuclei extracted from postnatal day 2 (P2) livers were 41 % green and 59 % red and reached a stable level of 84 % green by P22. Until P20, green nuclei were >98 % diploid (2N); at P40 they were ~56 % 2N, 43 % 4N, and <1 % 8N; and by P70 they reached a stable distribution of ~46 % 2N, 45 % 4N, and 9 % 8N. In conclusion, ROSA nT-nG will facilitate in vivo and ex vivo studies on liver and will likely be valuable for studies on tissues like muscle, kidney, or brain in which cells are refractory to whole-cell flow cytometry, or like trophectoderm derivatives or cancers in which cells undergo ploidy transitions.

13.
Hepatol Commun ; 7(1): e0020, 2023 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-36633484

RESUMEN

BACKGROUND AND AIMS: Cholestatic liver diseases, including primary sclerosing cholangitis, are characterized by periportal inflammation with progression to hepatic fibrosis and ultimately cirrhosis. We recently reported that the thioredoxin antioxidant response is dysregulated during primary sclerosing cholangitis. The objective of this study was to examine the impact of genetic and pharmacological targeting of thioredoxin reductase 1 (TrxR1) on hepatic inflammation and liver injury during acute cholestatic injury. APPROACH AND RESULTS: Primary mouse hepatocytes and intrahepatic macrophages were isolated from 3-day bile duct ligated (BDL) mice and controls. Using wildtype and mice with a liver-specific deletion of TrxR1 (TrxR1LKO), we analyzed the effect of inhibition or ablation of TrxR1 signaling on liver injury and inflammation. Immunohistochemical analysis of livers from BDL mice and human cholestatic patients revealed increased TrxR1 staining in periportal macrophages and hepatocytes surrounding fibrosis. qPCR analysis of primary hepatocytes and intrahepatic macrophages revealed increased TrxR1 mRNA expression following BDL. Compared with sham controls, BDL mice exhibited increased inflammation, necrosis, and increased mRNA expression of pro-inflammatory cytokines, fibrogenesis, the NLRP3 inflammatory complex, and increased activation of NFkB, all of which were ameliorated in TrxR1LKO mice. Importantly, following BDL, TrxR1LKO induced periportal hepatocyte expression of Nrf2-dependent antioxidant proteins and increased mRNA expression of basolateral bile acid transporters with reduced expression of bile acid synthesis genes. In the acute BDL model, the TrxR1 inhibitor auranofin (10 mg/kg/1 d preincubation, 3 d BDL) ameliorated BDL-dependent increases in Nlrp3, GsdmD, Il1ß, and TNFα mRNA expression despite increasing serum alanine aminotransferase, aspartate aminotransferase, bile acids, and bilirubin. CONCLUSIONS: These data implicate TrxR1-signaling as an important regulator of inflammation and bile acid homeostasis in cholestatic liver injury.


Asunto(s)
Colangitis Esclerosante , Colestasis , Animales , Humanos , Ratones , Antioxidantes , Ácidos y Sales Biliares , Inflamación , Cirrosis Hepática/genética , Cirrosis Hepática/metabolismo , Activación de Macrófagos , Proteína con Dominio Pirina 3 de la Familia NLR , ARN Mensajero , Tiorredoxina Reductasa 1/genética
14.
Cancer Res ; 83(12): 1953-1967, 2023 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-37062029

RESUMEN

Mutations in the KEAP1-NRF2 (Kelch-like ECH-associated protein 1-nuclear factor-erythroid 2 p45-related factor 2) pathway occur in up to a third of non-small cell lung cancer (NSCLC) cases and often confer resistance to therapy and poor outcomes. Here, we developed murine alleles of the KEAP1 and NRF2 mutations found in human NSCLC and comprehensively interrogated their impact on tumor initiation and progression. Chronic NRF2 stabilization by Keap1 or Nrf2 mutation was not sufficient to induce tumorigenesis, even in the absence of tumor suppressors, p53 or LKB1. When combined with KrasG12D/+, constitutive NRF2 activation promoted lung tumor initiation and early progression of hyperplasia to low-grade tumors but impaired their progression to advanced-grade tumors, which was reversed by NRF2 deletion. Finally, NRF2 overexpression in KEAP1 mutant human NSCLC cell lines was detrimental to cell proliferation, viability, and anchorage-independent colony formation. Collectively, these results establish the context-dependence and activity threshold for NRF2 during the lung tumorigenic process. SIGNIFICANCE: Stabilization of the transcription factor NRF2 promotes oncogene-driven tumor initiation but blocks tumor progression, indicating distinct, threshold-dependent effects of the KEAP1/NRF2 pathway in different stages of lung tumorigenesis.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Transducción de Señal , Animales , Humanos , Ratones , Carcinogénesis/genética , Carcinoma de Pulmón de Células no Pequeñas/patología , Línea Celular Tumoral , Proteína 1 Asociada A ECH Tipo Kelch/genética , Proteína 1 Asociada A ECH Tipo Kelch/metabolismo , Pulmón/patología , Neoplasias Pulmonares/patología , Factor 2 Relacionado con NF-E2/genética , Factor 2 Relacionado con NF-E2/metabolismo
15.
J Cell Sci ; 123(Pt 14): 2402-12, 2010 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-20571049

RESUMEN

Cells require ribonucleotide reductase (RNR) activity for DNA replication. In bacteria, electrons can flow from NADPH to RNR by either a thioredoxin-reductase- or a glutathione-reductase-dependent route. Yeast and plants artificially lacking thioredoxin reductases exhibit a slow-growth phenotype, suggesting glutathione-reductase-dependent routes are poor at supporting DNA replication in these organisms. We have studied proliferation of thioredoxin-reductase-1 (Txnrd1)-deficient hepatocytes in mice. During development and regeneration, normal mice and mice having Txnrd1-deficient hepatocytes exhibited similar liver growth rates. Proportions of hepatocytes that immunostained for PCNA, phosphohistone H3 or incorporated BrdU were also similar, indicating livers of either genotype had similar levels of proliferative, S and M phase hepatocytes, respectively. Replication was blocked by hydroxyurea, confirming that RNR activity was required by Txnrd1-deficient hepatocytes. Regenerative thymidine incorporation was similar in normal and Txnrd1-deficient livers, further indicating that DNA synthesis was unaffected. Using genetic chimeras in which a fluorescently marked subset of hepatocytes was Txnrd1-deficient while others were not, we found that the multigenerational contributions of both hepatocyte types to development and to liver regeneration were indistinguishable. We conclude that, in mouse hepatocytes, a Txnrd1-independent route for the supply of electrons to RNR can fully support DNA replication and normal proliferative growth.


Asunto(s)
Hepatocitos/metabolismo , Hígado/metabolismo , Tiorredoxina Reductasa 1/metabolismo , Animales , Proliferación Celular/efectos de los fármacos , Células Cultivadas , Replicación del ADN/efectos de los fármacos , Replicación del ADN/genética , Hepatectomía , Hepatocitos/efectos de los fármacos , Hepatocitos/patología , Hidroxiurea/farmacología , Hígado/embriología , Hígado/patología , Hígado/cirugía , Regeneración Hepática , Ratones , Ratones Endogámicos C57BL , Organogénesis/genética , Receptores Nucleares Huérfanos/metabolismo , Eliminación de Secuencia/genética , Tiorredoxina Reductasa 1/genética
16.
Hepatology ; 54(2): 655-63, 2011 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-21538442

RESUMEN

UNLABELLED: The contributions that de novo differentiation of new hepatocyte lineages makes to normal liver physiology are unknown. In this study, a system that uniquely marks cells during a finite period following primary activation of a serum albumin gene promoter/enhancer-driven Cre recombinase (albCre) transgene was used to investigate birthrates of new hepatocyte lineages from albumin (Alb)-naive precursors in mice. Elapsed time was measured with a two-color fluorescent marker gene that converts from expressing tandem dimer Tomato (tdT; a red fluorescent protein) to expressing green fluorescent protein (GFP) following primary exposure to Cre. The accumulation of GFP and the decay of tdT each contributed to a regular fluorescence transition, which was calibrated in vivo. In normal adults, this system revealed that a steady-state level of 0.076% of all hepatocytes had differentiated within the previous 4 days from albCre-naive cell lineages. In comparison with resting adult livers, the relative abundance of these newborn hepatocytes was elevated 3.7-fold in the growing livers of juveniles and 8.6-fold during liver regeneration after partial hepatectomy in adults. CONCLUSION: Newborn hepatocyte lineages arising from Alb-naive cells contribute to liver maintenance under normal conditions. Hepatocyte lineage birthrates can vary in response to the liver's physiological status.


Asunto(s)
Hepatocitos , Regeneración Hepática , Hígado/crecimiento & desarrollo , Animales , Línea Celular , Ratones
17.
Function (Oxf) ; 3(4): zqac034, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35873655

RESUMEN

Reactive oxygen species (ROS) have been implicated as mediators of pancreatic ß-cell damage. While ß-cells are thought to be vulnerable to oxidative damage, we have shown, using inhibitors and acute depletion, that thioredoxin reductase, thioredoxin, and peroxiredoxins are the primary mediators of antioxidant defense in ß-cells. However, the role of this antioxidant cycle in maintaining redox homeostasis and ß-cell survival in vivo remains unclear. Here, we generated mice with a ß-cell specific knockout of thioredoxin reductase 1 (Txnrd1fl/fl; Ins1Cre/+ , ßKO). Despite blunted glucose-stimulated insulin secretion, knockout mice maintain normal whole-body glucose homeostasis. Unlike pancreatic islets with acute Txnrd1 inhibition, ßKO islets do not demonstrate increased sensitivity to ROS. RNA-sequencing analysis revealed that Txnrd1-deficient ß-cells have increased expression of nuclear factor erythroid 2-related factor 2 (Nrf2)-regulated genes, and altered expression of genes involved in heme and glutathione metabolism, suggesting an adaptive response. Txnrd1-deficient ß-cells also have decreased expression of factors controlling ß-cell function and identity which may explain the mild functional impairment. Together, these results suggest that Txnrd1-knockout ß-cells compensate for loss of this essential antioxidant pathway by increasing expression of Nrf2-regulated antioxidant genes, allowing for protection from excess ROS at the expense of normal ß-cell function and identity.


Asunto(s)
Antioxidantes , Factor 2 Relacionado con NF-E2 , Ratones , Animales , Antioxidantes/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Factor 2 Relacionado con NF-E2/genética , Oxidación-Reducción , Ratones Noqueados , Glucosa , Homeostasis/genética
18.
PLoS One ; 17(11): e0276879, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36378690

RESUMEN

Inflammatory cholestatic liver diseases, including Primary Sclerosing Cholangitis (PSC), are characterized by periportal inflammation with progression to cirrhosis. The objective of this study was to examine interactions between oxidative stress and autophagy in cholestasis. Using hepatic tissue from male acute cholestatic (bile duct ligated) as well as chronic cholestatic (Mdr2KO) mice, localization of oxidative stress, the antioxidant response and induction of autophagy were analyzed and compared to human PSC liver. Concurrently, the ability of reactive aldehydes to post-translationally modify the autophagosome marker p62 was assessed in PSC liver tissue and in cell culture. Expression of autophagy markers was upregulated in human and mouse cholestatic liver. Whereas mRNA expression of Atg12, Lamp1, Sqstm1 and Map1lc3 was increased in acute cholestasis in mice, it was either suppressed or not significantly changed in chronic cholestasis. In human and murine cholestasis, periportal hepatocytes showed increased IHC staining of ubiquitin, 4-HNE, p62, and selected antioxidant proteins. Increased p62 staining colocalized with accumulation of 4-HNE-modified proteins in periportal parenchymal cells as well as with periportal macrophages in both human and mouse liver. Mechanistically, p62 was identified as a direct target of lipid aldehyde adduction in PSC hepatic tissue and in vitro cell culture. In vitro LS-MS/MS analysis of 4-HNE treated recombinant p62 identified carbonylation of His123, Cys128, His174, His181, Lys238, Cys290, His340, Lys341 and His385. These data indicate that dysregulation of autophagy and oxidative stress/protein damage are present in the same periportal hepatocyte compartment of both human and murine cholestasis. Thus, our results suggest that both increased expression as well as ineffective autophagic degradation of oxidatively-modified proteins contributes to injury in periportal parenchymal cells and that direct modification of p62 by reactive aldehydes may contribute to autophagic dysfunction.


Asunto(s)
Antioxidantes , Colestasis , Humanos , Ratones , Masculino , Animales , Antioxidantes/metabolismo , Aldehídos/metabolismo , Espectrometría de Masas en Tándem , Colestasis/metabolismo , Hígado/metabolismo , Autofagia , Cirrosis Hepática/patología
19.
Antioxidants (Basel) ; 10(9)2021 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-34573009

RESUMEN

Cellular redox homeostasis is an essential and dynamic process that ensures the balance between reducing and oxidizing reactions within cells and regulates a plethora of biological responses and events. The study of these biochemical reactions has proven difficult over time, but recent technical and methodological developments have contributed to the rapid growth of the redox field and to our understanding of its importance in biology. The aim of this short review is to give the reader an overall understanding of redox regulation in the areas of cellular signaling, development, and disease, as well as to introduce some recent discoveries in those fields.

20.
Antioxidants (Basel) ; 10(1)2021 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-33477969

RESUMEN

Supplemental oxygen therapy with supraphysiological concentrations of oxygen (hyperoxia; >21% O2) is a life-saving intervention for patients experiencing respiratory distress. However, prolonged exposure to hyperoxia can compromise bacterial clearance processes, due to oxidative stress-mediated impairment of macrophages, contributing to the increased susceptibility to pulmonary infections. This study reports that the activation of the α7 nicotinic acetylcholine receptor (α7nAChR) with the delete allosteric agonistic-positive allosteric modulator, GAT107, decreases the bacterial burden in mouse lungs by improving hyperoxia-induced lung redox imbalance. The incubation of RAW 264.7 cells with GAT107 (3.3 µM) rescues hyperoxia-compromised phagocytic functions in cultured macrophages, RAW 264.7 cells, and primary bone marrow-derived macrophages. Similarly, GAT107 (3.3 µM) also attenuated oxidative stress in hyperoxia-exposed macrophages, which prevents oxidation and hyper-polymerization of phagosome filamentous actin (F-actin) from oxidation. Furthermore, GAT107 (3.3 µM) increases the (1) activity of superoxide dismutase 1; (2) activation of Nrf2 and (3) the expression of heme oxygenase-1 (HO-1) in macrophages exposed to hyperoxia. Overall, these data suggest that the novel α7nAChR compound, GAT107, could be used to improve host defense functions in patients, such as those with COVID-19, who are exposed to prolonged periods of hyperoxia.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA