RESUMEN
Binding reactions of HgII and AgI to pyrimidine-pyrimidine mismatches in duplex DNA were characterized using fluorescent nucleobase analogs, thermal denaturation and 1H NMR. Unlike AgI, HgII exhibited stoichiometric, site-specific binding of C-T mismatches. The on- and off-rates of HgII binding were approximately 10-fold faster to C-T mismatches (kon ≈ 105 M-1 s-1, koff ≈ 10-3 s-1) as compared to T-T mismatches (kon ≈ 104 M-1 s-1, koff ≈ 10-4 s-1), resulting in very similar equilibrium binding affinities for both types of 'all natural' metallo base pairs (Kd ≈ 10-150 nM). These results are in contrast to thermal denaturation analyses, where duplexes containing T-T mismatches exhibited much larger increases in thermal stability upon addition of HgII (ΔTm = 6-19°C), as compared to those containing C-T mismatches (ΔTm = 1-4°C). In addition to revealing the high thermodynamic and kinetic stabilities of C-HgII-T base pairs, our results demonstrate that fluorescent nucleobase analogs enable highly sensitive detection and characterization of metal-mediated base pairs - even in situations where metal binding has little or no impact on the thermal stability of the duplex.
Asunto(s)
Disparidad de Par Base , Citosina/química , Mercurio/química , Timidina/química , Resonancia Magnética Nuclear Biomolecular , Desnaturalización de Ácido Nucleico , Plata/químicaRESUMEN
The cationic porphyrin 5,10,15,20-tetrakis (diisopropyl-guanidine)-21H,23H-porphine (DIGPor) selectively binds to DNA containing O6 -methylguanine (O6 -MeG) and inhibits the DNA repair enzyme O6 -methylguanine-DNA methyltransferase (MGMT). The O6 -MeG selectivity and MGMT inhibitory activity of DIGPor were improved by incorporating ZnII into the porphyrin. The resulting metal complex (Zn-DIGPor) potentiated the activity of the DNA-alkylating drug temozolomide in an MGMT-expressing cell line. To the best of our knowledge, this is the first example of DNA-targeted MGMT inhibition.
Asunto(s)
Apoptosis/efectos de los fármacos , Neoplasias Encefálicas/patología , Metilasas de Modificación del ADN/antagonistas & inhibidores , Enzimas Reparadoras del ADN/antagonistas & inhibidores , ADN/metabolismo , Dacarbazina/análogos & derivados , Glioma/patología , Guanina/análogos & derivados , Proteínas Supresoras de Tumor/antagonistas & inhibidores , Antineoplásicos Alquilantes/farmacología , Neoplasias Encefálicas/tratamiento farmacológico , Neoplasias Encefálicas/enzimología , Neoplasias Encefálicas/genética , Metilasas de Modificación del ADN/metabolismo , Enzimas Reparadoras del ADN/metabolismo , Dacarbazina/farmacología , Glioma/tratamiento farmacológico , Glioma/enzimología , Glioma/genética , Guanina/metabolismo , Humanos , Temozolomida , Células Tumorales Cultivadas , Proteínas Supresoras de Tumor/metabolismoRESUMEN
A fluorescent surrogate of thymidine called DMAT was used for the first fluorescence-based study of HgII binding to discrete T-T sites in duplex DNA. The fluorescent properties of DMAT-A base pairs were highly sensitive to wild-type T-HgII-T base pair formation at an adjacent site, allowing for a determination of the precise thermodynamic and kinetic parameters of these metal binding reactions. T-HgII-T complexes exhibited equilibrium dissociation constants of Kd ≈ 8-50 nM. These high-affinity binding interactions are characterized by very slow association and dissociation kinetics (kon ≈ 104- 105 M-1s-1, koff ≈ 10-4 - 10-3s-1), revealing exceptionally high kinetic stabilities of T-HgII-T base pairs (half-lives = 0.3-1.3 h). Duplex DNA containing DMAT and no T-T mismatch exhibited nonspecific HgII binding affinities of Kd ≈ 2.0 µM. The high kinetic stabilities of T-HgII-T resulted in the inhibition of dynamic processes such as DNA strand invasion and strand displacement during enzymatic DNA synthesis, which led to premature chain termination. These results demonstrated that T-HgII-T base pairs are kinetically distinct from T-A base pairs and therefore are likely to disrupt DNA metabolism in vivo.
Asunto(s)
Mercurio/química , Inhibidores de la Síntesis del Ácido Nucleico/química , Timidina/química , Emparejamiento Base , ADN Polimerasa I/química , ADN Polimerasa Dirigida por ADN/química , Fluorescencia , Cinética , Ácidos Nucleicos Heterodúplex/química , TermodinámicaRESUMEN
The thymidine analogue DMAT was used for the first fluorescence-based study of direct, site-specific metal binding reactions involving unmodified nucleobases in duplex DNA. The fluorescence properties of DMAT-A base pairs were highly sensitive to mercury binding reactions at T-T mismatches located at an adjacent site or one base pair away. This allowed for precise determination of the local kinetic and thermodynamic parameters of T-HgII-T binding reactions. The on- and off-rates of HgII were surprisingly slow, with association rate constants (kon) ≈ 104-105 M-1 s-1, and dissociation rate constants (koff) ≈ 10-4-10-3 s-1; giving equilibrium dissociation constants (Kd) = 8-50 nM. In contrast, duplexes lacking a T-T mismatch exhibited local, nonspecific HgII binding affinities in the range of Kd = 0.2-2.0 µM, depending on the buffer conditions. The exceptionally high kinetic stabilities of T-HgII-T metallo-base pairs (half-lives = 0.3-1.3 h) perturbed dynamic processes including DNA strand displacement and primer extension by DNA polymerases that resulted in premature chain termination of DNA synthesis. In addition to providing the first detailed kinetic and thermodynamic parameters of site-specific T-HgII-T binding reactions in duplex DNA, these results demonstrate that T-HgII-T base pairs have a high potential to disrupt DNA metabolism in vivo.
Asunto(s)
ADN/química , Mercurio/química , Timina/química , Emparejamiento Base , Cinética , Modelos Moleculares , Conformación de Ácido Nucleico , TermodinámicaRESUMEN
AXIN1 and AXIN2 are homologous proteins that inhibit the Wnt/ß-catenin signaling pathway, which is frequently hyperactive in colorectal cancer. Stabilization of AXIN1 and AXIN2 by inhibiting their degradation through tankyrase (TNKS) allows the attenuation of Wnt signaling in cancer, attracting interest for potential targeted therapy. Here, we found that knockout or knockdown of AXIN2 in colorectal cancer cells increased the protein stability of AXIN1. The increase in AXIN1 overcompensated for the loss of AXIN2 with respect to protein levels; however, functionally it did not because loss of AXIN2 activated the pathway. Moreover, AXIN2 was highly essential in the context of TNKS inhibition because TNKS-targeting small-molecule inhibitors completely failed to inhibit Wnt signaling and to stabilize AXIN1 in AXIN2 knockout cells. The increased AXIN1 protein stability and the impaired stabilization by TNKS inhibitors indicated disrupted TNKS-AXIN1 regulation in AXIN2 knockout cells. Concordantly, mechanistic studies revealed that co-expression of AXIN2 recruited TNKS to AXIN1 and stimulated TNKS-mediated degradation of transiently expressed AXIN1 wild-type and AXIN1 mutants with impaired TNKS binding. Taken together, our data suggest that AXIN2 promotes degradation of AXIN1 through TNKS in colorectal cancer cells by directly linking the two proteins, and these findings may be relevant for TNKS inhibition-based colorectal cancer therapies.
RESUMEN
RNA ligases are present across all forms of life. While enzymatic RNA ligation between 5'-PO4 and 3'-OH termini is prevalent in viruses, fungi, and plants, such RNA ligases are yet to be identified in vertebrates. Here, using a nucleotide-based chemical probe targeting human AMPylated proteome, we have enriched and identified the hitherto uncharacterised human protein chromosome 12 open reading frame 29 (C12orf29) as a human enzyme promoting RNA ligation between 5'-PO4 and 3'-OH termini. C12orf29 catalyses ATP-dependent RNA ligation via a three-step mechanism, involving tandem auto- and RNA AMPylation. Knock-out of C12ORF29 gene impedes the cellular resilience to oxidative stress featuring concurrent RNA degradation, which suggests a role of C12orf29 in maintaining RNA integrity. These data provide the groundwork for establishing a human RNA repair pathway.
Asunto(s)
ARN Ligasa (ATP) , ARN , Animales , Humanos , ARN Ligasa (ATP)/genética , ARN Ligasa (ATP)/metabolismo , ARN/genéticaRESUMEN
Metal-mediated base pairs expand the repertoire of nucleic acid structures and dynamics. Here we report solution structures and dynamics of duplex DNA containing two all-natural C-HgII-T metallo base pairs separated by six canonical base pairs. NMR experiments reveal a 3:1 ratio of well-resolved structures in dynamic equilibrium. The major species contains two (N3)T-HgII-(N3)C base pairs in a predominantly B-form helix. The minor species contains (N3)T-HgII-(N4)C base pairs and greater A-form characteristics. Ten-fold different 1J coupling constants (15N,199Hg) are observed for (N3)C-HgII (114 Hz) versus (N4)C-HgII (1052 Hz) connectivities, reflecting differences in cytosine ionization and metal-bonding strengths. Dynamic interconversion between the two types of C-HgII-T base pairs are coupled to a global conformational exchange between the helices. These observations inspired the design of a repetitive DNA sequence capable of undergoing a global B-to-A-form helical transition upon adding HgII, demonstrating that C-HgII-T has unique switching potential in DNA-based materials and devices.
Asunto(s)
ADN de Forma A/ultraestructura , ADN Forma B/ultraestructura , Mercurio/química , Emparejamiento Base , Citosina , ADN/química , ADN/ultraestructura , ADN de Forma A/química , ADN Forma B/química , Metales , Modelos Moleculares , Conformación de Ácido Nucleico , Espectroscopía de Protones por Resonancia Magnética , Soluciones , TiminaRESUMEN
PURPOSE: Liquid biopsies that noninvasively detect molecular correlates of aggressive prostate cancer (PCa) could be used to triage patients, reducing the burdens of unnecessary invasive prostate biopsy and enabling early detection of high-risk disease. DNA hypermethylation is among the earliest and most frequent aberrations in PCa. We investigated the accuracy of a six-gene DNA methylation panel (Epigenetic Cancer of the Prostate Test in Urine [epiCaPture]) at detecting PCa, high-grade (Gleason score greater than or equal to 8) and high-risk (D'Amico and Cancer of the Prostate Risk Assessment] PCa from urine. PATIENTS AND METHODS: Prognostic utility of epiCaPture genes was first validated in two independent prostate tissue cohorts. epiCaPture was assessed in a multicenter prospective study of 463 men undergoing prostate biopsy. epiCaPture was performed by quantitative methylation-specific polymerase chain reaction in DNA isolated from prebiopsy urine sediments and evaluated by receiver operating characteristic and decision curves (clinical benefit). The epiCaPture score was developed and validated on a two thirds training set to one third test set. RESULTS: Higher methylation of epiCaPture genes was significantly associated with increasing aggressiveness in PCa tissues. In urine, area under the receiver operating characteristic curve was 0.64, 0.86, and 0.83 for detecting PCa, high-grade PCa, and high-risk PCa, respectively. Decision curves revealed a net benefit across relevant threshold probabilities. Independent analysis of two epiCaPture genes in the same clinical cohort provided analytical validation. Parallel epiCaPture analysis in urine and matched biopsy cores showed added value of a liquid biopsy. CONCLUSION: epiCaPture is a urine DNA methylation test for high-risk PCa. Its tumor specificity out-performs that of prostate-specific antigen (greater than 3 ng/mL). Used as an adjunct to prostate-specific antigen, epiCaPture could aid patient stratification to determine need for biopsy.
RESUMEN
is a new fluorescent thymidine mimic composed of 2'-deoxyuridine fused to dimethylaniline. exhibits the same pKa and base pairing characteristics as native thymidine residues, and its fluorescence properties are highly sensitive to nucleobase ionization, base pairing and metal binding.
Asunto(s)
ADN/química , Colorantes Fluorescentes/química , Imitación Molecular , Timidina/química , Emparejamiento Base , Modelos Moleculares , Desnaturalización de Ácido Nucleico , TemperaturaRESUMEN
Most organisms reproduce through outcrossing, even though it comes with substantial costs. The Red Queen hypothesis proposes that selection from coevolving pathogens facilitates the persistence of outcrossing despite these costs. We used experimental coevolution to test the Red Queen hypothesis and found that coevolution with a bacterial pathogen (Serratia marcescens) resulted in significantly more outcrossing in mixed mating experimental populations of the nematode Caenorhabditis elegans. Furthermore, we found that coevolution with the pathogen rapidly drove obligately selfing populations to extinction, whereas outcrossing populations persisted through reciprocal coevolution. Thus, consistent with the Red Queen hypothesis, coevolving pathogens can select for biparental sex.