Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 101
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Heredity (Edinb) ; 128(3): 187-195, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35124699

RESUMEN

Cytoplasmic incompatibility (CI) is a common form of reproductive sabotage caused by maternally inherited bacterial symbionts of arthropods. CI is a two-step manipulation: first, the symbiont modifies sperm in male hosts which results in the death of fertilized, uninfected embryos. Second, when females are infected with a compatible strain, the symbiont reverses sperm modification in the fertilized egg, allowing offspring of infected females to survive and spread the symbiont to high frequencies in a population. Although CI plays a role in arthropod evolution, the mechanism of CI is unknown for many symbionts. Cardinium hertigii is a common CI-inducing symbiont of arthropods, including parasitoid wasps like Encarsia partenopea. This wasp harbors two Cardinium strains, cEina2 and cEina3, and exhibits strong CI. The strains infect wasps at different densities, with the cEina3 present at a lower density than cEina2, and it was previously not known which strain caused CI. By differentially curing wasps of cEina3, we found that this low-density symbiont is responsible for CI and modifies males during their pupal stage. cEina2 does not modify host reproduction and may spread by 'hitchhiking' with cEina3 CI or by conferring an unknown benefit. The cEina3 strain also shows a unique localization pattern in male reproductive tissues. Instead of infecting sperm like other CI-inducing symbionts, cEina3 cells are found in somatic cells at the testis base and around the seminal vesicle. This may allow the low-density cEina3 to efficiently modify host males and suggests that cEina3 uses a different modification strategy than sperm-infecting CI symbionts.


Asunto(s)
Avispas , Wolbachia , Animales , Bacteroidetes/genética , Citoplasma/microbiología , Femenino , Masculino , Reproducción , Simbiosis , Avispas/genética , Avispas/microbiología
2.
Biol Reprod ; 105(6): 1545-1561, 2021 12 20.
Artículo en Inglés | MEDLINE | ID: mdl-34542158

RESUMEN

During the last decade, sow mortality due to pelvic organ prolapse (POP) has increased. To better understand the biology associated with POP, sows were phenotypically assessed and assigned a perineal score (PS) based on presumed POP risk and categorized as PS1 (low), PS2 (moderate), or PS3 (high). The study objective was to identify changes in sow vaginal microbiota that may be associated with POP. The hypothesis is that vaginal microbiota differs between sows with variable risk for POP, and changes in microbiota during late gestation exist between sows with differing risk. Of the 2864 sows scored during gestation week 15, 1.0, 2.7, and 23.4% of PS1, PS2, and PS3 sows, respectively, subsequently experienced POP. Vaginal swabs subjected to 16S rRNA gene sequencing revealed differences in community composition (Bray-Curtis; P < 0.05) and individual operational taxonomic unit (OTU) comparisons between vaginal microbiota of PS1 and PS3 sows at gestation week 15. Further, differences (P < 0.05) in community composition and OTUs (Q < 0.05) were observed in PS3 sows that either did or did not subsequently experience POP. Differences in community structure (alpha diversity measurements; P < 0.05), composition (P < 0.05), and OTUs (Q < 0.05) were observed in gestation week 12 sows scored PS1 compared to week 15 sows scored PS1 or PS3, suggesting that sow vaginal microbiota shifts during late gestation differently as POP risk changes. Collectively, these data demonstrate that sows with greater POP risk have unique vaginal microflora, for which a better understanding could aid in the development of mitigation strategies.


Asunto(s)
Microbiota , Prolapso de Órgano Pélvico/veterinaria , Enfermedades de los Porcinos/etiología , Vagina/microbiología , Animales , Femenino , Edad Gestacional , Prolapso de Órgano Pélvico/etiología , Prolapso de Órgano Pélvico/microbiología , Embarazo , Sus scrofa , Porcinos , Enfermedades de los Porcinos/microbiología
3.
BMC Genomics ; 21(1): 847, 2020 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-33256601

RESUMEN

BACKGROUND: Listeria (L.) monocytogenes strains show a high diversity regarding stress tolerance and virulence potential. Genome studies have mainly focused on specific sequence types (STs) predominantly associated with either food or human listeriosis. This study focused on the prevalent ST155, showing equal distribution among clinical and food isolates. We evaluated the virulence potential of 20 ST155 strains and performed comparative genomic analysis of 130 ST155 strains isolated from food, food processing environments and human listeriosis cases in different countries and years. RESULTS: The in vitro virulence assays using human intestinal epithelial Caco2 and hepatocytic HEPG2 cells showed an impaired virulence phenotype for six of the 20 selected ST155 strains. Genome analysis revealed no distinct clustering of strains from the same source category (food, food processing environment, and clinical isolates). All strains harbored an intact inlA and inlB locus, except four strains, which had an internal deletion in the inlA gene. All strains harbored LIPI-1, but prfA was present in a longer variant in six strains, all showing impaired virulence. The longer PrfA variant resulted in lower expression of inlA, inlB, and prfA, and no expression of hly and actA. Regarding stress-related gene content, SSI-1 was present, whereas qacH was absent in all strains. 34.6% of the strains harbored a plasmid. All but one ST155 plasmids showed high conservation and harbored cadA2, bcrABC, and a triphenylmethane reductase. CONCLUSIONS: This study contributes to an enhanced understanding of L. monocytogenes ST155 strains, being equally distributed among isolates from humans, food, and food processing environments. The conservation of the present genetic traits and the absence of unique inherent genetic features makes these types of STs especially interesting since they are apparently equally adapted to the conditions in food processing environments, as well as in food as to the human host environment. However, a ST155-specific mutation resulting in a longer PrfA variant impaired the virulence potential of several ST155 strains.


Asunto(s)
Listeria monocytogenes , Listeriosis , Proteínas Bacterianas , Células CACO-2 , Microbiología de Alimentos , Genómica , Humanos , Listeria monocytogenes/genética , Virulencia/genética , Factores de Virulencia/genética
4.
Plant Physiol ; 179(2): 569-587, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30482788

RESUMEN

Sucrose (Suc) is one of the most important types of sugars in plants, serving inter alia as a long-distance transport molecule, a carbon and energy storage compound, an osmotically active solute, and fuel for many anabolic reactions. Suc biosynthesis and degradation pathways are well known; however, the regulation of Suc intracellular distribution is poorly understood. In particular, the cellular function of chloroplast Suc reserves and the transporters involved in accumulating these substantial Suc levels remain uncharacterized. Here, we characterize the plastidic sugar transporter (pSuT) in Arabidopsis (Arabidopsis thaliana), which belongs to a subfamily of the monosaccharide transporter-like family. Transport analyses with yeast cells expressing a truncated, vacuole-targeted version of pSuT indicate that both glucose and Suc act as substrates, and nonaqueous fractionation supports a role for pSuT in Suc export from the chloroplast. The latter process is required for a correct transition from vegetative to reproductive growth and influences inflorescence architecture. Moreover, pSuT activity affects freezing-induced electrolyte release. These data further underline the central function of the chloroplast for plant development and the modulation of stress tolerance.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/fisiología , Respuesta al Choque por Frío/fisiología , Flores/fisiología , Simportadores/metabolismo , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Cloroplastos/metabolismo , Regulación de la Expresión Génica de las Plantas , Técnicas de Inactivación de Genes , Proteínas de Transporte de Membrana/genética , Proteínas de Transporte de Membrana/metabolismo , Proteínas de Transporte de Monosacáridos/genética , Proteínas de Transporte de Monosacáridos/metabolismo , Mutación , Plantas Modificadas Genéticamente , Plastidios/metabolismo , Dominios Proteicos , Saccharomyces cerevisiae/genética , Sacarosa/metabolismo , Simportadores/química , Simportadores/genética
5.
J Anim Breed Genet ; 137(1): 84-102, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-31762123

RESUMEN

Our objectives were to evaluate the interaction between host genetics and vaginal microbiota and their relationships with antibody (Ab) response to porcine reproductive and respiratory syndrome virus (PRRSV) vaccination and farrowing performance in commercial gilts. The farrowing performance traits were number born alive, number weaning (NW), total number born, number born dead, stillborn, mummies and preweaning mortality (PWM). The vaginal microbiota was collected on days 4 (D4) and 52 (D52) after vaccination for PRRSV. Blood samples were collected on D52 for Ab measurement. Actinobacteria, Bacterioidetes, Firmicutes, Proteobacteria and Tenericutes were the most abundant Phyla identified in the vaginal microbiota. Heritability ranged from ~0 to 0.60 (Fusobacterium) on D4 and from ~0 to 0.63 (Terrisporobacter) on D52, with 43 operational taxonomic units (OTUs) presenting moderate to high heritability. One major QTL on chromosome 12 was identified for 5 OTUs (Clostridiales, Acinetobacter, Ruminococcaceae, Campylobacter and Anaerococcus), among other 19 QTL. The microbiability for Ab response to PRRSV vaccination was low for both days (<0.07). For farrowing performance, microbiability varied from <0.001 to 0.15 (NW on D4). For NW and PWM, the microbiability was greater than the heritability estimates. Actinobacillus, Streptococcus, Campylobacter, Anaerococcus, Mollicutes, Peptostreptococcus, Treponema and Fusobacterium showed different abundance between low and high Ab responders. Finally, canonical discriminant analyses revealed that vaginal microbiota was able to classify gilts in high and low Ab responders to PRRSV vaccination with a misclassification rate of <0.02. Although the microbiota explained limited variation in Ab response and farrowing performance traits, there is still potential to explore the use of vaginal microbiota to explain variation in traits such as NW and PWM. In addition, these results revealed that there is a partial control of host genetic over vaginal microbiota, suggesting a possibility for genetic selection on the vaginal microbiota.


Asunto(s)
Interacciones Huésped-Patógeno/genética , Interacciones Huésped-Patógeno/inmunología , Microbiota , Sus scrofa/genética , Sus scrofa/inmunología , Vagina/microbiología , Animales , Femenino , Estudio de Asociación del Genoma Completo , Genotipo , Microbiota/inmunología , Fenotipo , Sus scrofa/microbiología , Sus scrofa/virología , Vacunación
6.
BMC Microbiol ; 19(1): 266, 2019 11 27.
Artículo en Inglés | MEDLINE | ID: mdl-31775631

RESUMEN

BACKGROUND: Cardinium is an intracellular bacterial symbiont in the phylum Bacteroidetes that is found in many different species of arthropods and some nematodes. This symbiont is known to be able to induce three reproductive manipulation phenotypes, including cytoplasmic incompatibility. Placing individual strains of Cardinium within a larger evolutionary context has been challenging because only two, relatively slowly evolving genes, 16S rRNA gene and Gyrase B, have been used to generate phylogenetic trees, and consequently, the relationship of different strains has been elucidated in only its roughest form. RESULTS: We developed a Multi Locus Sequence Typing (MLST) system that provides researchers with three new genes in addition to Gyrase B for inferring phylogenies and delineating Cardinium strains. From our Cardinium phylogeny, we confirmed the presence of a new group D, a Cardinium clade that resides in the arachnid order harvestmen (Opiliones). Many Cardinium clades appear to display a high degree of host affinity, while some show evidence of host shifts to phylogenetically distant hosts, likely associated with ecological opportunity. Like the unrelated reproductive manipulator Wolbachia, the Cardinium phylogeny also shows no clear phylogenetic signal associated with particular reproductive manipulations. CONCLUSIONS: The Cardinium phylogeny shows evidence of diversification within particular host lineages, and also of host shifts among trophic levels within parasitoid-host communities. Like Wolbachia, the relatedness of Cardinium strains does not necessarily predict their reproductive phenotypes. Lastly, the genetic tools proposed in this study may help future authors to characterize new strains and add to our understanding of Cardinium evolution.


Asunto(s)
Bacteroidetes/clasificación , Evolución Molecular , Insectos/microbiología , Tipificación de Secuencias Multilocus/métodos , Simbiosis , Animales , Técnicas de Tipificación Bacteriana/métodos , ADN Ribosómico/genética , Insectos/fisiología , Fenotipo , Filogenia , ARN Ribosómico 16S/genética , Reproducción , Análisis de Secuencia de ADN
7.
Food Microbiol ; 82: 349-362, 2019 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-31027793

RESUMEN

The Minas artisanal cheese is a traditional product in its way of producing. Produced in the Minas Gerais state, Brazil, this cheese is made using raw cow's milk with the addition of an endogenous starter culture called "pingo", responsible for inoculating specific microorganisms that could enhance flavor and sensorial aspects. There are seven regions able to produce and commercialize this product - Araxá, Campo das Vertentes, Canastra Cerrado, Serra do Salitre, Serro and Triângulo Mineiro. This study aimed to assess the bacterial community of raw milk, endogenous starter culture and to uncover possible shifts in the bacterial community of the rind and core of cheeses at sixty days of ripening located in the Serra do Salitre region by Illumina MiSeq 16S rRNA gene amplicon sequencing. Raw milk and starter culture are responsible for inoculating specific bacteria into the cheese, with Planococcaceae and Streptococcaceae being prevalent throughout ripening time. The Planococcaceae family seems to develop strong interactions with the Leuconostocaceae family on the surface of these cheeses, and is associated with environmental aspects of the region, probably leading to a microbial signature of these products. Additionally, abiotic factors such as geographical location, moisture and acidity are major drivers in the microbial shift.


Asunto(s)
Queso/microbiología , Microbiología de Alimentos , Microbiota , Animales , Bacterias/clasificación , Bacterias/genética , Bacterias/aislamiento & purificación , Brasil , Ambiente , Microbiota/genética , Leche/microbiología , ARN Ribosómico 16S/genética , Sensación , Gusto , Factores de Tiempo
8.
New Phytol ; 213(1): 193-205, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-27504715

RESUMEN

Diatom plastids show several peculiarities when compared with primary plastids of higher plants or algae. They are surrounded by four membranes and depend on nucleotide uptake because, unlike in plants, nucleotide de novo synthesis exclusively occurs in the cytosol. Previous analyses suggest that two specifically adapted nucleotide transporters (NTTs) facilitate the required passage of nucleotides across the innermost plastid membrane. However, nucleotide transport across the additional plastid membranes remains to be clarified. Phylogenetic studies, transport assays with the recombinant protein as well as GFP-based targeting analyses allowed detailed characterization of a novel isoform (PtNTT5) of the six NTTs of Phaeodactylum tricornutum. PtNTT5 exhibits low amino acid similarities and is only distantly related to all previously characterized NTTs. However, in a heterologous expression system, it acts as a nucleotide antiporter and prefers various (deoxy-) purine nucleotides as substrates. Interestingly, PtNTT5 is probably located in the endoplasmic reticulum, which in diatoms also represents the outermost plastid membrane. PtNTT5, with its unusual transport properties, phylogeny and localization, can be taken as further evidence for the establishment of a sophisticated and specifically adapted nucleotide transport system in diatom plastids.


Asunto(s)
Diatomeas/metabolismo , Nucleótidos de Purina/metabolismo , Adenosina Difosfato/metabolismo , Adenosina Trifosfato/metabolismo , Secuencia de Aminoácidos , Antiportadores/metabolismo , Transporte Biológico , Retículo Endoplásmico/metabolismo , Proteínas Fluorescentes Verdes/metabolismo , Membranas Intracelulares/metabolismo , Cinética , Proteínas de Transporte de Membrana/química , Proteínas de Transporte de Membrana/metabolismo , Modelos Biológicos , Filogenia , Proteínas Recombinantes de Fusión/metabolismo , Especificidad por Sustrato , Factores de Tiempo
9.
Appl Environ Microbiol ; 81(24): 8489-99, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26431973

RESUMEN

Resistant starch (RS) exacerbates health benefits on the host via modulation of the gut bacterial community. By far, these effects have been less well explored for RS of type 4. This study aimed at gaining a community-wide insight into the impact of enzymatically modified starch (EMS) on the cecal microbiota and hindgut fermentation in growing pigs. Castrated male pigs (n = 12/diet; 29-kg body weight) were fed diets with either 70% EMS or control starch for 10 days. The bacterial profile of each cecal sample was determined by sequencing of the V345 region of the 16S rRNA gene using the Illumina MiSeq platform. EMS diet reduced short-chain fatty acid concentrations in cecum and proximal colon compared to the control diet. Linear discriminant analyses and K means clustering indicated diet-specific cecal community profiles, whereby diversity and species richness were not different among diets. Pigs showed host-specific variation in their most abundant phyla, Firmicutes (55%), Proteobacteria (35%), and Bacteroidetes (10%). The EMS diet decreased abundance of Ruminococcus, Parasutterella, Bilophila, Enterococcus, and Lactobacillus operational taxonomic units (OTU), whereas Meniscus and Actinobacillus OTU were increased compared to those with the control diet (P < 0.05). Quantitative PCR confirmed results for host effect on Enterobacteriaceae and diet effect on members of the Lactobacillus group. The presence of less cecal short-chain fatty acids and the imputed metabolic functions of the cecal microbiome suggested that EMS was less degradable for cecal bacteria than the control starch. The present EMS effects on the bacterial community profiles were different than the previously reported RS effects and can be linked to the chemical structure of EMS.


Asunto(s)
Adaptación Fisiológica/fisiología , Bacterias/metabolismo , Ciego/microbiología , Microbioma Gastrointestinal/genética , Almidón/metabolismo , Alimentación Animal , Animales , Bacterias/clasificación , Bacterias/genética , ADN Bacteriano/genética , Dieta , Ácidos Grasos Volátiles/metabolismo , Fermentación , Masculino , ARN Ribosómico 16S/genética , Almidón/análisis , Porcinos
10.
Br J Nutr ; 113(7): 1019-31, 2015 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-25761471

RESUMEN

Ca plays an essential role in bone development; however, little is known about its effect on intestinal gene expression in juvenile animals. In the present study, thirty-two weaned pigs (9·5 (SEM 0·11) kg) were assigned to four diets that differed in Ca concentration (adequate v. high) and cereal composition (wheat-barley v. maize) to assess the jejunal and colonic gene expression of nutrient transporters, tight junction proteins, cytokines and pathogen-associated molecular patterns, nutrient digestibility, Ca balance and serum acute-phase response. To estimate the impact of mucosal bacteria on colonic gene expression, Spearman's correlations between colonic gene expression and bacterial abundance were computed. Faecal Ca excretion indicated that more Ca was available along the intestinal tract of the pigs fed high Ca diets as compared to the pigs fed adequate Ca diets (P> 0.05). High Ca diets decreased jejunal zonula occludens 1 (ZO1) and occludin (OCLN) expression, up-regulated jejunal expression of toll-like receptor 2 (TLR2) and down-regulated colonic GLUT2 expression as compared to the adequate Ca diets (P< 0.05). Dietary cereal composition up-regulated jejunal TLR2 expression and interacted (P= 0.021) with dietary Ca on colonic IL1B expression; high Ca concentration up-regulated IL1B expression with wheat-barley diets and down-regulated it with maize diets. Spearman's correlations (r> 0·35; P< 0·05) indicated an association between operational taxonomic units assigned to the phyla Bacteroidetes, Firmicutes and Proteobacteria and bacterial metabolites and mucosal gene expression in the colon. The present results indicate that high Ca diets have the potential to modify the jejunal and colonic mucosal gene expression response which, in turn, interacts with the composition of the basal diet and mucosa-associated bacteria in weaned pigs.


Asunto(s)
Alimentación Animal , Calcio de la Dieta/administración & dosificación , Regulación del Desarrollo de la Expresión Génica , Mucosa Intestinal/metabolismo , Yeyuno/metabolismo , Sus scrofa/fisiología , Proteínas de Uniones Estrechas/metabolismo , Alimentación Animal/análisis , Animales , Austria , Calcio de la Dieta/análisis , Castración/veterinaria , Colon/crecimiento & desarrollo , Colon/metabolismo , Colon/microbiología , Cruzamientos Genéticos , Heces/química , Heces/microbiología , Transportador de Glucosa de Tipo 2/genética , Transportador de Glucosa de Tipo 2/metabolismo , Bacterias Gramnegativas/crecimiento & desarrollo , Bacterias Gramnegativas/aislamiento & purificación , Bacterias Gramnegativas/metabolismo , Bacterias Grampositivas/crecimiento & desarrollo , Bacterias Grampositivas/aislamiento & purificación , Bacterias Grampositivas/metabolismo , Hordeum/química , Mucosa Intestinal/crecimiento & desarrollo , Mucosa Intestinal/microbiología , Yeyuno/crecimiento & desarrollo , Yeyuno/microbiología , Masculino , Sus scrofa/crecimiento & desarrollo , Sus scrofa/microbiología , Proteínas de Uniones Estrechas/genética , Receptor Toll-Like 2/genética , Receptor Toll-Like 2/metabolismo , Triticum/química , Destete , Zea mays/química
11.
PLoS Genet ; 8(10): e1003012, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-23133394

RESUMEN

Terrestrial arthropods are commonly infected with maternally inherited bacterial symbionts that cause cytoplasmic incompatibility (CI). In CI, the outcome of crosses between symbiont-infected males and uninfected females is reproductive failure, increasing the relative fitness of infected females and leading to spread of the symbiont in the host population. CI symbionts have profound impacts on host genetic structure and ecology and may lead to speciation and the rapid evolution of sex determination systems. Cardinium hertigii, a member of the Bacteroidetes and symbiont of the parasitic wasp Encarsia pergandiella, is the only known bacterium other than the Alphaproteobacteria Wolbachia to cause CI. Here we report the genome sequence of Cardinium hertigii cEper1. Comparison with the genomes of CI-inducing Wolbachia pipientis strains wMel, wRi, and wPip provides a unique opportunity to pinpoint shared proteins mediating host cell interaction, including some candidate proteins for CI that have not previously been investigated. The genome of Cardinium lacks all major biosynthetic pathways but harbors a complete biotin biosynthesis pathway, suggesting a potential role for Cardinium in host nutrition. Cardinium lacks known protein secretion systems but encodes a putative phage-derived secretion system distantly related to the antifeeding prophage of the entomopathogen Serratia entomophila. Lastly, while Cardinium and Wolbachia genomes show only a functional overlap of proteins, they show no evidence of laterally transferred elements that would suggest common ancestry of CI in both lineages. Instead, comparative genomics suggests an independent evolution of CI in Cardinium and Wolbachia and provides a novel context for understanding the mechanistic basis of CI.


Asunto(s)
Bacteroidetes/genética , Genoma Bacteriano , Genómica , Animales , Artrópodos/microbiología , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Bacteroidetes/metabolismo , Evolución Biológica , Vías Biosintéticas , Citoplasma/metabolismo , Orden Génico , Interacciones Huésped-Patógeno , Simbiosis/genética
12.
Appl Environ Microbiol ; 80(1): 193-203, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24141125

RESUMEN

Microbe-laden dendritic cells are shifted to ileocecal lymph nodes (ICLNs), where microbes are concentrated and an adequate immune response is triggered. Hence, ICLNs are at a crucial position in immune anatomy and control processes of the local immune system. Pathological alterations in ICLNs, such as reactive hyperplasia, lymphadenitis purulenta, or granulomatosa, can harbor a multitude of pathogens and commensals, posing a potential zoonotic risk in animal production. The aim of this study was to characterize the microbial diversity of unreactive ICLNs of slaughter pigs and to investigate community shifts in reactive ICLNs altered by enlargement, purulence, or granulomatous formations. Pyrosequencing of 16S rRNA gene amplicons from 32 ICLNs yielded 175,313 sequences, clustering into 650 operational taxonomic units (OTUs). OTUs were assigned to 239 genera and 11 phyla. Besides a highly diverse bacterial community in ICLNs, we observed significant shifts in pathologically altered ICLNs. The relative abundances of Cloacibacterium- and Novosphingobium-associated OTUs and the genus Faecalibacterium were significantly higher in unreactive ICLNs than in pathologically altered ICLNs. Enlarged ICLNs harbored significantly more Lactobacillus- and Clostridium-associated sequences. Relative abundances of Mycoplasma, Bacteroides, Veillonella, and Variovorax OTUs were significantly increased in granulomatous ICLNs, whereas abundances of Pseudomonas, Escherichia, and Acinetobacter OTUs were significantly increased in purulent ICLNs (P < 0.05). Correlation-based networks revealed interactions among OTUs in all ICLN groups, and discriminant analyses depicted discrimination in response to pathological alterations. This study is the first community-based survey in ICLNs of livestock animals and will provide a basis to broaden the knowledge of microbe-host interactions in pigs.


Asunto(s)
Ciego/microbiología , Íleon/microbiología , Ganglios Linfáticos/microbiología , Microbiota , Animales , ADN Bacteriano/química , ADN Bacteriano/genética , ADN Ribosómico/química , ADN Ribosómico/genética , Datos de Secuencia Molecular , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN , Porcinos
13.
Front Microbiol ; 15: 1359678, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38426061

RESUMEN

Introduction: Numerous factors are known to influence reproductive efficiency in ewes, but few studies have investigated the potential role of vaginal microbiota in sheep reproductive success. The objective of this study was to thoroughly characterize the ewe vaginal microbiota throughout the course of pregnancy. Methods: Vaginal samples were collected from 31 pregnant Hampshire and Hampshire X Suffolk crossbred ewes on a weekly basis from pre-breeding to pregnancy testing and then biweekly until just after lambing. To characterize the vaginal microbial communities, DNA was extracted and 16S rRNA gene Illumina MiSeq amplicon sequencing was performed. Results and Discussion: Alpha diversity metrics indicated an increase in species richness, evenness, and overall diversity throughout gestation. Distinct shifts in the bacterial communities were observed during gestation and were segregated into three periods: early gestation, a transitional period and mid/late gestation. During early gestation, Actinobacillus, Histophilus, and unclassified Leptotrichiaceae were found in greater relative abundance. During the transitional period, a population shift occurred characterized by increasing relative abundance of Streptococcus and Staphylococcus. During mid/late gestation, Staphylococcus, Streptococcus, and Ureaplasma had the greatest relative abundance. These shifts in the microbial population throughout the ewe's gestation are likely related to hormonal changes triggered by the growing conceptus, specifically increasing blood concentration of progesterone. The transitional period shift in vaginal microbial communities potentially aligns with the placental take-over of progesterone production from the corpus luteum at approximately day 50 after conception (gestational week 7). Understanding the observed variability of the vaginal microbiota throughout pregnancy will allow for future comparison of ewes that did not become pregnant or had abnormal pregnancies, which could lead to the discovery of potential bacterial biomarkers for pregnancy outcome; this understanding could also lead to development of probiotics to improve sheep reproductive success.

14.
Am J Vet Res ; 85(4)2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38325002

RESUMEN

OBJECTIVE: This study aimed to characterize the bacterial and eukaryotic microbiota of the gastrointestinal (GI) tract in domestic rabbits and to evaluate the effect of different diet characteristics, such as pelleting, extrusion, and hay supplementation. ANIMALS: 30 New Zealand White rabbits (15 male and 15 female; 6 to 7 months old) were fed 1 of 6 diets (5 rabbits per diet) for 30 days after an initial acclimation period. At the end of the trial, samples were collected from the stomach, small intestine, cecum, large intestine, and hard feces. METHODS: The samples were analyzed using 16S rRNA and internal transcribed spacer 1 region-targeted amplicon sequencing. RESULTS: The bacterial microbiota was distinct between the foregut and hindgut. The most abundant bacterial genera included an unclassified genus in the Bacteroidales order and Alistipes. Candida was the most abundant genus in the eukaryotic dataset. In the bacterial dataset, diet No Hay/Pellet E was shown to have lower diversity (Shannon diversity, P < .05) compared to all diet groups except for No Hay/Pellet M. Few significant differences in alpha-diversity indexes between diet groups were detected in the eukaryotic dataset. CLINICAL RELEVANCE: Our findings demonstrated that feeding hay had a significant effect on the beta diversity of the bacterial microbiota. Given the prevalence of gastrointestinal disease in the domestic rabbit population, furthering our understanding of what constitutes a healthy rabbit microbiota and the effects of different diets on the microbial community can help veterinarians implement better intervention strategies and allow pet owners to provide the best level of care.


Asunto(s)
Tracto Gastrointestinal , Microbiota , Conejos , Animales , Femenino , Masculino , ARN Ribosómico 16S/genética , Dieta/veterinaria , Ciego , Bacterias/genética , Alimentación Animal/análisis , Heces/microbiología
16.
Front Vet Sci ; 11: 1334858, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38352039

RESUMEN

Introduction: Brucella abortus is the causative agent of brucellosis in cattle and in humans, resulting in economic losses in the agricultural sector and representing a major threat to public health. Elk populations in the American Northwest are reservoirs for this bacterium and transmit the agent to domestic cattle herds. One potential strategy to mitigate the transmission of brucellosis by elk is vaccination of elk populations against B. abortus; however, elk appear to be immunologically distinct from cattle in their responses to current vaccination strategies. The differences in host response to B. abortus between cattle and elk could be attributed to differences between the cattle and elk innate and adaptive immune responses. Because species-specific interactions between the host microbiome and the immune system are also known to affect immunity, we sought to investigate interactions between the elk microbiome and B. abortus infection and vaccination. Methods: We analyzed the fecal and vaginal microbial communities of B. abortus-vaccinated and unvaccinated elk which were challenged with B. abortus during the periparturient period. Results: We observed that the elk fecal and vaginal microbiota are similar to those of other ruminants, and these microbial communities were affected both by time of sampling and by vaccination status. Notably, we observed that taxa representing ruminant reproductive tract pathogens tended to increase in abundance in the elk vaginal microbiome following parturition. Furthermore, many of these taxa differed significantly in abundance depending on vaccination status, indicating that vaccination against B. abortus affects the elk vaginal microbiota with potential implications for animal reproductive health. Discussion: This study is the first to analyze the vaginal microbiota of any species of the genus Cervus and is also the first to assess the effects of B. abortus vaccination and challenge on the vaginal microbiome.

17.
mSystems ; : e0052024, 2024 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-38920380

RESUMEN

Some lactic acid bacteria (LAB) can provide significant health benefits, which are critically important for the conservation of endangered animals, such as giant pandas. However, little is known about the diversity and culturability of LAB in the giant panda gut microbiota. To understand the roles of LAB in giant panda conservation, it is critical to culture bacterial strains of interest. In this study, we established a pipeline to culture bacterial strains using enrichment of target bacteria with different liquid media and growth conditions. Then, the strains were isolated in solid media to study their functions. Using 210 samples from the culture enrichment method and 138 culture-independent samples, we obtained 1120 amplicon sequencing variants (ASVs) belonging to Lactobacillales. Out of the 1120 ASVs, 812 ASVs from the culture enrichment approach were twofold more diverse than 336 ASVs from the culture-independent approach. Many ASVs of interest were not detected in the culture-independent approach. Using this pipeline, we isolated many relevant bacterial strains and established a giant panda gut bacteria strain collection that included strains with low-abundance in culture-independent samples and included most of the giant panda LAB described by other researchers. The strain collection consisted of 60 strains representing 35 species of 12 genera. Thus, our pipeline is powerful and provides guidance in culturing gut microbiota of interest in hosts such as the giant panda.IMPORTANCECultivation is necessary to screen strains to experimentally investigate microbial traits, and to confirm the activities of novel genes through functional characterization studies. In the long-term, such work can aid in the identification of potential health benefits conferred by bacteria and this could aid in the identification of bacterial candidate strains that can be applied as probiotics. In this study, we developed a pipeline with low-cost and user-friendly culture enrichment to reveal the diversity of LAB in giant pandas. We compared the difference between culture-independent and culture enrichment methods, screened strains of interest that produced high concentrations of short-chain fatty acids (SCFAs), and we investigated the catalog of virulence factors, antibiotic resistance, butyrate and lactate synthesis genes of the strains at a genomic level. This study will provide guidance for microbiota cultivation and a foundation for future research aiming to understand the functions of specific strains.

18.
J Bacteriol ; 195(14): 3183-92, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23667233

RESUMEN

All organisms require S-adenosylmethionine (SAM) as a methyl group donor and cofactor for various biologically important processes. However, certain obligate intracellular parasitic bacteria and also the amoeba symbiont Amoebophilus asiaticus have lost the capacity to synthesize this cofactor and hence rely on its uptake from host cells. Genome analyses revealed that A. asiaticus encodes a putative SAM transporter. The corresponding protein was functionally characterized in Escherichia coli: import studies demonstrated that it is specific for SAM and S-adenosylhomocysteine (SAH), the end product of methylation. SAM transport activity was shown to be highly dependent on the presence of a membrane potential, and by targeted analyses, we obtained direct evidence for a proton-driven SAM/SAH antiport mechanism. Sequence analyses suggest that SAM carriers from Rickettsiales might operate in a similar way, in contrast to chlamydial SAM transporters. SAM/SAH antiport is of high physiological importance, as it allows for compensation for the missing methylation cycle. The identification of a SAM transporter in A. asiaticus belonging to the Bacteroidetes phylum demonstrates that SAM transport is more widely spread than previously assumed and occurs in bacteria belonging to three different phyla (Proteobacteria, Chlamydiae, and Bacteroidetes).


Asunto(s)
Antiportadores/metabolismo , Bacteroidetes/metabolismo , S-Adenosilmetionina/metabolismo , Antiportadores/genética , Bacteroidetes/genética , Clonación Molecular , Biología Computacional , Escherichia coli/genética , Escherichia coli/metabolismo , S-Adenosilhomocisteína/metabolismo , Especificidad por Sustrato
19.
Appl Environ Microbiol ; 79(23): 7264-72, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24038702

RESUMEN

Several dietary ingredients may affect the bacterial community structure and metabolism in the porcine gut and may therefore influence animals' health and performance. This study investigated the effects of cereal source and calcium-phosphorus (CaP) level in the diet on bacterial microbiota and metabolites, nutrient intake, and gut environment in weaned pigs. Pigs (n=8/treatment) were fed wheat-barley- or corn-based diets with an adequate or high CaP level for 14 days. Effects on microbiota in the stomach, ileum, and midcolon were assessed using quantitative PCR. Data showed that Enterobacteriaceae, Campylobacter spp., and Helicobacter spp., which all contain highly immune reactive lipopolysaccharide (LPS), were abundant at all gut sites. Diet effects on bacteria and metabolites were moderate and occurred mainly in the upper gut, whereas no effects on bacteria, fermentation products, and LPS could be observed in the colon. Differences in carbohydrate intake with corn versus wheat-barley diets selectively stimulated Bifidobacterium in the stomach and ileum. There was a growth advantage for a few bacterial groups in the stomach and ileum of pigs fed the high versus adequate CaP level (i.e., gastric Enterobacteriaceae and ileal Enterococcus, Bacteroides-Prevotella-Porphyromonas, and Campylobacter). Interestingly, gastrointestinal pH was not affected by dietary CaP level. The present findings demonstrate the stability of the bacterial community and gut environment toward dietary changes even in young pigs. The results on stimulation of gastric and ileal Bifidobacterium by corn diets may be employed in nutritional strategies to support gut health after weaning.


Asunto(s)
Biota , Calcio de la Dieta/análisis , Dieta/métodos , Grano Comestible/química , Fósforo/análisis , Porcinos/microbiología , Tracto Gastrointestinal Superior/microbiología , Animales , Hordeum/química , Reacción en Cadena en Tiempo Real de la Polimerasa , Triticum/química , Zea mays/química
20.
Anaerobe ; 20: 65-73, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23474085

RESUMEN

High grain feeding has been associated with ruminal pH depression and microbial dysbiosis in cattle. Yet, the impact of high grain feeding on the caprine rumen and hindgut microbial community and lipopolysaccharide (LPS) release is largely unknown. Therefore, the objective was to investigate the effect of increasing dietary levels of barley grain on the microbial composition and LPS concentrations in the rumen and colon of goats. Effects were compared with respect to the responses of ruminal and colonic pH and short-chain fatty acid (SCFA) generation. Growing goats (n = 5-6) were fed diets containing 0, 30, or 60% coarsely ground barley grain for 6 weeks. Ruminal ciliate protozoa were counted with Bürker counting chamber, and quantitative PCR was used to compare bacterial populations. Increasing dietary grain level linearly increased (P < 0.05) ruminal numbers of entodiniomorphids. With the 60% grain diet, there was a reduction in ruminal abundance of the genus Prevotella and Fibrobacter succinogenes, whereas the ruminal abundance of Lactobacillus spp. increased compared to the 0 and 30% grain diets (P < 0.05). In the colon, abundance of the genus Prevotella and F. succinogenes increased (P < 0.05) in goats fed the 60% grain diet compared to those fed the other diets. Colonic abundance of Clostridium cluster I was related to the presence of grain in the diet. Ruminal LPS concentration decreased (P < 0.05) in response to the 60% grain diet, whereas its colonic concentration increased in response to the same diet (P < 0.05). Present results provide first insight on the adaptive response of rumen protozoa and rumen and colonic bacterial populations to increasing dietary levels of grain in goats. Although luminal pH largely affects microbial populations, fermentable substrate flow to the caprine hindgut may have played a greater role for colonic bacterial populations in the present study.


Asunto(s)
Alimentación Animal/análisis , Colon/microbiología , Dieta/veterinaria , Cabras , Hordeum , Rumen/microbiología , Fenómenos Fisiológicos Nutricionales de los Animales , Animales , Cilióforos/aislamiento & purificación , Colon/química , Colon/parasitología , Femenino , Fermentación , Lactobacillus/aislamiento & purificación , Lipopolisacáridos/análisis , Masculino , Prevotella/aislamiento & purificación , Rumen/química , Rumen/parasitología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA