Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 64
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Angiogenesis ; 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38564108

RESUMEN

Diabetic retinopathy has a high probability of causing visual impairment or blindness throughout the disease progression and is characterized by the growth of new blood vessels in the retina at an advanced, proliferative stage. Microglia are a resident immune population in the central nervous system, known to play a crucial role in regulating retinal angiogenesis in both physiological and pathological conditions, including diabetic retinopathy. Physiologically, they are located close to blood vessels and are essential for forming new blood vessels (neovascularization). In diabetic retinopathy, microglia become widely activated, showing a distinct polarization phenotype that leads to their accumulation around neovascular tufts. These activated microglia induce pathogenic angiogenesis through the secretion of various angiogenic factors and by regulating the status of endothelial cells. Interestingly, some subtypes of microglia simultaneously promote the regression of neovascularization tufts and normal angiogenesis in neovascularization lesions. Modulating the state of microglial activation to ameliorate neovascularization thus appears as a promising potential therapeutic approach for managing diabetic retinopathy.

2.
Biol Chem ; 2024 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-38805373

RESUMEN

The secreted factor Epidermal growth factor-like protein 7 (EGFL7) is involved in angiogenesis, vasculogenesis, as well as neurogenesis. Importantly, EGFL7 is also implicated in various pathological conditions, including tumor angiogenesis in human cancers. Thus, understanding the mechanisms through which EGFL7 regulates and promotes blood vessel formation is of clear practical importance. One principle means by which EGFL7's function is investigated is via the expression and purification of the recombinant protein. This mini-review describes three methods used to produce recombinant EGFL7 protein. First, a brief overview of EGFL7's genetics, structure, and function is provided. This is followed by an examination of the advantages and disadvantages of three common expression systems used in the production of recombinant EGFL7; (i) Escherichia coli (E. coli), (ii) human embryonic kidney (HEK) 293 cells or other mammalian cells, and (iii) a baculovirus-based Sf9 insect cell expression system. Based on the available evidence, we conclude that the baculovirus-based Sf9 insect cell expression currently has the advantages of producing active recombinant EGFL7 in the native conformation with the presence of acceptable posttranslational modifications, while providing sufficient yield and stability for experimental purposes.

3.
Cell Mol Life Sci ; 80(10): 282, 2023 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-37688612

RESUMEN

Despite improvements in extracranial therapy, survival rate for patients suffering from brain metastases remains very poor. This is coupled with the incidence of brain metastases continuing to rise. In this review, we focus on core contributions of the blood-brain barrier to the origin of brain metastases. We first provide an overview of the structure and function of the blood-brain barrier under physiological conditions. Next, we discuss the emerging idea of a pre-metastatic niche, namely that secreted factors and extracellular vesicles from a primary tumor site are able to travel through the circulation and prime the neurovasculature for metastatic invasion. We then consider the neurotropic mechanisms that circulating tumor cells possess or develop that facilitate disruption of the blood-brain barrier and survival in the brain's parenchyma. Finally, we compare and contrast brain metastases at the blood-brain barrier to the primary brain tumor, glioma, examining the process of vessel co-option that favors the survival and outgrowth of brain malignancies.


Asunto(s)
Neoplasias Encefálicas , Vesículas Extracelulares , Glioma , Humanos , Barrera Hematoencefálica , Transporte Biológico
4.
Cell Mol Life Sci ; 80(2): 54, 2023 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-36715759

RESUMEN

Neural stem cells reside in the subgranular zone, a specialized neurogenic niche of the hippocampus. Throughout adulthood, these cells give rise to neurons in the dentate gyrus, playing an important role in learning and memory. Given that these core cognitive processes are disrupted in numerous disease states, understanding the underlying mechanisms of neural stem cell proliferation in the subgranular zone is of direct practical interest. Here, we report that mature neurons, neural stem cells and neural precursor cells each secrete the neurovascular protein epidermal growth factor-like protein 7 (EGFL7) to shape this hippocampal niche. We further demonstrate that EGFL7 knock-out in a Nestin-CreERT2-based mouse model produces a pronounced upregulation of neurogenesis within the subgranular zone. RNA sequencing identified that the increased expression of the cytokine VEGF-D correlates significantly with the ablation of EGFL7. We substantiate this finding with intraventricular infusion of VEGF-D upregulating neurogenesis in vivo and further show that VEGF-D knock-out produces a downregulation of neurogenesis. Finally, behavioral studies in EGFL7 knock-out mice demonstrate greater maintenance of spatial memory and improved memory consolidation in the hippocampus by modulation of pattern separation. Taken together, our findings demonstrate that both EGFL7 and VEGF-D affect neurogenesis in the adult hippocampus, with the ablation of EGFL7 upregulating neurogenesis, increasing spatial learning and memory, and correlating with increased VEGF-D expression.


Asunto(s)
Células-Madre Neurales , Ratones , Animales , Células-Madre Neurales/metabolismo , Aprendizaje Espacial , Factor D de Crecimiento Endotelial Vascular/metabolismo , Proliferación Celular/fisiología , Hipocampo/metabolismo , Neurogénesis/genética , Ratones Noqueados , Péptidos y Proteínas de Señalización Intercelular/metabolismo
5.
Cell Mol Life Sci ; 78(3): 1029-1050, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-32468095

RESUMEN

Recent studies suggest that synaptic lysophosphatidic acids (LPAs) augment glutamate-dependent cortical excitability and sensory information processing in mice and humans via presynaptic LPAR2 activation. Here, we studied the consequences of LPAR2 deletion or antagonism on various aspects of cognition using a set of behavioral and electrophysiological analyses. Hippocampal neuronal network activity was decreased in middle-aged LPAR2-/- mice, whereas hippocampal long-term potentiation (LTP) was increased suggesting cognitive advantages of LPAR2-/- mice. In line with the lower excitability, RNAseq studies revealed reduced transcription of neuronal activity markers in the dentate gyrus of the hippocampus in naïve LPAR2-/- mice, including ARC, FOS, FOSB, NR4A, NPAS4 and EGR2. LPAR2-/- mice behaved similarly to wild-type controls in maze tests of spatial or social learning and memory but showed faster and accurate responses in a 5-choice serial reaction touchscreen task requiring high attention and fast spatial discrimination. In IntelliCage learning experiments, LPAR2-/- were less active during daytime but normally active at night, and showed higher accuracy and attention to LED cues during active times. Overall, they maintained equal or superior licking success with fewer trials. Pharmacological block of the LPAR2 receptor recapitulated the LPAR2-/- phenotype, which was characterized by economic corner usage, stronger daytime resting behavior and higher proportions of correct trials. We conclude that LPAR2 stabilizes neuronal network excitability upon aging and allows for more efficient use of resting periods, better memory consolidation and better  performance in tasks requiring high selective attention. Therapeutic LPAR2 antagonism may alleviate aging-associated cognitive dysfunctions.


Asunto(s)
Aprendizaje por Laberinto/fisiología , Memoria/fisiología , Neuronas/metabolismo , Receptores del Ácido Lisofosfatídico/metabolismo , Envejecimiento , Animales , Encéfalo/metabolismo , Proteínas de Unión al Calcio/deficiencia , Proteínas de Unión al Calcio/genética , Cromatografía Líquida de Alta Presión , Giro Dentado/metabolismo , Análisis Discriminante , Familia de Proteínas EGF/deficiencia , Familia de Proteínas EGF/genética , Femenino , Hígado/metabolismo , Potenciación a Largo Plazo , Masculino , Aprendizaje por Laberinto/efectos de los fármacos , Memoria/efectos de los fármacos , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Análisis de Componente Principal , Receptores del Ácido Lisofosfatídico/antagonistas & inhibidores , Receptores del Ácido Lisofosfatídico/deficiencia , Receptores del Ácido Lisofosfatídico/genética , Espectrometría de Masas en Tándem
6.
Int J Mol Sci ; 21(7)2020 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-32235464

RESUMEN

Potent neuroprotective effects of photobiomodulation with 670 nm red light (RL) have been demonstrated in several models of retinal disease. RL improves mitochondrial metabolism, reduces retinal inflammation and oxidative cell stress, showing its ability to enhance visual function. However, the current knowledge is limited to the main hypothesis that the respiratory chain complex IV, cytochrome c oxidase, serves as the primary target of RL. Here, we demonstrate a comprehensive cellular, molecular, and functional characterization of neuroprotective effects of 670 nm RL and 810 nm near-infrared light (NIRL) on blue light damaged murine primary photoreceptors. We show that respiratory chain complexes I and II are additional PBM targets, besides complex IV, leading to enhanced mitochondrial energy metabolism. Accordingly, our study identified mitochondria related RL- and NIRL-triggered defense mechanisms promoting photoreceptor neuroprotection. The observed improvement of mitochondrial and extramitochondrial respiration in both inner and outer segments is linked with reduced oxidative stress including its cellular consequences and reduced mitochondria-induced apoptosis. Analysis of regulatory mechanisms using gene expression analysis identified upregulation α-crystallins that indicate enhanced production of proteins with protective functions that point to the rescued mitochondrial function. The results support the hypothesis that energy metabolism is a major target for retinal light therapy.


Asunto(s)
Terapia por Luz de Baja Intensidad , Neuroprotección/efectos de la radiación , Células Fotorreceptoras de Vertebrados/efectos de la radiación , Degeneración Retiniana/terapia , Animales , Femenino , Rayos Infrarrojos/uso terapéutico , Terapia por Luz de Baja Intensidad/métodos , Masculino , Ratones Endogámicos C57BL , Células Fotorreceptoras de Vertebrados/metabolismo , Células Fotorreceptoras de Vertebrados/patología , Degeneración Retiniana/genética , Degeneración Retiniana/patología , Regulación hacia Arriba/efectos de la radiación , alfa-Cristalinas/genética
7.
Histochem Cell Biol ; 151(3): 275, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30460406

RESUMEN

In the PubMed citation records, the author's name shows.

9.
Int J Mol Sci ; 20(17)2019 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-31480448

RESUMEN

Aging causes many changes in the human body, and is a high risk for various diseases. Dementia, a common age-related disease, is a clinical disorder triggered by neurodegeneration. Brain damage caused by neuronal death leads to cognitive decline, memory loss, learning inabilities and mood changes. Numerous disease conditions may cause dementia; however, the most common one is Alzheimer's disease (AD), a futile and yet untreatable illness. Adult neurogenesis carries the potential of brain self-repair by an endogenous formation of newly-born neurons in the adult brain; however it also declines with age. Strategies to improve the symptoms of aging and age-related diseases have included different means to stimulate neurogenesis, both pharmacologically and naturally. Finally, the regulatory mechanisms of stem cells neurogenesis or a functional integration of newborn neurons have been explored to provide the basis for grafted stem cell therapy. This review aims to provide an overview of AD pathology of different neural and glial cell types and summarizes current strategies of experimental stem cell treatments and their putative future use in clinical settings.


Asunto(s)
Enfermedad de Alzheimer/terapia , Neurogénesis , Trasplante de Células Madre , Enfermedad de Alzheimer/patología , Animales , Humanos , Neuroglía/patología , Neuronas/patología , Trasplante de Células Madre/métodos
11.
Int J Mol Sci ; 19(1)2018 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-29301251

RESUMEN

Diabetic retinopathy is a common complication of diabetes mellitus, which appears in one third of all diabetic patients and is a prominent cause of vision loss. First discovered as a microvascular disease, intensive research in the field identified inflammation and neurodegeneration to be part of diabetic retinopathy. Microglia, the resident monocytes of the retina, are activated due to a complex interplay between the different cell types of the retina and diverse pathological pathways. The trigger for developing diabetic retinopathy is diabetes-induced hyperglycemia, accompanied by leukostasis and vascular leakages. Transcriptional changes in activated microglia, mediated via the nuclear factor kappa-light-chain-enhancer of activated B cells (NFκB) and extracellular signal-regulated kinase (ERK) signaling pathways, results in release of various pro-inflammatory mediators, including cytokines, chemokines, caspases and glutamate. Activated microglia additionally increased proliferation and migration. Among other consequences, these changes in microglia severely affected retinal neurons, causing increased apoptosis and subsequent thinning of the nerve fiber layer, resulting in visual loss. New potential therapeutics need to interfere with these diabetic complications even before changes in the retina are diagnosed, to prevent neuronal apoptosis and blindness in patients.


Asunto(s)
Barrera Hematorretinal/metabolismo , Retinopatía Diabética/patología , Microglía/metabolismo , Vasos Retinianos/metabolismo , Animales , Barrera Hematorretinal/patología , Retinopatía Diabética/metabolismo , Humanos , Microglía/patología , Vasos Retinianos/patología
12.
Nature ; 473(7346): 234-8, 2011 05 12.
Artículo en Inglés | MEDLINE | ID: mdl-21499261

RESUMEN

Notch signalling is a key intercellular communication mechanism that is essential for cell specification and tissue patterning, and which coordinates critical steps of blood vessel growth. Although subtle alterations in Notch activity suffice to elicit profound differences in endothelial behaviour and blood vessel formation, little is known about the regulation and adaptation of endothelial Notch responses. Here we report that the NAD(+)-dependent deacetylase SIRT1 acts as an intrinsic negative modulator of Notch signalling in endothelial cells. We show that acetylation of the Notch1 intracellular domain (NICD) on conserved lysines controls the amplitude and duration of Notch responses by altering NICD protein turnover. SIRT1 associates with NICD and functions as a NICD deacetylase, which opposes the acetylation-induced NICD stabilization. Consequently, endothelial cells lacking SIRT1 activity are sensitized to Notch signalling, resulting in impaired growth, sprout elongation and enhanced Notch target gene expression in response to DLL4 stimulation, thereby promoting a non-sprouting, stalk-cell-like phenotype. In vivo, inactivation of Sirt1 in zebrafish and mice causes reduced vascular branching and density as a consequence of enhanced Notch signalling. Our findings identify reversible acetylation of the NICD as a molecular mechanism to adapt the dynamics of Notch signalling, and indicate that SIRT1 acts as rheostat to fine-tune endothelial Notch responses.


Asunto(s)
Células Endoteliales/enzimología , Regulación de la Expresión Génica , Receptores Notch/metabolismo , Transducción de Señal/fisiología , Sirtuina 1/genética , Sirtuina 1/metabolismo , Acetilación , Animales , Células Endoteliales/citología , Técnicas de Inactivación de Genes , Silenciador del Gen , Células HEK293 , Humanos , Ratones , Mutación , Receptor Notch1/metabolismo , Pez Cebra/embriología , Pez Cebra/genética
13.
Int J Mol Sci ; 18(6)2017 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-28629170

RESUMEN

Epidermal growth factor receptor (EGFR) and the mutant EGFRvIII are major focal points in current concepts of targeted cancer therapy for glioblastoma multiforme (GBM), the most malignant primary brain tumor. The receptors participate in the key processes of tumor cell invasion and tumor-related angiogenesis and their upregulation correlates with the poor prognosis of glioma patients. Glioma cell invasion and increased angiogenesis share mechanisms of the degradation of the extracellular matrix (ECM) through upregulation of ECM-degrading proteases as well as the activation of aberrant signaling pathways. This review describes the role of EGFR and EGFRvIII in those mechanisms which might offer new combined therapeutic approaches targeting EGFR or EGFRvIII together with drug treatments against proteases of the ECM or downstream signaling to increase the inhibitory effects of mono-therapies.


Asunto(s)
Neoplasias Encefálicas/irrigación sanguínea , Neoplasias Encefálicas/terapia , Receptores ErbB/metabolismo , Glioblastoma/irrigación sanguínea , Glioblastoma/terapia , Animales , Neoplasias Encefálicas/metabolismo , Terapia Combinada , Glioblastoma/metabolismo , Humanos , Terapia Molecular Dirigida , Neovascularización Patológica/metabolismo , Neovascularización Patológica/patología
14.
Int J Mol Sci ; 18(4)2017 03 31.
Artículo en Inglés | MEDLINE | ID: mdl-28362320

RESUMEN

Increasing evidence demonstrates the importance of hippocampal neurogenesis, a fundamental mechanism of neuroplasticity associated with cognition and emotion, in correlation to neurodegenerative and psychiatric disorders. Neuropsychiatric disorders are often a result of chronic stress or pain followed by inflammation; all these conditions manifest cognitive deficits and impairments in neurogenesis. However, while some individuals are more susceptible to stress, others are able to adapt to new environments via mechanisms of resilience. In light of this emerging field and based on extensive research, the role of neurogenesis is summarized and presented as a potentially powerful therapeutic tool.


Asunto(s)
Hipocampo/fisiopatología , Inflamación/fisiopatología , Neurogénesis , Dolor/fisiopatología , Cognición/fisiología , Trastornos del Conocimiento/fisiopatología , Emociones/fisiología , Humanos , Modelos Neurológicos
15.
Neurobiol Dis ; 96: 294-311, 2016 12.
Artículo en Inglés | MEDLINE | ID: mdl-27629805

RESUMEN

Peripheral or central nerve injury is a frequent cause of chronic pain and the mechanisms are not fully understood. Using newly generated transgenic mice we show that progranulin overexpression in sensory neurons attenuates neuropathic pain after sciatic nerve injury and accelerates nerve healing. A yeast-2-hybrid screen revealed putative interactions of progranulin with autophagy-related proteins, ATG12 and ATG4b. This was supported by colocalization and proteomic studies showing regulations of ATG13 and ATG4b and other members of the autophagy network, lysosomal proteins and proteins involved in endocytosis. The association of progranulin with the autophagic pathway was functionally confirmed in primary sensory neurons. Autophagy and survival were impaired in progranulin-deficient neurons and improved in progranulin overexpressing neurons. Nerve injury in vivo caused an accumulation of LC3b-EGFP positive bodies in neurons of the dorsal root ganglia and nerves suggesting an impairment of autophagic flux. Overexpression of progranulin in these neurons was associated with a reduction of the stress marker ATF3, fewer protein aggregates in the injured nerve and enhanced stump healing. At the behavioral level, further inhibition of the autophagic flux by hydroxychloroquine intensified cold and heat nociception after sciatic nerve injury and offset the pain protection provided by progranulin. We infer that progranulin may assist in removal of protein waste and thereby helps to resolve neuropathic pain after nerve injury.


Asunto(s)
Autofagia/genética , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Neuralgia/patología , Células Receptoras Sensoriales/metabolismo , Factor de Transcripción Activador 3/metabolismo , Animales , Proteínas Reguladoras de la Apoptosis/metabolismo , Proteínas Relacionadas con la Autofagia/metabolismo , Antígeno CD11b/metabolismo , Proteínas de Unión al Calcio/metabolismo , Cisteína Endopeptidasas/metabolismo , Modelos Animales de Enfermedad , Ganglios Espinales/patología , Ontología de Genes , Granulinas , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Péptidos y Proteínas de Señalización Intercelular/genética , Proteína 1 de la Membrana Asociada a los Lisosomas/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Proteínas de Microfilamentos/metabolismo , Proteínas Asociadas a Microtúbulos/metabolismo , Dimensión del Dolor , Progranulinas
16.
Acta Neuropathol ; 131(3): 347-63, 2016 03.
Artículo en Inglés | MEDLINE | ID: mdl-26711460

RESUMEN

Microglia are long-living resident immune cells of the brain, which secure a stable chemical and physical microenvironment necessary for the proper functioning of the central nervous system (CNS). These highly dynamic cells continuously scan their environment for pathogens and possess the ability to react to damage-induced signals in order to protect the brain. Microglia, together with endothelial cells (ECs), pericytes and astrocytes, form the functional blood-brain barrier (BBB), a specialized endothelial structure that selectively separates the sensitive brain parenchyma from blood circulation. Microglia are in bidirectional and permanent communication with ECs and their perivascular localization enables them to survey the influx of blood-borne components into the CNS. Furthermore, they may stimulate the opening of the BBB, extravasation of leukocytes and angiogenesis. However, microglia functioning requires tight control as their dysregulation is implicated in the initiation and progression of numerous neurological diseases. Disruption of the BBB, changes in blood flow, introduction of pathogens in the sensitive CNS niche, insufficient nutrient supply, and abnormal secretion of cytokines or expression of endothelial receptors are reported to prime and attract microglia. Such reactive microglia have been reported to even escalate the damage of the brain parenchyma as is the case in ischemic injuries, brain tumors, multiple sclerosis, Alzheimer's and Parkinson's disease. In this review, we present the current state of the art of the causes and mechanisms of pathological interactions between microglia and blood vessels and explore the possibilities of targeting those dysfunctional interactions for the development of future therapeutics.


Asunto(s)
Barrera Hematoencefálica/patología , Encefalopatías/patología , Encéfalo/patología , Células Endoteliales/patología , Microglía/patología , Animales , Humanos
17.
Blood ; 121(15): 3041-50, 2013 04 11.
Artículo en Inglés | MEDLINE | ID: mdl-23386126

RESUMEN

Angiogenesis, defined as blood vessel formation from a preexisting vasculature, is governed by multiple signal cascades including integrin receptors, in particular integrin αVß3. Here we identify the endothelial cell (EC)-secreted factor epidermal growth factor-like protein 7 (EGFL7) as a novel specific ligand of integrin αVß3, thus providing mechanistic insight into its proangiogenic actions in vitro and in vivo. Specifically, EGFL7 attaches to the extracellular matrix and by its interaction with integrin αVß3 increases the motility of EC, which allows EC to move on a sticky underground during vessel remodeling. We provide evidence that the deregulation of EGFL7 in zebrafish embryos leads to a severe integrin-dependent malformation of the caudal venous plexus, pointing toward the significance of EGFL7 in vessel development. In biopsy specimens of patients with neurologic diseases, vascular EGFL7 expression rose with increasing EC proliferation. Further, EGFL7 became upregulated in vessels of the stroke penumbra using a mouse model of reversible middle cerebral artery occlusion. Our data suggest that EGFL7 expression depends on the remodeling state of the existing vasculature rather than on the phenotype of neurologic disease analyzed. In sum, our work sheds a novel light on the molecular mechanism EGFL7 engages to govern physiological and pathological angiogenesis.


Asunto(s)
Vasos Sanguíneos/metabolismo , Factores de Crecimiento Endotelial/metabolismo , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Integrina alfaVbeta3/metabolismo , Secuencias de Aminoácidos/genética , Animales , Proteínas de Unión al Calcio , Adhesión Celular/genética , Movimiento Celular/genética , Familia de Proteínas EGF , Embrión no Mamífero/irrigación sanguínea , Embrión no Mamífero/metabolismo , Factores de Crecimiento Endotelial/genética , Factores de Crecimiento Endotelial/farmacología , Matriz Extracelular/metabolismo , Expresión Génica , Células HEK293 , Humanos , Inmunohistoquímica , Inmunoprecipitación , Infarto de la Arteria Cerebral Media/genética , Infarto de la Arteria Cerebral Media/metabolismo , Integrina alfaVbeta3/genética , Ratones , Ratones Desnudos , Fosforilación/efectos de los fármacos , Unión Proteica , Interferencia de ARN , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Pez Cebra
18.
Acta Neuropathol ; 129(2): 279-95, 2015 02.
Artículo en Inglés | MEDLINE | ID: mdl-25500713

RESUMEN

The contribution of microglia to ischemic cortical stroke is of particular therapeutic interest because of the impact on the survival of brain tissue in the ischemic penumbra, a region that is potentially salvable upon a brain infarct. Whether or not tissue in the penumbra survives critically depends on blood flow and vessel perfusion. To study the role of microglia in cortical stroke and blood vessel stability, CX3CR1(+/GFP) mice were subjected to transient middle cerebral artery occlusion and then microglia were investigated using time-lapse two-photon microscopy in vivo. Soon after reperfusion, microglia became activated in the stroke penumbra and started to expand cellular protrusions towards adjacent blood vessels. All microglia in the penumbra were found associated with blood vessels within 24 h post reperfusion and partially fully engulfed them. In the same time frame blood vessels became permissive for blood serum components. Migration assays in vitro showed that blood serum proteins leaking into the tissue provided molecular cues leading to the recruitment of microglia to blood vessels and to their activation. Subsequently, these perivascular microglia started to eat up endothelial cells by phagocytosis, which caused an activation of the local endothelium and contributed to the disintegration of blood vessels with an eventual break down of the blood brain barrier. Loss-of-microglia-function studies using CX3CR1(GFP/GFP) mice displayed a decrease in stroke size and a reduction in the extravasation of contrast agent into the brain penumbra as measured by MRI. Potentially, medication directed at inhibiting microglia activation within the first day after stroke could stabilize blood vessels in the penumbra, increase blood flow, and serve as a valuable treatment for patients suffering from ischemic stroke.


Asunto(s)
Isquemia Encefálica/fisiopatología , Encéfalo/irrigación sanguínea , Encéfalo/fisiopatología , Microglía/fisiología , Accidente Cerebrovascular/fisiopatología , Animales , Barrera Hematoencefálica/patología , Barrera Hematoencefálica/fisiopatología , Encéfalo/patología , Isquemia Encefálica/patología , Receptor 1 de Quimiocinas CX3C , Línea Celular , Modelos Animales de Enfermedad , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Ratones de la Cepa 129 , Ratones Endogámicos C57BL , Ratones Transgénicos , Microglía/patología , Fagocitosis/fisiología , Receptores de Quimiocina/genética , Receptores de Quimiocina/metabolismo , Accidente Cerebrovascular/patología
19.
EMBO J ; 29(14): 2421-32, 2010 07 21.
Artículo en Inglés | MEDLINE | ID: mdl-20551902

RESUMEN

Despite extensive investigations of Cbl-interacting protein of 85 kDa (CIN85) in receptor trafficking and cytoskeletal dynamics, little is known about its functions in vivo. Here, we report the study of a mouse deficient of the two CIN85 isoforms expressed in the central nervous system, exposing a function of CIN85 in dopamine receptor endocytosis. Mice lacking CIN85 exon 2 (CIN85(Deltaex2)) show hyperactivity phenotypes, characterized by increased physical activity and exploratory behaviour. Interestingly, CIN85(Deltaex2) animals display abnormally high levels of dopamine and D2 dopamine receptors (D2DRs) in the striatum, an important centre for the coordination of animal behaviour. Importantly, CIN85 localizes to the post-synaptic compartment of striatal neurons in which it co-clusters with D2DRs. Moreover, it interacts with endocytic regulators such as dynamin and endophilins in the striatum. Absence of striatal CIN85 causes insufficient complex formation of endophilins with D2DRs in the striatum and ultimately decreased D2DR endocytosis in striatal neurons in response to dopamine stimulation. These findings indicate an important function of CIN85 in the regulation of dopamine receptor functions and provide a molecular explanation for the hyperactive behaviour of CIN85(Deltaex2) mice.


Asunto(s)
Conducta Animal/fisiología , Endocitosis/fisiología , Proteínas de Neoplasias/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Isoformas de Proteínas/metabolismo , Receptores de Dopamina D2/metabolismo , Proteínas Adaptadoras Transductoras de Señales , Animales , Encéfalo/anatomía & histología , Encéfalo/metabolismo , Agonistas de Dopamina/metabolismo , Antagonistas de Dopamina/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Ratones , Ratones Noqueados , Actividad Motora/fisiología , Proteínas de Neoplasias/genética , Proteínas del Tejido Nervioso/genética , Neuronas/citología , Neuronas/metabolismo , Isoformas de Proteínas/genética , Receptores de Dopamina D2/genética
20.
Cancers (Basel) ; 15(13)2023 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-37444623

RESUMEN

GBM is a highly aggressive and very common malignant form of primary brain tumors in adults [...].

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA